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Abstract—This paper proposes a novel semi-active suspension 

system with a cam mechanism-based nonlinear stiffness structure 

for vibration reduction. The cam mechanism has a specially 

designed curve on its contacting surface, which is designed and 

modeled using the virtual work principle and force-displacement 

simulation. The nonlinear stiffness structure mainly consists of a 

spring, a roller and a curved surface. Based on the surface contour 

design, the system shows variable stiffness characteristics and the 

required stiffness range can be obtained through the proper 

design of the curved surface. Then, the model parameters are 

analyzed, and the key structural parameters of the system are 

determined to achieve a high-static-low-dynamic stiffness. 

Additionally, a semi-active backstepping sliding mode controller 

is designed to enhance the vibration reduction capabilities. Finally, 

the vibration reduction performance of the passive systems with 

and without nonlinear stiffness and the semi-active system are 

compared. The results show both the nonlinear stiffness and the 

semi-active control are beneficial to reduce vibration. The RMS of 

acceleration of the nonlinear stiffness passive suspension and semi-

active suspension in random excitation decreases 12.9% and 

17.2%, respectively. 

Keywords—curved surface design, structural parameters, 

nonlinear stiffness, vibration reduction, semi-active control 

I. INTRODUCTION  

In engineering, vibration is inevitable and often leads to 

detrimental effects. Suspension systems are widely employed 

across various fields to enhance safety and comfort. On one 

hand, the linear vibration isolation theory suggests that a 

suspension can exhibit vibration isolation performance only 

when the excitation frequency exceeds 2  times the natural 

frequency ( / 2 )/ (k m π )[1]. Consequently, achieving a lower 

natural frequency through reduced stiffness is advantageous in 

vibration reduction. On the other hand, the deformation of the 

suspension spring is limited by space and stability 

requirements. Moreover, under a given load, smaller 

deformations correspond to higher stiffness, which ensures 

load-bearing capacity. Therefore, suspensions necessitate a 

delicate balance between stiffness for vibration reduction effect 

and load-bearing capacity. The contradiction between high load 

capacity and low natural frequency has posed a challenge in the 

development of passive vibration isolation technology. Low-

frequency vibration isolation, especially for heavy equipment, 

has remined a persistent challenge[2]. High static stiffness 

corresponds to a large load-bearing capacity under small 

deformations, while low dynamic stiffness results in a low 

natural frequency. The high-static-low-dynamic stiffness 

(HSLDS) represents a type of nonlinear stiffness that varies 

with displacement[3]. HSLDS offers a potential solution to the 

bottleneck problem faced by traditional passive vibration 

isolation technologies. Various suspensions incorporating 

nonlinear stiffness have been developed and analyzed 

previously. For instance, Carrella et al.[4] conducted a 

comprehensive static analysis of a nonlinear stiffness isolator 

consisting of a vertical spring and two inclined springs. They 

investigated the optimal relationship between the spring 

stiffness ratio and geometric layout[5]. Kovacic et al.[6] replaced 

linear springs with prestressed nonlinear springs, and further 

studied the static characteristics of a three-spring nonlinear 

stiffness isolator. Le et al.[7] devised a nonlinear stiffness 

isolator by connecting two symmetrical horizontal springs with 

inclined rods, forming a negative stiffness mechanism that was 

applied to vehicle seats. Zhou et al.[8] utilized a cam-roller-

spring mechanism as a negative stiffness element to construct a 

quasi-zero stiffness isolator, establishing a piecewise function 

model. Results indicated that the peak transmissibility and 

initial isolation frequency of the isolator were lower than those 

of the corresponding linear system, regardless of the excitation 

amplitude. Ahn et al.[9] proposed an integrated design method 

for nonlinear stiffness system and concluded that desired 

characteristics of a nonlinear stiffness mechanism can be 

achieved through properly designed cam geometry. In this 

paper, a new type of nonlinear stiffness suspension with spring-

cam-curved surface structure is proposed. By designing the 

contour of the curved surface, an adjustable force-displacement 

function can be achieved[10], allowing for the fulfillment of 

various stiffness requirements, including HSLDS. Theoretical 

modifications to the curved surface result in nonlinear 

deformations of the springs, consequently enabling the 

nonlinear variation of the system’s stiffness[11]. The research 

results hold significant importance for vibration reduction in 

seats and machinery devices, offering potential improvements 

in seat comfort and mitigating damage to mechanical 

components caused by vibration. Moreover, the design of 

curved surface contours can be tailored to suit other 

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 511



applications, in accordance with specific usage demands. When 

combined with appropriate control methods, the proposed 

suspension system has the potential to further reduce vibrations. 

