
Improving Data-based Trajectory Generation by Quadratic
Programming for Redundant Mobile Manipulators*

Alice Hierholz1, Andreas Gienger1 and Oliver Sawodny1

Abstract— Challenges in trajectory generation in robotics
such as nonlinearities, non-convex constraints, many optimiza-
tion variables and redundancy lead to new developments in the
use of data-based methods. In this paper, a combination of a
data- and model-based approach for trajectory generation for
a redundant mobile manipulator with 10 degrees of freedom
is presented with the goal of reducing the computational cost
and improving scalability. A computationally efficient neural
network regression model is proposed which predicts the
joint trajectories generated from an optimal control problem
considering the system equations, redundancy, singularities,
nonlinear kinematic and dynamic constraints as well as col-
lisions. The prediction is then improved through a subsequent
quadratic programming with low computational cost, ensuring
the compliance with the system equations and increasing the
tool-center-point target reaching accuracy.

I. INTRODUCTION

Trajectory generation in robotics is a topic that lies in
the focus of many research projects. It is a highly complex
topic, since it has to deal with strong nonlinearities, non-
convex constraints, a high number of optimization variables
and high degrees of freedom (DOF) up to redundant robots,
to name only a few challenges. These challenges lead to
a generally high computation time, which means that most
algorithms can only be deployed offline.

Data-based approaches offer new opportunities to tackle
these challenges, especially through the further development
of hardware, and therefore gain popularity in the field of
robotics. Much research has been conducted in data-based
methods for computing the inverse kinematics (IK) of robots,
which is then used for trajectory generation. A neural net-
work (NN) approach is presented in [1] for IK computation
of a typical 6-DOF robotic arm. The joint space is divided
into different subspaces, with a separate NN being trained for
each of them. Additionally a classifier is used to determine
joint spaces which can be excluded from the search space
to speed up computation time. Data-based IK methods for
redundant robots are studied extensively in the literature.
In [2] a Generative Adversarial Network is used to learn
valid robot configurations of high DOF robots considering
additional constraints. The computed configurations are then
used as initial value for classic IK solvers, whose compu-
tation time is speed up. Another approach is to reduce the

1The authors are with the Institute for System Dy-
namics, University of Stuttgart, 70563 Stuttgart, Germany
{alice.hierholz, andreas.gienger, sawodny}
@isys.uni-stuttgart.de

*(Partially) Supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy - EXC
2120/1 - 390831618

IK problem of a redundant robot to one of a non-redundant
robot. In [3], this is achieved by parameterizing redundant
joints using workspace and joint space clustering, with the
clustering being performed by a growing neural gas network.

Another way to use data-based methods is to use their
prediction to initialize the used trajectory optimization algo-
rithm. This avoids local minima and reduces the computation
time as shown in [4]. The motion planning can also directly
be executed by data-based approaches. In [5] an encoder
network is used to encode the environment followed by a
bidirectional planning network, which iteratively computes
the robots path in task space. The algorithm is evaluated
for 2D scenarios of mobile robots and 3D scenarios of
manipulators and shows very low computation times. A
further elaboration of this approach is found in [6]. The
encoder network is adapted in order to be more parameter-
efficient. This leads to further reduction of the computation
time which enables the implementation of the method on
resource-limited devices. A recurrent neural network with
long short term memory units is used in [7] for iterative bidi-
rectional path planning of robots in static environments with
up to 7 DOFs. The usage of convolutional neural networks
is shown in [8] for path planning of mobile robots using
laser scans of the environment and the desired target position
as inputs. A combination of several data-based methods is
leveraged in [9]. An autoencoder followed by a dynamics
network and a collision network learn a latent space, which
is then used by a rapidly-exploring random tree to compute
paths in it. Multi-agent optimal control problems (OCPs) are
solved in [10] through a NN approximating the OCPs value
function only for a subset of the task space. The NN therefore
needs to be retrained depending on the desired goal position
and the associated subset. The robots investigated include
mobile robots for 2D scenarios and quadcopters for 3D
scenarios. Learning trajectories of quadcopters with simple
linear kinematics is also investigated in [11]. A NN is used to
learn a parametric OCP. The predicted trajectory of the NN
is then refined by solving a one-step quadratic programming
(QP). The basic idea of [11] serves as foundation for the
method used in this paper.

