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Abstract— This work explores the feasibility of a geometry-
agnostic laser power control strategy for laser powder bed
fusion (L-PBF) using reinforcement learning. The controller is
designed to anticipate and compensate geometry-induced pro-
cess inhomogeneities, as well respond to in-process uncertainty
through feedback control. To train the reinforcement learning
controller, first a reduced-order simulation model is fit to
experimental data. Then, the optimal control strategy is found
through reinforcement learning on this reduced-order model.
After the training, we demonstrate that the learned control
strategy can reduce up to 55% of the error 2-norm and 59% of
the standard deviation with respect to a given reference value.
Moreover, the learned control strategy is applicable to novel
build geometries without any additional tuning, or modification
of the controller, in which we find that the controller attenuated
2-norm error by 62% and variation levels by 60% when
deployed on a new (test) geometry, presenting the efficacy of the
proposed controller. Finally, the experimental validation of the
algorithm in a ‘playback’ setting resulted in a 24% reduction of
both 2-norm error and variation levels, highlighting its potential
in an industrial L-PPBF system.

I. INTRODUCTION

Additive manufacturing (AM) technologies have seen a
dramatic growth over the past decade [1] due to the increase
in demand of rapid prototyping processes and systems ca-
pable of producing complex structures. In particular, metal
AM processes such as laser powder bed fusion (L-PBF) are
now finding wider application in the aerospace, automotive,
and medical industries. However, quality control of the
produced parts yet remains an open research challenge and
thus research attempts are being made to address various
aspects of the quality control problem [2]–[4]. One of the
keys to quality control is to monitor the process and be
able to properly compensate for variations in measurements
through appropriate process control strategies.

For L-PBF systems, melt pool control is of particular
interest, as the part quality is strongly correlated with
the melt pool behavior [5]; with homogeneous melt-pool
properties being desirable over fluctuating and changing
melt pools. Consequently, the control problem in L-PBF is
often stated as a melt pool regulation problem: the goal is
to compensate for unexpected deviations in the melt pool
geometry measurements, ultimately to reduce effects such
as overheating in acute corners, or dross formation [6]. The
major factors that affect the behavior of the melt pool are
geometric features of the scan layer, e.g. sharp corners or
narrow areas, process parameters, e.g. material type or scan
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velocity, and in-layer variation due to process noise, e.g.
spatter, [7].

The majority of prior work on geometric feature or process
parameter based control incorporates layer-wise feedforward
control strategies, typically using models that predict the
geometry-dependent behavior of the melt-pool. For instance,
a number of studies focused on the demonstration of residual
heat-based models [8], [9] or meltpool cross-sectional area
dynamics models to design feedforward controllers [10].
Data-driven models have also shown potential in the context
of control [11]–[13], through machine-learning (ML) tech-
niques such as Gaussian process regression (GPR). Other
studies directly determine the feedforward laser control sig-
nal without the use of an explicit model, by employing
methods such as iterative learning control [14]–[16] to com-
pensate for geometric effects throughout the build part. These
studies altogether show that geometric effects tend to be
addressable by determining the controller a-priori based on
the build geometry or scan parameters.

Studies that address in-situ deviation of the melt pool
indicator measurements focus on in-layer feedback control
strategies because a reactive control must be addressed in
real-time. However, due to the high demand on controller
response time (typically in the 2-5 kHz range), feedback
control strategies have been less popular in L-PBF systems
compared to feedforward or layer-to-layer control strategies.
The few studies that have been conducted to date [17]–[19]
typically use simple feedback strategies based on PID con-
trol. While these studies show the reduction of unexpected
deviations in the measurements through feedback control,
such control strategies cannot explicitly address the issue of
geometry-induced melt pool inhomogeneities.

The development of an effective L-PBF control strategy
must therefore incorporate both feedforward and feedback
capabilities to anticipate geometry-related effects on the melt
pool and behave correspondingly, while properly responding
to in-situ variation in measurements. Model-based control
strategies are challenging to design for L-PBF and similar
AM processes due to the complex phenomena involved [7],
facilitating recent advances in data-driven/machine learning
(ML) techniques [20], [21] such as reinforcement learning
RL [22], because of their ability to deal with strongly nonlin-
ear and complex dynamics. Nonetheless, the development of
a control strategy that simultaneously accounts for geometric
effects and in-situ process variations in L-PBF remains an
open research problem.

