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Abstract— This paper presents a physics-informed neural 

network (PINN) architecture for contextual anomaly detection 

in a hot forming production line. It enhances widely used 

proximity- or distribution-based anomaly detection approaches 

for industrial processes through the consideration of contextual 

process data. The physical model is built using a priori process 

knowledge and thermodynamic equations. This model is then 

injected into the loss function of a neural network. The network 

is trained on data from the production line and constantly 

regularized by the physical loss term. Within inference, the 

PINN predicts the resulting temperature of the produced blank 

given the contextual process data. The anomaly detection is 

performed using the unsupervised local outlier factor algorithm 

on the error between actual and predicted blank temperature. 

This makes it possible to assess whether the achieved product 

temperature appears normal or abnormal based on the 

database. The main advantage of this novel approach is that it 

can detect contextual anomalies that remain otherwise 

undiscovered. 

Keywords—contextual anomaly detection, hybrid modeling, 

physics informed neural network, process control, hot forming, 

informed modeling 

I. INTRODUCTION 

In times of narrow production windows, high quality 
requirements and growing emphasis on energy efficiency, the 
demands on production monitoring systems are increasing. 
Usually, series production systems are monitored using static 
value thresholds. In case the value exceeds the specified 
threshold, an alarm is triggered, prompting either an operator 
inspection or a production interruption. Measures are then 
taken to eliminate the defect. In addition to static production 
monitoring, statistical quality control is often carried out, in 

which randomly selected products are subjected to a detailed 
and often destructive quality inspection. While the specific 
causes of production errors can vary, they can usually be 
attributed to several key factors. Discovering the 
characteristic relational dynamics of these key factors is the 
challenge of contextual anomaly detection. Contextual 
anomaly detection is a powerful data analysis technique used 
to identify anomalies or outliers in data based on their 
contextual information. Unlike traditional anomaly detection 
methods that solely rely on statistical analysis, contextual 
anomaly detection takes into account the relationships and 
dependencies between given data points within a given 
context [1]. By considering the context in which an 
observation occurs, this approach can effectively distinguish 
between normal variations and abnormal behaviors or events. 
This makes it particularly useful in detecting anomalies in 
complex systems such as production environments, where 
understanding the context is crucial for accurate anomaly 
identification. 

Within the scope of this paper a contextual anomaly 
detection technique is developed on a given use-case of a 
press hardening production line. Press hardening, also known 
as hot stamping or hot forming, is an advanced manufacturing 
process used in the automotive industry to produce high-
strength, lightweight components with exceptional 
mechanical properties. This innovative technique involves 
heating a blank of sheet metal to a high temperature and then 
rapidly stamping it into a die using a hydraulic press. The 
intense heat and pressure enable the material to undergo phase 
transformation, resulting in a fully hardened part with 
improved strength, durability, and crashworthiness. Press 
hardening offers several advantages over traditional forming 
and heat treatment methods. The process allows for precise 
shaping of intricate and complex geometries, ensuring tight 
tolerances and dimensional accuracy. Moreover, the rapid 
cooling during the stamping process helps achieve high levels 
of strength and hardness, making the parts lightweight yet 
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incredibly strong. This not only enhances the overall 
performance of the component but also contributes to fuel 
efficiency and reduced emissions of the produced vehicles. 

The press hardening process requires meeting several key 
requirements to achieve successful martensitic phase 
transformation. First, the initial state of the blank needs to be 
fully austenitized typically at a temperature of approximately 
950°C. Next, during the pressing cycle, the blank should be 
rapidly cooled down at a rate of at least 60K/s. This rate is 
essential for the martensitic phase transformation [2]. The 
phase transformation stops at a final temperature of around 
280°C. The cooling is stopped at a final product temperature 
of around 150°C -250°C ensuring full transformation. The 
entire process should take less than 20 seconds. The cooling 
mechanism is typically realized using water-cooled dies or 
dies. When the heated blank is placed between the cooled 
dies, the heat is transferred from the blank to the cooling water 
via the dies, rapidly reducing its temperature. 

As of [2–4] the main factors that can affect the quality of 
the final part hardening are: 

• Material properties of the blank and its coating 

• Ambient influences such as heat and dust 

• Degradation of the production machine 

• Human error 

Since these factors are difficult to monitor directly, 
process supervision needs to analyze available data sources 
for any signs of anomalies or artifacts that may be caused by 
one or more of these disturbance factors. 