II. MODELING AND ANALYSIS 

A. Structure and static modeling 

This section establishes the static model of the suspension, 
considering the geometric nonlinearity of the structure, and 
derives the functional relationship between the load force and 
displacement. Fig. 1 illustrates the schematic diagram of the 
nonlinear stiffness suspension. Several key parameters are 
involved, including the distance l between the installation point 
of the curved surface structure and the binaural support, the rod 
length L, the initial stretching length δ0, and the installation 
height H of the horizontal spring. Additionally, θ0 represents the 
initial inclination angle of the system under no load or only a 
small load. The spring is pre-stretched, enabling it to possess a 
certain static load capacity. As the load gradually increases, the 
force exerted by the curved surface on the cam gradually 
increases. When it reaches a critical value, the spring separates 
from the positioning plate. At this point, the spring force solely 
supports the heavy object and no longer acts on the positioning 
plate. If the suspension is loaded with a heavy object of gravity 
mg (mg > the maximum static load), the horizontal spring 
undergoes further stretching, causing a reduction in the overall 
height of the system. Consequently, the horizontal spring moves 
along the curved surface contour to a specific position, attaining 
a state of equilibrium. The equilibrium position is selected as the 
location where the dynamic stiffness of the system is minimal. 
In this way, it can be ensured that the system has a small 
dynamic stiffness when it moves near the equilibrium position.  

 

Fig. 1 The schematic diagram of the nonlinear stiffness suspension 

The inclination angle between the scissors rod and the 
horizontal plane is denoted as θ. The curved surface structure is 
installed at point A, and the t-s coordinate system is established 
with A as the origin. The curve equation in the t-s coordinate 
system is represented as φ(s), while the contact position of the 
cam and the surface is identified as point M. Furthermore, a y-x 
coordinate system is established as shown in Fig.1, with O 
serving as its origin. The transformation relationship between 
the curve equation in the two coordinate systems can be derived 
as follows: 
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The coordinates of the contact point M in the t-s coordinate 
system are given as (sM, φ(sM)), while the installation height of 
the spring is denoted as H. Neglecting the impact of the cam size 
on the contact position, the coordinates of M in the y-x 
coordinate system can be represented as (xM, H). By substituting 
y=H into (1) and incorporating the coordinates of M (sM, φ(sM)), 
we can establish the relationship between sM and θ as follows: 

  1Ms f θ  (2) 

By substituting (2) into (1), we can express the abscissa xM 
of point M in the y-x coordinate system as a function of θ, 
denoted as: 

  2Mx f θ  (3) 

When there is no load, the initial inclination angle of the rod 
is denoted as θ0, which is determined by the constant initial 
height H0 of the system. Consequently, we can calculate the 

initial abscissa 
0Mx  of point M in the y-x coordinate system 

using (3). The deformation Δx of the horizontal spring can be 

determined by 
0

Δ M Mx x x  . The force exerted by the 

horizontal spring can be expressed as 0( )Δh hf k δ x  , whereδ0 

is the pre-stretching amount, kh is the spring constant. 
Subsequently, we can establish the relationship between the fh 

and θ as follows： 

  3hf f θ  (4) 

For the system composed of the scissors structure, curved 
surface, cam and springs, the virtual work equation can be 
expressed as shown in (5). Here we use two springs that are 
stretched in advance. 