The proposed approach in this work consists of the
combination of a data-based and model-based approach for
trajectory generation for the mobile manipulator, illustrated
in Fig. 1, in a static environment. An OCP considering the
nonlinear kinematics of the redundant mobile manipulator,
kinematic and dynamic constraints, singularities and colli-
sions, is used to train a NN regression model predicting the
optimal solution. Since the NN does not guarantee that the

2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
July 15-19, 2024. Boston, MA, USA

979-8-3503-9154-1/24/$31.00 ©2024 IEEE 771

kinematics of the robot are fulfilled and that the desired TCP
target goal is reached, an improvement of the trajectories is
carried out using a QP. In the QP, the prediction of the NN is
used to formulate the TCP pose as a function of the jacobian
matrix at the predicted joint position in order to map the
nonlinear kinematics via a linear relationship.

The first main contribution of this work consists of the
combination of the data-based and model-based approach
for trajectory generation of a redundant mobile manipulator.
Pure data-based approaches suffer from a lack of reliability
when dealing with small or poorly distributed data sets. The
reliability as well as the accuracy is increased significantly
by the additional model-based QP. The second main con-
tribution consists of the formulation of the QP using the
jacobian matrix at the predicted joint positions, mapping the
nonlinear kinematics using a linear relationship. The third
main contribution is the reduction of the computational cost
when using the combined approach compared to the original
OCP.

Below, the OCP used as baseline for the further data-based
trajectory generation is illustrated in Section II. It is followed
by the regression model implemented as NN in Section III
and the QP in Section IV. The results are shown in Section V
and a summary and outlook are given in Section VI.

II. OPTIMAL CONTROL PROBLEM
The OCP presented in [12] is used as basis for the data-

based trajectory generation in this paper. The most impor-
tant aspects concerning the system description are therefore
briefly summarized here. The OCP is then extended with a
singularity consideration. The final formulation of the OCP
is then stated.

A. System description
The state-space representation, the forward kinematics

and the approximation of the geometry of the used mobile
manipulator are presented in the following.

1) State-space representation: The used mobile manip-
ulator, illustrated in Fig. 1, consists of three components.
First, an omnidirectional mobile platform whose DOFs are
described by two translational joints and one rotational joint.
Second, a 6-DOF robotic arm and third, a telescopic axis,
also called lift, with 1 DOF which connects the mobile plat-
form to the robotic arm. The mobile manipulator therefore
has n = 10 DOFs and is thus a redundant system. The states

x =

[
xq

xq̇

]
, with xq =

 qpf

qlift

qarm

 , xq̇ =

 q̇pf

q̇lift

q̇arm

 (1)

hence consist of the joint positions xq ∈ Rn and joint
velocities xq̇ ∈ Rn. These comprise the generalized coor-
dinates of the mobile platform qpf ∈ R3 , the position of
the lift qlift ∈ R and the joint positions of the robotic arm
qarm ∈ R6 and their respective derivatives q̇pf , q̇lift and
q̇arm. The joint accelerations are the control inputs

u =

 q̈pf

q̈lift

q̈arm

 . (2)

Fig. 1: Approximation of the geometry of the mobile manip-
ulator by relevant spheres to prevent self-collisions.

The simplified system equations

ẋ =

[
xq̇

u

]
, x(t0) = xt0 (3)

are obtained by neglecting the nonlinear couplings in the dy-
namic equations. Thus only an integrator chain is considered
with the initial states xt0 . The validity of this simplification
is shown in [12] and is therefore not discussed here.

2) Forward kinematics: In order to incorporate a desired
TCP target pose in the OCP, the forward kinematics

TTCP = FK (M,xq) (4)

need to be computed. It establishes the connection between
given joint positions xq , the multi-body model M of the
rigid robot and the homogeneous transformation matrix
TTCP.

3) Approximation of the geometry for collision avoidance:
Collision avoidance in trajectory generation is essential to
generate reasonable trajectories. The method used here is de-
scribed in detail in [12]. The mobile manipulators geometry
is approximated by suitable spheres. Possible collision points
are analyzed and based on this only the relevant spheres
are kept, which are illustrated in Fig. 1. Then distance
constraints are established which describe that the distance
between the center of the potentially colliding spheres has
to be greater or equal the sum of the radii at all times.
These constraints are summarized in the OCP as trajectory
constraint gcol (M,xq(t)) ≤ 0∀t.