II. RELATED WORKS 

As of [5, 6] an anomaly or outlier is defined as datapoints 
that do not conform with the rest of the datapoints, so that it 
might be generated by a different mechanism. On the other 
hand, a contextual anomaly considers only the surrounding 
datapoints to determine if it deviates from the expected pattern 
[6, 7]. The context defining surrounding might be given by a 
timely or situational relation. In Fig. 1 it is shown that the 
difference between a global and a contextual anomaly 
detection lies within the preprocessing steps, the final 
detection methods can be the same. Thus, the modeling of the 
contextual reference point is a crucial step for contextual 
anomaly detection. 

 

Fig. 1. Difference between global and contextual anomaly detection 

A. Context modeling approaches 

Within the literature there are several approaches on the 
contextual modeling, of which many rely on various types of 
neural network models. In [1] a LSTM network is used to 
build an inverse process model giving the contextual scope of 
the tested datapoint. CARMONA uses a window based 
approach to dynamically set the given context of time-series 
datapoints [8]. There Temporal Convolutional Networks 
embed the suspect and context window. SCHLEGL uses a 
generative adversarial network to generate suitable reference 
images for anomaly detection [9]. For univariate time-series 
neural basis expansion analysis called N-BEATS show 
promising results in modeling process behavior [10]. There 
several fully connected deep learning blocks are used to split 
the given time-series is its governing frequencies. The 
approach has shown great results on long horizon forecasting 
challenges. OLIVARES have enhanced this approach to also 
regard exogenous variables resulting in the N-BEATSx 
method [11]. ZHOU uses a deep neural network autoencoder 
in combination with a principal component analysis to 
perform robust reconstruction of images [12]. It is tested on a 
noisy MNIST dataset and challenged against an Isolation 
Forest algorithm. 

Another increasingly popular approach is the integration 
of physical models into neural networks leading to so-called 
Physics Informed Neural Networks (PINN) or Physics Guided 
Neural Networks (PGNN) [13–15]. The goal is to penalize 
network solutions that are physically inconsistent, bridging 
the gap between theory-based models and pure data-based 
models. Whereas most examples refer to physical processes 
these approaches can include any formal expressed process 
relation. KARPATNE ET AL. describe different architectures 
e.g. theory-guided initialization and theory-guided 
regularization [16]. GÖTTE AND TIMMERMANN uses the PINN 
approach for system identification for the purpose of control 
layout [17]. SCHÖN enhances the approach to a Multi-
Objective Physics-Guided Recurrent Neural Network for 
identification of non-autonomous systems [18]. 

B. Anomaly detection approaches 

Despite the advances in the field of neural networks, 
within the anomaly detection method palette, pure statistical 
and traditional unsupervised approaches remain powerful in 
this sector. Within the scope of this work, only anomaly 
detection algorithms leading to a specific classification of 
inlier/outlier or normal/abnormal are regarded. Commonly 
they are classified as unsupervised and supervised methods. 

1) Supervised methods 
Supervised methods require a fully labeled training 

dataset. The difference in comparison to a conventional 
classification task is that the class of abnormal datapoints is 
generally sparsely populated leading to an extremely 
imbalanced dataset [7]. Sometimes anomalies are deliberately 
injected into a given set of normal datapoints in order to obtain 
a labeled data set. It is questionable whether the injected 
anomalies represent possible anomalies realistically. Among 
the supervised methods popular approaches are support vector 
machines with its variations [19], k-Nearest-Neighbor [20], 
Hidden Markov Models [21] and decision trees [7]. 
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2) Unsupervised methods 
As anomalies are expected to occur rarely and are defined 

as not conforming with the norm, labels are usually difficult 
to obtain. This factor emphasizes the need of unsupervised 
methods for anomaly detection of real-world data. Among the 
most popular methods there are Isolation Forest [22], Local 
Outlier Factor (LOF) [23], K-means clustering [24] and 
Gaussian Mixture Models [25]. All these methods have in 
common that they cluster the dataset and generate a feature 
based on the distance to either a cluster centroid or a mean 
density within the cluster. The final classification of a 
datapoint as normal or abnormal is done through a threshold 
value. As a first approach this threshold value is set during the 
training process to meet a certain given contamination ratio. 
As there is no label within the dataset the contamination needs 
to be guessed leading to uncertain evaluation results. Counter 
measures can be sparsely obtaining labels from given data to 
boost the certainty about the threshold value. 

III. MODELING THE HOT FORMING PROCESS 

As a first step within the contextual anomaly detection a 
contextual model that represents the process behavior needs 
to be built. Within the scope of this paper the promising PINN 
approach is applied. The architecture consists of a neural 
network where a first principle physical model is integrated 
as an additional loss term within the training process. At first 
the physical model is described. 