With the motivation to design an effective feedback control
strategy that can account for both geometric effects (in a
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feedforward manner) and process variations (through feed-
back), this study proposes an RL-based approach to combine
geometric information with feedback control by encoding
both information into the controller states. Additionally,
because data-driven methods rely on substantial training data
and are time-intensive, we employ a reduced-order model
for the training to alleviate extensive experimentation and
training efforts required for typical data-hungry ML methods.
This also eliminates safety-related issues, as it is undesirable
for the controller to take random actions during the training
on the physical system. The key contributions of this work
include the following:

1) The development and identification of a reduced-order
model that captures the geometric effects in the pro-
cess, which can then be used for training an RL
algorithm.

2) Design of a control strategy that incorporates geomet-
ric information (in a feedforward manner) along with
feedback control in L-PBF, that is applicable to novel
geometries without further tuning or modification once
learned.

3) Experimental demonstration of the learned optimal
laser power profile in an L-PBF system in a ‘playback’
setting.

II. L-PBF CONTROL PROBLEM FORMULATION

A. L-PBF system

The development of the models and control strategies in
this work are based on the open architecture L-PBF system
described in [14] (Fig. 1). This system is equipped with
a 400W laser for actuation, and a coaxial near-IR (NIR)
camera-based setup for the measurements, similar to the
setup in [17], [23]. The images are acquired at a rate of
2kHz, with a size of 64 × 64. The power commands are
synchronized with the camera loop, and thus the power can
be updated every 500µs.

Fig. 1: L-PBF system used in this study [14]. All data for
model identification was acquired from this machine and
experiments were performed on this same system.

B. Problem formulation

Fig. 2 shows the general melt pool homogenization control
problem addressed in this paper. The objective of this work
is to design an L-PBF feedback control strategy that can
anticipate and properly respond to geometric effects, in the
context of the system described in the previous subsection.
Information regarding the laser scan path is available in the

Fig. 2: Geometry-agnostic feedback control problem for L-
PBF. The goal is to find a feedback control strategy that can
incorporate geometric information. Given the melt-pool size
and subsequent position as measurements at each time-step,
the controller must select an appropriate power value.

scan file a-priori, while the near-IR camera provides melt-
pool measurements at each time step. Thus, the controller
must be able to appropriately incorporate this information to
determine the laser power profile to respond to systemic as
well as unanticipated behavior.

III. PRELIMINARIES

Because of the complex dynamics of the process and the
necessity of incorporating layer-wise geometry information,
we aim to find the optimal control strategy through a
reinforcement learning (RL) approach, instead of model-
based feedback-feedforward design. Next, we provide the
preliminaries for the formulation of a general RL problem
and details of the specific RL algorithm used in this study.

A. Markov Decision Process

The formulation of a RL problem is based on the def-
inition of a Markov Decision Process (MDP), which is
a representation of the system in terms of states St ∈ S,
actions At ∈ A, rewards Rt ∈ R, and transition probabilities
Pr(St+1|St, At). Here, S provides a formal representation
of the observations, A denotes the set of possible actions,
R provides an assessment of the current circumstance, and
P (St+1|St, At) is the probability of transitioning from St to
St+1 taking action At.

B. Reinforcement learning

With all elements of the MDP defined, the control strategy,
commonly referred to as the policy π, is defined as a function
that maps the states S to actions A, i.e., π : S → A, in
which the optimal policy is found through interaction with
the system. The goal of RL is to find a policy such that
maximizes the cumulative future rewards at each time-step.
Two representative methods for finding the optimal policy in
model free RL are value-based and policy-based [22], where
the former focuses on learning an optimal value function to
indirectly derive the optimal policy, and the latter focuses on
directly learning the optimal policy through a parametrized
function.