B. Singularity consideration

A singularity analysis of the used robotic arm, a UR10e
from Universal Robots, is depicted in [13]. The singularities
are divided into shoulder, elbow and wrist singularities. The
shoulder singularity occurs when

fsing (xq) = cos(qarm,2)a2 + cos(qarm,2 + qarm,3)a3

+ sin(qarm,2 + qarm,3 + qarm,4)d5 = 0
(5)

772

holds, with the Denavit-Hartenberg parameters from [14]

a2 = −0.6127, a3 = −0.5715, d5 = 0.11985. (6)

The elbow singularity occurs for qarm,3 = {0, π,−π} and
the wrist singularity for qarm,5 = {0, π,−π}. In order to
avoid singularities in the generated trajectories additional
constraints depending on the initial joint positions qarm,i(0)
with i = {2, 3, 4, 5} are introduced. For robustness reasons a
parameter ε > 0 is introduced to enforce that the trajectories
do not get to close to the singularities. The larger ε is chosen,
the more the robot’s workspace is restricted. For avoiding the
shoulder singularity it therefore must hold

fsing (xq(t))

{
≥ ε, if fsing (xq(t0)) > 0

≤ −ε, if fsing (xq(t0)) < 0
∀t. (7)

This condition is enforced in the OCP by means of a
trajectory constraint gsing (xq(t)) ≤ 0 with

gsing (xq(t))

=

{
ε− fsing (xq(t)) , if fsing (xq(t0)) > 0

ε+ fsing (xq(t)) , if fsing (xq(t0)) < 0
∀t.

(8)

For the elbow and wrist singularity

qarm,i(t) ∈

{
[−π + ε, 0− ε] , if qarm,i(t0) ∈ (−π, 0)

[0 + ε, π − ε] , if qarm,i(t0) ∈ (0, π)
∀t

(9)
with i = {3, 5} must hold. These conditions are directly
incorporated into the kinematic box constraints of the joints
xmin/max in the OCP which now depend on the initial joint
positions xt0 .

C. Trajectory generation

The optimal trajectories for the mobile manipulator with
the optimal state variable xopt, the optimal control input
uopt and the optimal end time tf,opt, are generated by the
following OCP

min
u(·)

tf +

∫ tf

t0

uT (t)Qu(t)dt (10a)

s.t. ẋ =

[
xq̇

u

]
, (10b)

Ψ(x(t0),x(tf)) =

 x(t0)− xt0
FK (M,xq(tf))− TTCP,f

xq̇(tf)

 = 0,

(10c)

g(x(t),u(t)) =

x(t)− xmax(xt0)
xmin(xt0)− x(t)
u(t)− umax

umin − u(t)
gcol (M,xq(t))
gsing (xq(t))

 ≤ 0∀t ∈ [t0, tf] ,

(10d)

which is solved using the direct collocation method with
piecewise linear states and constant control inputs, imple-
mented in MATLAB and CasADi [15]. It consists of the cost-
functional (10a), the system equations (10b) as in (3), the

equality constraints (10c) and the trajectory constraints (10d).
The cost-functional consists of the end time tf and a term
penalizing the control inputs in order to deal with the
redundancy of the system. The weighting factor Q = I
is chosen to obtain a trade-off between time-optimality
and energy-optimality. The equality constraints enforce the
initial and terminating conditions, especially the desired TCP
target pose. The trajectory constraints enforce the kinematic
constraints of the joints with consideration of the elbow
and wrist singularities, the dynamic constraints, the collision
avoidance and the consideration of the shoulder singularity.

III. REGRESSION MODEL

A regression model is implemented to predict the optimal
trajectories given by the OCP of Section II. Therefore, the
process for data generation and the structure of the used NN
is described in the following.