A. Building the physical model 

The physical model is based on [26] with some 
adjustments. The general setup of the phases is shown in Fig. 
2. During the press phase the heat energy is transferred from 
the blank to the cooling water via the press die. During the 
waiting phase the blank is taken out leaving the die and 
cooling pipes to exchange their heat energy. The available 
sensor data of the whole process are the following:  

• Temperature of cooling water 𝑇𝐶𝑊  at intake and 
outflow positions 

• Blank temperature 𝑇𝐵  at start and end of pressing 
phase (through thermografic image) 

The missing or unknown physical values are: 

• Temperature of both die parts 𝑇𝐷 

• Temperature of the blank 𝑇𝐵 during the pressing phase 

• Temperature of cooling water 𝑇𝐶𝑊 within the die parts 

 

Fig. 2. Heat-Exchange models. Pressing phase (left), waiting phase (right) 

as of [26] 

For the press phase, the simplified governing ordinary 
differential equations (ODE) are (1) and (2). Parameters are 
𝑚: mass of part, 𝑐𝑝: material specific heat capacity, 𝛼 : heat 

transfer coefficient and 𝐴: contact surface of both materials. 
Indices are B: Blank, D: Die, CW: Cooling Water. 

 𝑇̇𝐵 =
𝛼1𝐴1

𝑚𝐵∗𝑐𝑝,𝐵
∙ (𝑇𝐷 − 𝑇𝐵) () 

𝑇̇𝐷 =
𝛼1𝐴1

𝑚𝐷∗𝑐𝑝,𝐷
∙ (𝑇𝐷 − 𝑇𝐵) −

𝛼2𝐴2

𝑚𝐷∗𝑐𝑝,𝐷
∙ (𝑇𝐷 − 𝑇𝐶𝑊) () 

During the waiting phase the blank is removed, leaving 
the die to be cooled down by the cooling water. The 
differential equation of the die temperature reduces to (3). 

 𝑇̇𝐷 = −
𝛼2𝐴2

𝑚𝐷∗𝑐𝑝,𝐷
∙ (𝑇𝐷 − 𝑇𝐶𝑊) () 

The main simplifications of these modeling equations are 
that the heat exchange with the ambient air is neglected, and 
the temperature of the cooling water is assumed to be constant 
whereas in real world the cooling water temperature rises 
along the contact surface. Similarly, all temperature gradients 
within the die and the blank material are neglected. 

For simulation the ODE-system can be solved as an initial 
value problem. The difficulties with the application of the 
given formula for simulating the press temperature lie within 
the identification of the parameter and the initial values for 
both the representative blank and die temperature. As in [26] 
one solution can be to identify the values through 
optimization. Therefor the press is taken in a situation where 
it has experienced a long waiting phase. It is assumed that the 
die temperature is equal to the cooling water temperature. The 
optimization identifies the parameter in four blocks of the 
products 𝛼1𝐴1, 𝛼2𝐴2, 𝑚𝑇𝑐𝑝,𝑇 , 𝑚𝐵𝑐𝑝,𝐵 . Practically these 

values need to be obtained through experiments as in [2]. The 
problem with the optimization approach is that the simulation 
error adds up during runtime and there is no comparison with 
the temperature states of the production plant. The main 
reason for this behavior is that it is not possible to detect the 
core temperature of the die at runtime. The result of the last 
simulation step of the previous phase is simply assumed to be 
the initial value of the following phase. Within the scope of 
this paper another approach is introduced. 

This approach is using the overall heat energy balance for 
the pressing phase (5) and for the waiting phase (6) where E 
is the heat energy of the corresponding part based on (4). 

 𝐸 = 𝑚 ∗ 𝑐𝑝 ∗ 𝑇 () 

 𝐸𝐵,𝑆𝑡𝑎𝑟𝑡 +  𝐸𝐷,𝑆𝑡𝑎𝑟𝑡 = 𝐸𝐵,𝐸𝑛𝑑 + 𝐸𝐷,𝐸𝑛𝑑 + 𝐸𝐶𝑊 () 

 𝐸𝐷,𝑆𝑡𝑎𝑟𝑡 = 𝐸𝐷,𝐸𝑛𝑑 + 𝐸𝐶𝑊 () 

With the use of the assumed start temperature of the blank 
and the thermographic image from the blank taken at the end 
of the pressing phase both the start and end energy can easily 
be calculated. The total energy consumed by the cooling water 
energy can be calculated using (7). There the temperature 
difference of the incoming and outflowing water is multiplied 
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by the specific heat capacity and the mass flow rate. This 
energy flow rate is then integrated over the corresponding 
phase duration. 