 2 0h MF δh f δx    (5) 

The ordinate of the plane where the load is equals to the 
height of the system h, initially set as H0. It can be represented 

as h Lsinθ , and its variation can be described as follows: 

 cosδh L θδθ  (6) 

The abscissa xM of point M is determined by (3), and its 
variation can be expressed as follows: 

  2M δθδx f θ   (7) 

By substituting (6) and (7) into (5), the relationship between 
load F and rod inclination angle θ can be obtained: 

  4F f θ  (8) 

By combining arcsin( / )θ h L  and (8), we can obtain:  

  5F hf  (9) 

B. Design of the contact curved surface  

By designing appropriate structural parameters and surface 
contour, the vibration isolator can exhibit a small dynamic 
stiffness characteristic near the equilibrium position. The 
theoretical profile of the curved surface directly determines the 
deformation of the horizontal springs, which further affects the 
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stiffness characteristic of the suspension. Fig. 2 shows the 
primary research route for obtaining the suitable curve function. 
In this study, the curved surface function is represented solely in 
polynomial form. Table Ⅰ presents the main parameters selected 
for designing the curved surface. 

 

Fig. 2 The prime research route to get proper curve function 

TABLE I.  MAIN PARAMETERS CHOSEN TO DESIGN CURVED SURFACE  

Parameters Value 

Length of the scissors rod L 0.72 m 

The initial incline angle of the scissors rod θ0 π/4 rad 

Horizontal spring stiffness kh 8000 N/m 

Distance from the mounting point of the curved 

surface to the origin of the y-x coordinate 
0.32 m 

Mounting height of the horizontal springs H 0.20 m 

Pre-stretching amount of the horizontal springs δ0 0.15 m 

The balance point below the initial position xb 0.2681 m 

The gravity of the load mg 584.2138 N 

The incline angle of the scissors rod θb 19.5607° 

 

By utilizing the polynomial block in the Simulink, 
simulations are conducted based on section A. By comparing the 
F-h graph, the curve function is determined as (10). The position 
with the least stiffness is identified as the balance point, as 
shown in Table Ⅰ. The displacement from the balance position is 

defined as 0b bh h H +x  , and the force applied to the 

suspension is bF mg F  . By polynomial fitting of the curve 

using mathematical tools, the mathematical expression of the 
relationship between Fb and hb in polynomial form is obtained. 
Fig. 3 shows the comparison between the exact curve and 
approximation curves. It can be observed that the stiffness (slope 
of the Fb-hb curve) near the equilibrium position is only slightly 
greater than zero, and the fitting effect improves with increasing 
polynomial power. 

 4 3( ) 38.5 13.2 0.3φ s s s s     (10) 

 

Fig. 3 The exact and fitting curves of force and displacement 

Fig. 4 illustrates the force-displacement curves 
corresponding to different pre-stretching amounts of the springs. 
It is important to note that the balance position varies with 
different values of δ0. Each curve requires a specific load to 
maintain its own balance position. Moreover, it is observed that 
certain segments on the curves with δ0=0.21 and δ0=0.18 exhibit 
negative stiffness characteristics. To ensure system stability, it 
is necessary to eliminate these segments of negative stiffness. 
Therefore, in our suspension design, we have chosen δ0 to be 
0.15, which fits the system well. 

 

Fig. 4 The force-displacement curves with different δ0 

III. CONTROL  

In this section, we have designed a backstepping sliding 

mode controller and a semi-active strategy to further reduce the 

vibration in our nonlinear stiffness suspension. The overall 

technical route of the semi-active control is illustrated in Fig. 5. 

 

Fig. 5 The overall technical route of semi-active control 

A. Controller design  

The dynamic function of the suspension with the input u can 
be described by (11), where m represents the load mass, Fb 
denotes the applied force, x1 represents the load’s displacement, 
and w represents the base’s displacement. The state-space model 
of the system can be represented as (12). 