A. Data generation

To train, validate, and test the regression model, sufficient
data is necessary. Thus the OCP is solved M times for a
initial state configuration xt0 and a unique randomly chosen
desired TCP target pose

TTCP,f =

[
RTCP,f pTCP,f

0 1

]
, (11)

which lies within a certain goal region G. The desired TCP
position pTCP,f =

[
xTCP,f yTCP,f zTCP,f

]T
is computed

by drawing M samples from a uniform distribution for each
coordinate. Hence

xTCP,f ∼ U(Gxmin
,Gxmax

), (12a)
yTCP,f ∼ U(Gymin

,Gymax
), (12b)

zTCP,f ∼ U(Gzmin
,Gzmax

), (12c)

holds. In order to obtain uniformly distributed desired
TCP orientations RTCP,f , unit quaternions are used, as
shown in [16]. First three uniformly distributed variables
a1, a2, a3 ∼ U(0, 1) are generated, from which uniformly
distributed unit quaternions are derived by

qquat =

√

1− a1 sin (2πa2)√
1− a1 cos (2πa2)√
a1 sin (2πa3)√
a1 cos (2πa3)

 . (13)

The rotation matrices are then computed from the quater-
nions as in [17]. Only the desired rotation matrices leading
to trajectories which are not ending in singularities are kept.
This leads to a final data set of M? < M trajectories.

B. Neural network

A fully connected feedforward NN is used as regression
model to predict the solution of the OCP. The input consists
of the start joint position xq(t0), the corresponding start TCP
pose and the TCP desired target pose. In order to reduce the
dimensionality of the input layer, the orientation is described
via quaternions, which leads to the input data xin ∈ R24.
This leads to no additional effort, since quaternions are

773

already used in the data generation process. The output
consists of the optimal joint positions and velocities for
each collocation point k ∈ [0;N], the joint accelerations
for k ∈ [0;N − 1] and the optimal end time. The predicted
state variables are denoted as x̃, the predicted control inputs
as ũ and the predicted end time as t̃f . It therefore holds
for the output data xout ∈ R2n(N+1)+nN+1. The Parametric
Rectified Linear Unit (PReLU) is used as activation function
for all hidden layers. Batch normalization and dropout are
applied. Since it is a regression model, the identity is used
as activation function of the output layer. Mini batch training
using the ADAM optimizer with mean squared error (MSE)
loss is used and the data is normalized prior to training. For
hyperparameter optimization, the open source hyperparame-
ter optimization framework Optuna [18] is used, which im-
plements a Tree-structured Parzen Estimator algorithm. The
optimized hyperparameters comprise the number of hidden
layers, the layer dimensions and the dropout rate of each
layer for the NN architecture and the learning rate, batch size
and number of epochs for the optimization. The regression
model is implemented in Python using PyTorch [19] and all
training is carried out on a single NVIDIA RTX A6000.

IV. QUADRATIC PROGRAMMING

A QP approximating the OCP is used to improve the
predicted trajectories, since the regression model does not
guarantee that the kinematics of the robot are fulfilled and the
desired target pose is reached. A prerequisite for the applica-
bility of the approach is a sufficiently accurate prediction of
the NN such that the linearization of the nonlinear kinematics
in the QP is valid. This requires a sufficient number of
discretization points of the OCP with respect to the end time
of the trajectory.

By following the algorithm described in [20] the forward
kinematics from (4) are adapted to output unit quaternions
instead of rotation matrices. Hence it follows

p = FKquat (M,xq) (14)

with p ∈ R7 describing the pose of the TCP with its
orientation as quaternion. The differential kinematics

ṗ = J(xq)xq̇ (15)

are derived from this by derivation with regard to time, with
ṗ ∈ R7 being the translational and rotational velocity of the
TCP and J(xq) ∈ R7×n describing the analytical jacobian
matrix in quaternion space.

As described in Section III-A, the OCP is solved using
the direct collocation method with piecewise linear states
and constant control inputs. In order for the QP to best ap-
proximate the OCP it therefore must hold for the discretized
states

xk+1
q = xkq +

δt

2

(
xk+1
q̇ + xkq̇

)
(16)

xk+1
q̇ = xkq̇ + δtuk (17)

with the time step δt = tk+1−tk and k ∈ [0;N−1]. Analog
to this follows the discretized pose of the TCP

pk+1 = pk +
δt

2

(
ṗk+1 + ṗk

)
. (18)

Substitution of the differential kinematics from (15) into (18)
yields

pk+1 = pk +
δt

2

(
J(xk+1

q)xk+1
q̇ + J(xkq)xkq̇

)
. (19)

In order to guarantee unit length of the quaternion in each
step k, a normalization must be performed after each step.
Since this is not possible in the QP, the normalization is
neglected. The results in Section V-B validate the proposed
approximation.