To implement a computationally efficient algorithm for
feedback control, we use a value-based algorithm in this
study, known as Q-learning [24] (tabular form). The value
function with respect to a given policy π is defined as the
expectation of cumulative future rewards Gt given a state
s, V π(s) (state value function), or state-action pair (s, a),
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Qπ(s, a) (state-action value function). These functions can
be written as:

V π(s) ≡ Eπ [Gt | St = s] (1)

Qπ(s, a) ≡ Eπ [Gt | St = s,At = a] . (2)

The optimal value function is then found through the
Bellman optimality equation [25], as shown below.

Q(s, a)← Q(s, a)+α
[
r+γ maxaQ(s′, a)−Q(s, a).

]
(3)

Here, α is the learning rate and γ is the discount factor that
quantifies the importance of future rewards.
Remark. Although RL algorithms that employ function
approximators (e.g. Deep Q Networks (DQN)) can also be
used, the scope of this study focuses on real-time implemen-
tation of the RL scheme. Hence, a computationally efficient
RL algorithm (tabular Q-learning) was used in this study.

IV. HEURISTIC SPATIO-TEMPORAL MODEL
We next define the model used for training the RL al-

gorithm. Using the experimental system (or a high fidelity
model) is not feasible for training the RL because of its data-
hungry nature (i.e., a large number of trials (104 − 106) are
often needed to train the RL scheme). Thus we present a
reduced-order model that can capture the key characteristic
behaviors observed in the melt pool dynamics for the training
and validation of the RL.

A. Measurements and spatio-temporal registration

Because the images acquired from the L-PBF are multi-
dimensional, to enable a single input single output (SISO)
representation of the process we extracted a signature from
the image that is indicative of melt pool size. We denote this
melt pool size indicator of an image at time t as mt.

Fig. 3: Spatio-temporal registration of the measurements.
Features (melt pool size index) are extracted from the image,
providing a temporal signal. This signal is spatially mapped
based on the scan pattern and sampling time.

The location of each measurement at time t was estimated
based on the nominal scan pattern, assuming constant scan

velocity and ideal trajectory tracking. We used the scan speed
and sampling time (1/camera frame rate) to interpolate the
individual location of each measurement. As a result, we
obtain a transformation of the temporal signal m(t) into a
spatial map m(xt, yt) (Fig. 3).

B. Physics-informed reduced-order spatio-temporal model
for RL

Based on the spatio-temporal mapping of the measure-
ments described above, we first create a suitable physics-
informed spatio-temporal model structure, inspired by [26].
This model structure is based on the analytical temperature
solution of the heat equation with Gaussian heat source mov-
ing at constant velocity over an infinite plate. The resulting
solution temperature field exponentially decays over time and
with increasing distance from the source location. Hence, the
reduced-order spatio-temporal model was parameterized as

m̂t+1 =

M∑
j=0

(mt−j · e−λd∆dtj
2

· e−λt∆ttj ) + f(pt, v), (4)

where m̂t+1 is the prediction at time t + 1. The prediction
considered the current measurement and M − 1 previous
points along the scan path, where each point was regarded
as a Gaussian heat source exponentially decaying over time.
mt−j represents the previous measurements, and λd and λt

are model parameters to be identified from experimental data.
∆dtj and ∆ttj denote the difference in distance and time
between the current and jth points, respectively. f(pt, v) is
a function mapping the laser power pt to a scalar value,
which represents the effect of the laser power. Note that
while f(·, v) is dependent on the laser scan speed v, typically
scan speed v is set apriori; and hence only the power was
considered in f(·).

The model parameters λd, λt, and the function f(·) were
identified from experimental data. λd and λt were found such
that a mean square error was was minimized, and f(·) was
found through linear regression based on experimental data.
We evaluated the model through comparison with experi-
mental data (Fig. 4). Due to high noise levels in experimental
data, we average the spatial data over 10 layers. Fig. 4 shows
that the model is capable of replicating geometric effects
such as overheating due to acute turnarounds along the edges.

Fig. 4: Validation of developed model. Due to the noise
levels in the data, the model is validated with respect to the
averaged value over 10 layers from an experimental dataset.
The location of points that overheat due to turnarounds from
the model coincide with the points from the experiment.
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V. MDP FORMULATION

As mentioned in Section III, an appropriate MDP must be
defined to determine the optimal policy through RL. For real-
time implementation, we prescribe an MDP with a discrete
and finite state and action spaces; on which the tabular Q-
learning RL algorithm is constructed.