  1 1b fmx F c x w u     (11) 

 
 

1 2

2 2

1 1
b f

x x

x F c x w u
m m









     

 (12) 

The desired displacement is represented by zd, and the 

deviation function is defined as 1 1 dz zx  . Considering 
2

1 1 / 2V z  as the candidate Lyapunov function[12], we obtain 

 1 1 2 dV z x z  . The virtual control input is defined as 
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2 2 1 1 dz x c z z   . Hence, we have 2

1 1 1 1 2V c z z z   . Here, 

when z2 equals to zero, 
1 0V  . We define the sliding mode 

function as s=z2. The Lyapunov function can be further defined 

as 2

2 1 2 / 2V V z  , and we have 
2 1 2 2V V z z  . To ensure 

2 0V  and adopt the reaching law[13], the backstepping sliding 

mode controller can be designed as (13). We can adopt 
saturation function ‘sat’ to replace ‘sgn’ to eliminate chatter, and 
the thickness of boundary is Δ. Table Ⅱ shows the main 
parameters chosen to design the controller. 

 
 

 

2 2 2 1 1 1

1

( ) sgn( ) d

f b

u t m η z c z c z z z

c x w F

     

    

 (13) 
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1 Δ

s

s ks s k

s




 
  

„  (14) 

TABLE II.  MAIN PARAMETERS CHOSEN TO DESIGN CONTROLLER  

Parameters Value 

Load mass m 59.6 kg 

Damping cf 600 N·s/m 

Desired displacement zd 0 m 

Controller parameter c1 8 

Controller parameter c2 0.5 

Controller parameter η 0.02 

Thickness of the boundary ∆ 0.03 

 

B. Semi-active strategy  

Here, electromagnetic damping force is employed for semi-
active control. The electromagnetic force acts in the opposite 
direction to the relative velocity between the load and the base. 
To achieve effective control, a control logic is required to track 
the ideal force with the electromagnetic force. The 
electromagnetic force is generated using a ball screw and a DC 
motor[14]. The relationship between the electromagnetic force 
and the current can be described by (15). 

 
i gF k r i    (15) 

where ki is the torque constant, rg is the transmission ratio of the 

ball screw and can be obtained using 2 /gr π p where p is the 

pitch of the ball screw. The relationship between the voltage and 
the relative velocity is as follows: 

 ee k v   (16) 

where ek is the voltage constant and its relationship with ki is 

e g ik r k . The external resistance is R and the internal resistance 

is r. Then we can calculate the current as follows:  

 / ( )i gk r vi R r   (17) 

According to (15) and (17), the electromagnetic force can be 

calculated as 
2 ))( / (i gF v rrk R   . Then the electromagnetic 

damping can be obtained by 
2 ))( / (e gic rk R r  . When F and 

v have the same sign, indicating ce is negative, we need to set the 
external resistance to its maximum value in order to achieve 
minimum damping. This ensures that the difference between the 
electromagnetic force and the ideal force is minimized. When F 
and v have different signs, the ideal external resistance is given 
by (18). By adjusting the external resistance Re as close as 
possible to R, we can achieve an actual control force that is close 
to the ideal force[15]. Table Ⅲ presents the parameters of the DC 
motor. 

 2)( /giR rk v F r    (18) 

TABLE III.  MAIN PARAMETERS OF THE DC MOTOR  

Parameters Value 

The pitch of the ball screw p 0.02 m 

Torque constant ki 0.245 N·m/A 

Internal resistance of the motor r 1.6 Ω 

 

IV. VIBRATION RESPONSE ANALYSIS AND COMPARISON  

In this section, we compare the vibration responses of three 
systems: the passive system with contact curved surface (legend 
‘PS(CV)’), and passive system without contact curved surface 
(legend ‘PS(NCV)’), and the semi-active system with contact 
curved surface (legend ‘SA(CV)’). We examine their responses 
under three different excitations. To ensure a reliable 
comparison, we introduce a passive system with the same static 
displacement under the load mg but without a contact curved 
surface. The stiffness of PS(NCV) can be obtained by 

/p bk mg x . All three systems are implemented in Simulink for 

analysis and comparison. 