Since it is assumed that the prediction from the NN{
x̃, ũ, t̃f

}
is close to the optimal solution of the OCP

{xopt,uopt, tf,opt} and the optimization via the QP produces
only small changes in the trajectories, it is further assumed
that the linearization of the forward kinematics around x̃q

is valid. Following the same reasoning it is additionally
assumed that the time step is approximated by δ̃t = t̃f

N .
Therefore (16) and (17) are reformulated as

xk+1
q = xkq +

δ̃t

2

(
xk+1
q̇ + xkq̇

)
(20)

xk+1
q̇ = xkq̇ + δ̃tuk (21)

and (19) is rewritten as

pk+1 = pk +
δ̃t

2

(
J(x̃k+1

q)xk+1
q̇ + J(x̃kq)xkq̇

)
(22)

in order to obtain a function linear in the state variables.
With these preliminary considerations, the QP of the form

min
x̄

1

2
x̄THx̄ + fT x̄ (23a)

s.t. Ax̄ = b, (23b)
lb ≤ x̄ ≤ ub (23c)

can now be set up. It is implemented in MATLAB and CasADi
with the solver Gurobi [21]. The optimization variable

x̄ =
[
x0
q
T

. . . xNq
T

x0
q̇
T

. . . xNq̇
T

u0T . . .uN−1T
]T (24)

with x̄ ∈ R2n(N+1)+nN consists of the discretized states and
control inputs. The prediction of the NN {x̃, ũ} is used as
initial value for the optimization variable.

The end time in the cost-functional (10a) must be ne-
glected in the QP. Only the term penalizing the control inputs
is adopted in the cost function (23a), which leads to

H =

[
0 0

0 2δ̃tQ̄

]
, Q̄ =

Q . . . 0
...

. . .
...

0 . . . Q

 , f = 0, (25)

with Q being the weighting factor from the OCP.
The equality constraint (23b) consists of three parts.

First, the kinematic equation (20) written in matrix notation

774

TABLE I: Search space for hyperparameter optimization
carried out with Optuna and used final hyperparameter set.

Search space Final hyperparameter set
Min Max

Hidden layers 5 10 6
Layer dim. 128 512 {467, 233, 391, 465, 298, 263}
Dropout rate 0.10 0.35 {0.31, 0.30, 0.25, 0.16, 0.12, 0.15}

Learning rate 1e−4 1e−2 2e−3
Batch size 1024 1280 1057
Epochs 300 450 401

summarized in A11, A12 and b1. Secondly, the kinematic
equation (21) written as A22, A23 and b2. Lastly, recursive
nesting of (22) and reformulation in matrix notation leads to

A32 =
[
J(x̃0

q) 2J(x̃1
q) . . . 2J(x̃N−1

q) J(x̃Nq)
]
,

(26)

b3 =
[

2
δ̃t

(
pN − p0

)]
(27)

with the fixed TCP start pose p0 and the desired TCP target
pose pN . In summary, this results in the equality constraint

A =

A11 A12 0
0 A22 A23

0 A32 0

 , b =

b1

b2

b3

 . (28)

The box constraint (23c) enforce the initial and terminat-
ing conditions of the joints from (10c) and the state and
control box constraints from (10d). The nonlinear collision
constraints and shoulder singularity constraints in (10d) must
be neglected in the QP. As stated, it is assumed that the
prediction from the NN is close to the optimal solution
of the OCP and the optimization via the QP produces
only small changes in the trajectories, which validates this
approximation.

V. RESULTS

The proposed approach is evaluated in the following.
First the hyperparameter optimization and the predicted joint
space trajectories from the regression model are evaluated.
Afterwards follow the results of the improvement of the
generated trajectories using the QP and an analysis of the
resulting computation times.

A. Trajectory generation by regression model

First, the hyperparameter optimization of the NN is exe-
cuted to achieve a trade-off between model complexity and
accuracy. The data set contains M? = 36000 trajectories,
computed by the OCP with a discretization of N = 5.
The used search space of the hyperparameters is shown in
Tab. I as well as the final hyperparameter set after 1675
trials. For these hyperparameters, the test loss is 3.1e−4
compared to a training loss of 2.1e−4. The results imply that
no overfitting occurs. The test loss is split into the different
predictions for further analysis. All normalized results are
summarized in Tab. II, with the key findings highlighted
below. The predicted joint position trajectories show a mean
MSE of 3.6e−4, the joint velocities of 4.2e−4 and the

TABLE II: Evaluation of regression model with normalized
mean MSE.