State definition. The states were designed to incorporate
both the positional information at time t+1 and the measure-
ment at time t (Fig. 5) to allow the controller to (1) respond
to current measurements, (2) while predicting the behavior
of the subsequent point. Two parameters k1 and k2 were
used to represent each piece of information. k1 ∈ {0, 1, 2, 3}
was assigned a discrete value based on the range of error
merr = mref − m. k2 ∈ {0, 1} was assigned a discrete
value based on the Euclidean distance to the subsequent
point to represent acute turnaround points along the scan
path. Turnaround points, i.e., points that have a subsequent
point closer than the sampling distance δs (defined as the
scan velocity divided by the camera frame rate) are assigned
1, and 0, otherwise (5).

k1 =

{
1 if ∥m(xt, yt)−m(xt+1, yt+1)∥ < δs,
0 if ∥m(xt, yt)−m(xt+1, yt+1)∥ = δs. (5)

The state is then defined as the Cartesian product of the two
parameters, i.e., s = [k1, k2], resulting in a total of 8 states.
(Fig. 5).

Fig. 5: State definition for MDP. k1 represents the range
of merr, and k2 represents the proximity of the subsequent
point to the current point.

Action definition. Next, the actions were defined as a set
of discrete power values with respect to the open loop power
pOL. 16 values (pOL−50, pOL−45, . . . , pOL+30), were used
as the set of allowable actions. The increment was chosen
as 5W , mainly due to the fact that the difference in effect
of the laser becomes relatively insignificant if |pϵ1 − pϵ2 | <
5,∀ϵ1 ̸= ϵ2.

Reward construction. Finally, we constructed the reward
function to guide the policy towards a strategy to minimize
error (6). The reward was constructed as a piece-wise linear
function, with varying slopes to emphasize the discourage-
ment of overheating over undermelting. The coefficients
l1, . . . , l11 ∈ R and ranges were empirically tuned.

r(t) =


−l1{(mref + l2)−m}+ l3 if merr ≤ −4,
−l4|merr|+ l5 if |merr| < 4,
−l6{(mref + l7)−m}+ l8 if 4 ≤ merr < 8,
−l9{(mref + l10)−m}+ l11 if merr ≥ 8. (6)

VI. RESULTS AND DISCUSSION

With the simulation model (to be used for training the RL)
and the MDP defined above, we trained the RL algorithm on
a single geometry shown in Fig. 6 (a). We first demonstrate
the performance of the learned policy in the training geom-
etry, and further show that the learned policy is applicable
to novel geometries without further tuning or modification.
We then ‘play back’ this policy on the actual experimental
system to demonstrate its performance.

Fig. 6: Part geometry used for RL training and testing. (a)
A triangular geometry was used, with hatch spacing set as
0.1 mm. (b) A relatively more complex geometry was used
for deployment performance evaluation and experimental
validation. Hatch spacing and scan pattern was identical to
that of the train geometry.

A. Training results

The RL algorithm was trained for 200 iterations, and the
geometry shown in Fig. 6 (a) was used for the training, where
an entire layer is considered a single iteration (episode). The
hatch spacing for the geometry was 0.1mm and open loop
power was 250W , with a scan speed of 800mm/s. The
open loop power was heuristically determined from prior test
results, such that adequate performance was guaranteed. The
discount factor γ = 0.7, the learning rate α = 0.2, which
were empirically tuned.

Next, to validate the performance of the algorithm on the
training geometry, we compared the power profile, melt pool
indicator measurements, and the 2-norm error with respect
to mref , for the open-loop and RL-controlled case (Fig. 7).
Each result (measurements and power) is shown as color
coded points proportional to the value at each location.
The RL agent learned to effectively lower the power at the
turnaround points, resulting in a more uniform measurement
map. Through this strategy, the RL agent reduced up to 55%
of the melt pool signal variation1 and 59% of the 2-norm
error.