 𝐸𝐶𝑊 = ∫ 𝑚̇ ∗ 𝑐𝑝 ∗ Δ𝑇𝐶𝑊,𝑖𝑛,𝑜𝑢𝑡 () 

With the help of the energy balance the residual energy of 
the die at the end of the pressing phase can be obtained. 
Furthermore, it is possible to calculate the die energy during 
the waiting phase using (3) and (6), as this is the only 
unknown component in the equation (8-9). For simplification 
the effective temperature of the cooling water is assumed to 
be the mean between intake and outflow temperature. 

 𝐸̇𝐶𝑊 = −𝐸̇𝐷 () 

 𝑚̇𝐶𝑊 ∗ 𝑐𝑝 ∗ Δ𝑇𝐶𝑊,𝑖𝑛,𝑜𝑢𝑡 = −𝛼2𝐴2(𝑇𝐷 − 𝑇𝐶𝑊) () 

B. Physics Informed Neural Network architecture 

The vanilla PINN architecture uses a simple fully 
connected neural network consisting of a few rather small 
hidden layers of around 32-128 nodes each. The physical 
model is integrated into the loss term through evaluation on 
some training points sampled over the investigated input 
spectrum. These injected loss components are usually called 
physics loss and boundary loss [27]. This way the model can 
be fitted not only on the given training datapoints but also on 
simulation-based training points and even the expected 
gradient at these points. The result is a more mature network 
solution compared to classical neural networks that are only 
trained on given datapoints. In recent time several different 
PINN architectures have been proposed in the literature. 
BRUDER AND MIKELSONS describe a more general approach 
combining physical models and neural networks in order to 
construct a grey box vehicle model [28]. As mentioned, 
GÖTTE use a more serialized approach whilst SCHÖN use a 
recurrent network architecture. MOSELEY use a more complex 
structure using several neural networks that focus on different 
subdomains each. The overall solution is obtained by chaining 
the single network solutions piece by piece [27]. MENG also 
splits the initial problem into smaller parts using a number of 
small PINN models in a multi-staged manner for long-time 
integration [29]. BAJAJ introduces a gaussian process 
smoothing to overcome robustness issues with noisy or 
corrupted data [30]. The press hardening process consists of a 
series of pressing and waiting phases so the time horizon for 
the simulation of a single phase is bounded. As discussed in 
section A the available measurement data during each phase 
is limited to only the cooling water temperatures. The data 
loss can therefore only address this information. The blank 
temperature is just available at the start and end of the pressing 
and is therefore regarded within the boundary loss (BC Loss) 
component. The die temperature is not available as sensor 
data and remains to be estimated through the physical model. 
The ODE-Loss tries to balance the heat exchange between the 
cooling water, blank and die components. Thus, the PINN 
model needs to heavily rely on the physical information. To 
experiment with generalization capabilities of the neural 
network, different scales of detailed physical models are 
implemented within the ODE-Loss component. 

 

Fig. 3. Base PINN architecture for press hardening modeling 

The base PINN architecture used within this paper is 
shown in Fig. 3. For the final anomaly detection, the 
estimation error is transformed into an outlier score using the 
unsupervised LOF algorithm as discussed in section II.B.2). 
The parameter network performs parameter identification of 
the heat capacity of the blank and die components as well as 
the heat transfer coefficient between blank and die. The 
identification is integrated within the error backpropagation 
during the training process of the main network. 

IV. EVALUATION OF PINN MODEL BASED ANOMALY 

DETECTION FOR PRESS HARDENING PROCESSES 

A. Proof of concept on simulation database 

First, the basic functionality of the model architecture is 
verified using a simulation example. For this purpose, a series 
of cooling processes are simulated using the previously 
described physical model. The resulting temperature profiles 
are recorded as data for training. Then, a PINN model is 
constructed and trained using this data set. The example 
demonstrates the extent to which the model can learn the 
behavior of the physical model under optimal conditions. The 
result of such a test run is shown in Fig. 4. There, the true 
temperature curve is shown as a solid line. From this true 
curve some training data points are collected and marked with 
star symbol. The PINN model is then trained using this data 
under the evaluation of the physical model on triangle marked 
locations. The final PINN response is shown as a dashed line. 
Upon analysis of Fig. 4, it is evident that the model accurately 
predicts the characteristic behavior of the temperature curves 
within the time range of the data set. However, when 
extrapolating to a further time range (t>10s), the results, 
especially the curve of the blank temperature, deviate 
significantly from the physically expected behavior. 
Consequently, the model is not capable of achieving 
generalization beyond the training range. This discrepancy 
suggests a limitation in the model's ability to capture the 
process dynamics of the physical model. There both 
temperatures would asymptotically meet at a point of 
complete temperature alignment. Since the duration of the 
pressing phase is fixed, the lack of extrapolation capability is 
not a major drawback of the approach. 
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Fig. 4. Result of PINN model on simulation data 