Position MSE Velocity MSE Acceleration MSE
mean±STD e−4 mean±STD e−4 mean±STD e−4

xq 3.6± 56 4.2± 54 1.1± 8.8

qpf,1 9.9± 131 8.1± 95 2.9± 27
qpf,2 6.5± 61 7.1± 67 2.3± 19
qpf,3 4.0± 92 6.8± 146 1.1± 18

qlift 2.3± 21 9.9± 66 2.9± 12

qarm,1 3.0± 81 3.2± 73 0.3± 4.0
qarm,2 0.3± 1.4 0.7± 2.9 0.1± 0.3
qarm,3 1.8± 23 0.5± 4.7 0.1± 0.5
qarm,4 1.9± 42 1.7± 26 0.3± 2.2
qarm,5 0.7± 3.4 0.8± 2.9 0.2± 0.4
qarm,6 5.2± 107 3.4± 54 0.4± 3.8

joint accelerations of 1.1e−4. It is therefore shown that the
assumption in Section IV of using the linearization around
the predicted joint positions is valid. When looking at the
mean MSE of the individual joints it is shown that the two
translational joints of the mobile platform have the highest
MSE for the position, whereas the lift has the highest MSE
for the velocities. When looking at the accelerations, both
the translational joints and the lift have the highest MSE.
The prediction of the optimal end time has a normalized
MSE of 4.3e−4 ± 78e−4, which proves that the usage
of δ̃t in the QP is a valid assumption. Upon analysis of
the resulting trajectories, it is evident that the predicted
trajectories successfully avoid singularities and collisions in
all test cases. The mean computation time for the inference
of the NN amounts to 490µs± 20µs.

B. Improvement of trajectories by quadratic programming

The QP is evaluated by using the test data set containing
2400 trajectories. As described in Section IV, the normal-
ization of the quaternion in each step k is neglected. The
mean MSE of the normalization error is 1.9e−4 ± 2e−4,
which shows that the approximation is valid. When analysing
the resulting trajectories, it is clear that, as for the NN,
the computed trajectories are successful in avoiding the
neglected shoulder singularity and the collisions in all test
cases. The mean optimal value of the cost-functional of
the OCP when neglecting the end time is 1.74. The mean
optimal cost-function value of the QP is 1.83. It is noticeable
that the QP finds a slightly less optimal solution than the
OCP, but with a reduction in the mean computing time from
89 ms ± 72 ms for the OCP to 14 ms ± 71 ms for the QP
in combination with the NN. The QP is able to improve
the TCP target reaching accuracy from a mean MSE of
16.3e−3±17.4e−3 when looking at the trajectory predicted
by the NN, to a mean MSE of 6.9e−3 ± 16.1e−3 for
the QP, which represents an improvement by a factor of
2.4. An example of an improved trajectory in task space
is illustrated in Fig. 2 in comparison to the solely predicted
trajectory of the NN and the optimal trajectory of the OCP.
The example scenario shown is deliberately chosen so that
the NN performs rather poorly and has high deviations in

775

0 0.5 1 1.5 2
1.2

1.4

1.6
p
x

TCP position (m)

0 0.5 1 1.5 2
0.1

0.15

0.2

p
y

0 0.5 1 1.5 2
1.3

1.33

1.36

p
z

0 0.5 1 1.5 2
0.5

0.55

0.6

p
q
u
a
t,

1

TCP orientation as quaternion (-)

0 0.5 1 1.5 2
0.3

0.4

0.5

p
q
u
a
t,

2

0 0.5 1 1.5 2
0.5

0.6

0.7

p
q
u
a
t,

3

0 0.5 1 1.5 2
0.2
0.3
0.4
0.5

Time t (s)

p
q
u
a
t,

4

Fig. 2: Generated TCP trajectories through the OCP in
(), the NN in () and the combination of the NN &
QP in () for an exemplary desired TCP goal target (×).

reaching the TCP target, especially for the TCP position.
As a result, it is apparent that the QP achieves a significant
improvement in the trajectory and the TCP target reaching
accuracy.