Comparison with PI control. To compare the perfor-
mance of RL with respect to other feedback algorithms, we
compared the results from RL to that of a PI controller (Fig.
7). Because the PI controller is reactive, the controller is
unable to eliminate the overheating around the turnaround
points, thus we omit the PI control in further analyses.

1Variation is defined as standard deviation;
√

1
N

∑
|mi − µm|2
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Fig. 7: Comparison of the performance of the proposed RL algorithm against open loop and PI control. The reference
meltpool signal was set to mref = 44, based on appropriate calibrated melt pool size. Power profiles, measurements, and
2-norm errors are compared with each other. The PI control attenuated the noise by 3% and reduced the 2-norm error by
7%, whereas the RL attenuated the variation by 55% and reduced the 2-norm error by 59%. We note also that the PI control
is unable to compensate for overheating due to turnarounds.

B. Deployment of learned policy

To further show that the learned policy is applicable
to novel geometries/scan-paths without further tuning, we
deployed the learned policy in a novel build geometry. This
test geometry, shown in Fig. 6 (b), was designed to have a
more complex structure. The scan pattern, hatch spacing, and
scan parameters were identical to that of the train geometry.

Fig. 8: Deployment of learned policy. Open-loop results are
compared to RL results, similar to Fig. 7. Results are shown
for mref = 44. The RL attenuated the variance by 60% and
reduced the 2-norm error by 62%.

We compared the power profiles, measurements, and 2-
norm errors of the RL against open loop (Fig. 8). The results
show that even for a novel geometry, the RL controller
effectively lowered the power at the turnaround points. Ad-

ditionally, the controller attenuated the local heating induced
by the narrow channels through feedback, also demonstrating
feedback capabilities. The RL reduced up to 60% of the
variation and 62% of the 2-norm error, showing that the
learned policy is applicable to unforeseen geometries without
parameter tuning.
Remark. Note that the actions are bounded (Sec.V), and
thus the output of the system is expected to be bounded.
Moreover, the system is open-loop stable, hence additional
stability analysis was omitted from the scope of this study.

C. Experimental validation through playback

Finally, we experimentally validated the proposed RL
algorithm by ‘replaying’ the power profiles on the actual
system. The same geometry from the deployment scenario
(Fig. 6 (b)) was used in the experiment, hence the power
profile from Fig. 8 was applied in a feedforward manner.

Fig. 9: Experimental validation in ‘play back’ setting. Open-
loop results are compared to RL results, with the same power
profile from Fig. 8. The applied power profile resulted in a
24% reduction of both the 2-norm error and variation.
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Because the same power profile from Fig. 8 was applied,
here we visualize the measurements and 2-norm error (Fig.
9). Similar to the results from the simulation, we the re-
duction of power around the edges result in mitigation of
overheating points. Due to the high level of noise in the
actual system, we averaged the measurements across 10
layers (as demonstrated in Fig. 4). The 2-norm error and
variation reduction for the experimental case was both 24%,
suggesting that the power profile determined offline was
effective in terms of the measurement homogenization for
the experimental setup. Note that the measurement range is
different from that of Fig. 4 due to changes in the camera
settings; and thus the reference value (mref = 77) was re-
calculated by fitting the model again from the open loop data
of the experimental validation geometry, and converting the
previous reference value (mref = 44).

VII. CONCLUSIONS AND FUTURE WORK
In this study, we designed and investigated an RL-based

control strategy for an L-PBF process, that is capable of
both responding to geometry features and in-situ process
measurements. The demonstration of the algorithm in a
simulator showed that the 2-norm error can be reduced up
to 60% and variance up to 62%. Furthermore, we found
that the trained policy is applicable to novel geometries
without further tuning or modification. Finally, the proposed
algorithm reduced the 2-norm error and variation in an actual
system by 24% in a ‘play back’ setting, well demonstrating
the potential of the proposed RL-based control in L-PBF
systems.

Future work will address the following: Although the
control strategy is capable of feedback, due to the lack of
noise in the simulation model such capabilities were not
investigated to full extent in this study. Hence the algorithm
will be implemented and tested on an L-PBF testbed to
demonstrate real-time feedback capabilities.
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