A. Sinusoidal excitation  

The vibration performance of the systems is tested using a 

sinusoidal excitation with the 0 sin(2 )w w πft . The excitation 

frequency f and amplitude w0 are set to 1.2Hz and 0.012m, 
respectively. The acceleration and displacement responses of the 
three systems are presented in Fig. 6 and Fig. 7. It can be 
observed that the curved surface design has a positive impact on 
vibration isolation, and the semi-active control further reduces 
the vibration. Compared to the PS (NCV) system, the peak 
acceleration has been reduced by 29.8% and 33.3% in the 
PS(CV) and SA(CV), respectively. Similarly, the maximum 
displacement has been reduced by 27.5% and 35.9%, 
respectively. Fig. 8 illustrates the semi-active electromagnetic 
force that tracks the ideal force, along with the corresponding 
resistance used to achieve the tracking. Due to the discontinuity 
of the actual force, it is impossible to track the ideal force 
completely.  
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Fig. 6 The acceleration response under sine wave input 

 

Fig. 7 The displacement response under sine wave input 

 

Fig. 8 The force tracking and resistance adopted under sine wave input 

B. Bump excitation 

The bump input applied to the three systems is as follows: 

 
0.012(1 cos(4 )) (0 0.5)

0 ( 0.5)

πt t
w

t

  
 


 (19) 

Fig. 9 and Fig. 10 displays the comparison curves of 
acceleration and displacement, respectively under bump 
excitation. When equipped with a curved surface, the peak value 
of acceleration decreases by a maximum of 23.8%. Furthermore, 
with the application of semi-active control, the peak value 
reduces even further by 10.1%. Fig. 11 illustrates the actual 
force tracking the ideal force, which cannot be achieved 
completely due to the discontinuity of the external resistance. 
The figure also presents the current generated in the DC motor. 
Initially, the current is positive and later switches to negative, 
indicating a change in relative velocity from positive to negative. 
Since the ideal force and relative velocity have the same 
direction segments, the external resistance needs to be set to the 
maximum value, causing the actual force to track the ideal force 
for only a brief period of time. 

 

Fig. 9 The acceleration response under bump input 

 

Fig. 10 The displacement response under bump input 

 

Fig. 11 The force tracking and current generated under bump input 

C. Random excitation 

The random road profile can be generated using (20), where 
N is the number of the data points to be generated; Δn  is the 

interval of spatial frequency; n0=0.1 cycles/m is a predefined 
spatial frequency in ISO 8608; φi represents the random phase 
angle, ranging from 0 to 2π; x is the abscissa variable from 0 to 
the length of the road; k is a constant ranging from 3 to 9, which 
is related to the road profile class. 

  3 0

1

( ) 2 Δ 10 cos 2 Δ
Δ

N
k

i

i

n
h x n πi n x φ

i n





 
     

 
  (20) 

The road profile is input into a vehicle suspension model, 
resulting in a random signal. Fig. 12 shows the road profile and 
the random signal applied to the suspensions. Fig. 13 and Fig. 
14 show the acceleration and displacement responses to the 
random input. When compared to the PS(NCV), the SA(CV) 
and PS(CV) systems reduce the RMS of acceleration by 17.2% 
and 12.9%, respectively. Fig. 15 shows the amplitude-frequency 
characteristics under random excitation, indicating that the 
SA(CV) system exhibits smaller amplitudes in the low-
frequency range compared to the other two systems.  
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Fig. 12 The road profile and the random signal generated 

 

Fig. 13 The acceleration response under random input 

 

Fig. 14 The displacement response under random input 

 

Fig. 15 The amplitude-frequency characteristic under random input 

V. CONCLUSION  

In this paper, a semi-active suspension with a nonlinear 
stiffness structure has been designed and modeled. A 
backstepping sliding mode controller has been applied to the 
model to reduce vibration. As a result, the following conclusions 
can be drawn: 

(1) Proper design of the curved surface allows for achieving 
high static and low dynamic stiffness.  

(2) A comparison between the passive system with and 
without the nonlinear stiffness structure reveals that the design 
is beneficial for vibration reduction. The system exhibits smaller 
displacements and can reduce the peak acceleration values by 
29.8% and 23.8% under sinusoidal excitation and bump 
excitation, respectively, as demonstrated in this paper. 
Furthermore, under random excitation, the RMS of acceleration 
is reduced by 12.9% and 17.2% for PS (CV) and SA (CV) 
systems, respectively, as reported in this paper. 
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