VI. CONCLUSION

This paper introduced a combination of data- & model-
based trajectory generation for redundant mobile manipu-
lators. The regression model implemented as NN shows
accurate approximation results of the optimal solution of the
OCP considering the system equations, nonlinear kinematic
and dynamic constraints, singularities and collisions. The im-
provement of the predicted trajectories through the presented
QP, under the assumption of an sufficiently accurate predic-
tion of the NN and hence a valid linearization, shows low
computational cost, compliance with the system equations
and an improvement of the TCP target reaching accuracy by

a factor of 2.4. In future works, the considered workspace
will be extended and different mobile manipulators will
be investigated to show general validity of the proposed
approach.

REFERENCES

[1] J. Lu, T. Zou, and X. Jiang, “A Neural Network Based Approach to
Inverse Kinematics Problem for General Six-Axis Robots,” Sensors,
vol. 22, no. 22, 2022.

[2] T. S. Lembono, E. Pignat, J. Jankowski, and S. Calinon, “Learning
Constrained Distributions of Robot Configurations with Generative
Adversarial Network,” IEEE Robotics and Automation Letters, 2021.

[3] G. Jiokou Kouabon, A. Melingui, O. Lakhal, M. Kom, and R. Mer-
zouki, “A Learning Framework to Inverse Kinematics of Redundant
Manipulators,” IFAC-PapersOnLine, vol. 53, no. 2, 2020.

[4] M. Kramer and T. Bertram, “Improving Local Trajectory Optimiza-
tion by Enhanced Initialization and Global Guidance,” IEEE Access,
vol. 10, 2022.

[5] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion
Planning Networks: Bridging the Gap Between Learning-based and
Classical Motion Planners,” IEEE Transactions on Robotics, 2020.

[6] K. Sugiura and H. Matsutani, “P3Net: PointNet-based Path Planning
on FPGA,” in 2022 International Conference on Field-Programmable
Technology (ICFPT), 2022.

[7] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural Path Planning:
Fixed Time, Near-Optimal Path Generation via Oracle Imitation,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2019.

[8] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena,
“From Perception to Decision: A Data-driven Approach to End-to-
end Motion Planning for Autonomous Ground Robots,” in IEEE
International Conference on Robotics and Automation (ICRA), 2017.

[9] B. Ichter and M. Pavone, “Robot Motion Planning in Learned Latent
Spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 3, 2019.

[10] D. Onken, L. Nurbekyan, X. Li, S. W. Fung, S. Osher, and L. Ruthotto,
“A Neural Network Approach for High-Dimensional Optimal Control
Applied to Multi-Agent Path Finding,” IEEE Transactions on Control
Systems Technology, 2022.

[11] G. Tang, W. Sun, and K. Hauser, “Learning Trajectories for Real-
Time Optimal Control of Quadrotors,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2018.

[12] A. Hierholz, A. Gienger, and O. Sawodny, “Cooperative Time-Optimal
Trajectory Generation for a Heterogeneous Group of Redundant Mo-
bile Manipulators,” in 2023 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM), 2023.

[13] J. Villalobos, I. Y. Sanchez, and F. Martell, “Singularity Analysis and
Complete Methods to Compute the Inverse Kinematics for a 6-DOF
UR/TM-Type Robot,” Robotics, vol. 11, no. 6, 2022.

[14] Universal Robots, “DH Parameters for Calculations of Kinematics
and Dynamics,” 2024. [Online]. Available: ”https://www.universal-
robots.com/articles/ur/application-installation/dh-parameters-for-
calculations-of-kinematics-and-dynamics” (Accessed: 1 Feb
2024).

[15] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi - A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, July 2018.

[16] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[17] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics.
Springer London, 2009.

[18] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A
Next-generation Hyperparameter Optimization Framework,” in Pro-
ceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2019.

[19] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in 33rd Conference on Neural Information
Processing Systems, 2019. [Online]. Available: ”https://pytorch.org”
(Accessed: 16 Feb 2024).

[20] M. D. Shuster, “A Survey of Attitude Representations,” The Journal
of the Astronautical Sciences, 1993.

[21] Optimization, L. L. C. Gurobi, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: ”https://www.gurobi.com” (Accessed: 13
Feb 2024).

776