B. PINN construction on given press hardening database 

Transitioning to training with real data puts the 
dependency of the PINN model on data support points to the 
test. This is due to the lack of measurements regarding the 
curve of the blank and die temperatures during the pressing 
phase. The available measurements are limited to a complete 
coverage of the cooling water temperatures, as well as the start 
and end temperatures of the blank. Furthermore, estimates for 
the start and end temperature of the press are made using 
Equation (9). The transition from start to end temperature of 
blank and die need to be learned by the PINN model only 
based on the given physical relations. 

 

Fig. 5. Result of PINN model on exemplary real process data 

The dataset contains 67,000 press cycles in total. Within 
this dataset, the average final temperature of the blank is 
113°C with a standard deviation of 9.9°C. The calculated 
starting temperature for the top die is 19.1°C, and 18.5°C for 
the bottom die, with a standard deviation of 2.3°C each. An 
80% train-test split is applied. When examining the PINN 
model's performance on real data, it becomes apparent that the 
missing data points within the pressing phase significantly 
expand the freedoms of the main network in finding solutions. 
The network now only considers the energy balance 
introduced by the physical model. As a result, as shown in the 
example in Fig. 5, the curve exhibits higher variations 
compared to the simulation example in Fig. 4. 

The evaluation of model performance is conducted using 
the Mean Absolute Error (MAE). It should be noted that the 
test dataset is supposed to contain anomalies, which distort 
the MAE value. The background is that the PINN model is 
intended to predict the normal behavior of the blank 
temperature. In the case of an anomaly, it is desired behavior 
that the model error is large to identify the anomaly. For this 
reason, in addition to the MAE metric, a robust version of the 
error metric called Robust MAE is also utilized. Like Robust 
Scaling, this metric reduces the underlying error vector by the 
lower and upper 10% of the values. 

TABLE I.  PERFORMANCE METRICS OF PINN MODEL 

Error Std. MAE Robust MAE 

9.88°C 7.51°C 7.32°C 

C. Anomaly Detection on PINN results 

For the subsequent contextual anomaly detection, the LOF 
algorithm is used. This method enhances the well-known k-
Nearest Neighbor algorithm by considering the local density 
of the data point distribution. The anomaly classification 
threshold varies dependent of the local data density. In areas 
of low density, the threshold value is greater compared to 
areas with high local data density. The results of the LOF 
analysis can be seen in Fig. 6. In addition to some global 
outliers, a few local anomalies can also be identified. As with 
most unsupervised anomaly detection methods, the overall 
threshold is adaptable to the expected anomaly contamination 
of the dataset. 

 

Fig. 6. Result of LOF Anomaly Analysis 
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V. CONCLUSION AND OUTLOOK 

This paper describes the development of a Physics-
Informed Neural Network model for contextual anomaly 
detection in hot forming processes. The model utilizes 
fundamental thermodynamic equations for heat transfer and 
storage in solid materials to learn the process of cooling and 
hardening during hot forming based on available start and end 
temperature measurement data. The resulting model can 
estimate the final temperature of the blank based on given 
contextual process data, which serve as the basis for 
subsequent contextual anomaly detection. One notable 
drawback of this approach is the sensitivity of the model to 
the distribution of weights and biases at the initialization 
stage. Since no measurement data is available during the 
pressing phase, the model is guided solely by the underlying 
physics equations. One possible approach to mitigate this 
behavior is to initially train the model on simulation data and 
then transfer it to real data. This approach will be further 
explored in future investigations. Another potential approach 
is the use of a Neural Ordinary Differential Equation. In a 
Neural ODE, the physical model not only influences the 
training process but also becomes an independent component 
of the model that is used during inference. Another possibility 
for expansion is the use of a Physics Enhanced Latent Space 
Variational Autoencoder, where the thermal image data can 
be represented by a variable-resolution latent space enabling 
to incorporate more details of the blank than just die mean 
temperature. This could potentially further improve the level 
of detail within the anomaly detection analysis. 
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