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Abstract— The accurate remaining Electric Vehicle (EV) 

range estimation is necessary to overcome EV users’ range 

anxiety and infrastructure limitations. However, the traditional 

methods of EV Remaining Driving Range (RDR) estimation 

assumes the vehicle speed and energy consumption are 

consistent with the profiles in the recent history. But in the real 

world, the driving mode changes rather dynamically according 

to the user's speed profile, which significantly impacts RDR. 

Thus, the key question to be addressed in this work is how to 

accurately predict RDR considering the variation of the user 

speed profile during the driving trip. So, this work proposed a 

hybrid deep learning approach for accurate RDR estimation, 

where the future speed is then updated according to the average 

speed predicted in a 15-min prediction window. The deep 

learning approach combines a convolutional neural network 

(CNN) with Long Short-Term Memory (LSTM) to predict the 

remaining range of EVs based on historical EV speed data. The 

proposed CNN-LSTM-hybrid model is trained by exploiting the 

historical driving data of about 50 users in a two-week test-drive 

period.  The test performance of the proposed EV range 

estimator is validated using real-world driving data that shows 

the high accuracy of RDR prediction with an average error of 

3.762 km in a testing time window of 7.5 hours. The test results 

demonstrate the effectiveness of the proposed approach in the 

EV speed profile prediction, and thus RDR estimation with a 

high accuracy. 

I. INTRODUCTION 

Global warming, poor air quality, and high dependence on 
fossil fuels are the primary factors driving the shift from 
conventional cars to electric vehicles (EVs). A study from 
Stanford University [1], found that, to mitigate these issues, 
139 countries could achieve 100% clean and renewable energy 
by 2050, but it would require a significant, immediate overhaul 
of the world's energy infrastructure. 

One of the major obstacles to the transition to EVs is the 
limited charging infrastructure, particularly in rural areas. 
Many people use cars daily, and these limitations can cause 
anxiety for EV users and hinder the shift from conventional 
vehicles to EVs [2] [3] [4]. In the short term, an accurate 
prediction of remaining EV range is necessary to alleviate 
range anxiety and overcome infrastructure limitations. In the 
long term, it can also prevent overloading of the distribution 
network during EV charging [4]. 

Various research groups are developing algorithms to 
address the problem of estimating remaining driving range 
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(RDR) for EVs. These existing algorithms can be mainly 
classified into two categories: model-based approaches (e.g., 
[2]), and data-driven approaches (e.g., [3], and [4]). In [5], a 
hybrid model-based RDR estimation approach using a particle 
filter with Markov chains was reported. An improved RDR 
estimation framework based on a physics-based EV model 
was introduced in [2]. The authors in [6] developed an RDR 
estimation model that combines Kernel Principal Component 
feature parameters and a fuzzy C clustering algorithm for 
identifying and forecasting driving cycles. On the other hand, 
data-driven RDR estimation methods using extreme and light 
gradient boosting regression trees were proposed in [7]. In [3], 
the authors used real-world EV data to develop nonlinear RDR 
estimation models using a data-driven method. The study [4] 
proposed a clustering algorithm to classify driving patterns, 
and then developed a multi-mode RDR estimator based on 
predefined clusters. 

 

Figure 1 Schematic diagram of proposed RDR Prediction approach vs the 

literature approaches 

In most of the existing literature, instead of predicting 
future driving patterns, it is assumed that the driving pattern 
will not change in the updated time window of RDR (∇𝑡). This 
assumption may only be valid for very short time horizons 
(e.g., a few seconds) but can potentially result in significant 
prediction errors in longer time horizons, and thus lead to 
confusion in RDR for EV users. To balance EV user comfort 
(by providing a more accurate estimation in a reasonable time 
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horizon) with sensitivity to changes in driving patterns (i.e., 
higher RDR accuracy), this work proposes an efficient deep 
learning approach for estimating RDR. This approach updates 
the prediction using the predicted future value of EV speed 
within a 15-minute time horizon ( 𝑖. 𝑒. , ∇𝑡 = 15 𝑚𝑖𝑛 ), as 
shown in Figure 1. 

The proposed hybrid model combines a convolutional 
neural network (CNN) with Long Short-Term Memory 
(LSTM) to predict the remaining range of EVs based on 
historical data of EV speed. The main advantage of using a 
CNN is its ability to automatically extract features from time 
series data, while LSTM has been shown to be effective in 
predicting values in sequence-to-sequence series. At each time 
step, the CNN extracts key features from the sequence, while 
the LSTM is trained to predict the future value at the next time 
step. The training and parameters of the hybrid network were 
fine-tuned using Bayesian optimization. 

The paper's contributions can be summarized as follows: 

1. Existing literature assumes unchanged driving 
patterns in updated time windows, leading to 
prediction errors for longer time horizons and 
confusion for EV users. 

2. The paper proposes an efficient deep-learning 
approach for estimating the remaining driving range 
(RDR) of EVs, considering both accuracy and 
sensitivity to changing driving patterns. 

3. The approach combines CNN and LSTM to leverage 
the strengths of feature extraction and sequence-to-
sequence prediction. 

4. The CNN extracts key features from the historical EV 
speed data, while the LSTM predicts future values at 
each time step. 

5. The hybrid model is fine-tuned using Bayesian 
optimization to optimize training and parameter 
settings. 

6. By integrating CNN and LSTM, the proposed 
approach enhances RDR estimation accuracy within 
a 15-minute time horizon, providing EV users with 
reliable predictions for informed decision-making. 

The remaining sections of this paper are organized as 
follows: Section II introduces real-world EV driving data. 
Section III describes the proposed EV RDR prediction 
framework. Section IV explains the proposed CNN-LSTM-
based prediction approach. Section V presents the results and 
evaluation performance metrics of the RDR prediction, and 
Section VI provides the conclusions and future work 
directions. 

II. DATA COLLECTION AND PRE-PROCESSING  

A. Description of EV 

 In this study, a 2019 Nissan Leaf EV was used as the 

research platform. The vehicle is featured with a 40-kWh 

battery and an EPA-rated range of 149 miles per full charge. 

The vehicle was operated by different volunteers in an EV 

test-drive program in Upper Cumberland region in TN 

which covered 14 counties. Each participant operated the EV 

for about two weeks for their daily applications. 

B. Data Collection 

The real-world EV data used in this work were collected 
using the aforementioned Nissan Leaf SV. Key EV powertrain 
data were collected including battery state of charge (SOC), 
battery current and voltage, battery temperature, motor torque 
and speed, vehicle GPS location, ambient temperature, vehicle 
speed, accelerator pedal position, and others. The data logging 
was achieved using Hem Data's On-Board Diagnosis (OBD) 
Mini Logger, which was installed on the test vehicle, with a 
data sampling rate of 1 Hz. The second-by-second vehicle 
velocity profile and day-to-day battery SOC profile are 
illustrated in Figure 2. and Figure 3, respectively. 

C. Data Pre-processing 

Snapshot-based methods [8] organize time series data by 
converting it into a two-dimensional matrix, enabling 
structured analysis and modeling. This format captures 
temporal information along one axis and attributes along the 
other, facilitating pattern identification and interpretation. The 
input sequence size is determined by an n-window (15 
minutes) and the LSTM is expected to receive an input of n-
window cases to predict the next window, one step ahead. The 
data were normalized to improve the convergence process 
using a normalization algorithm. Then, the lag matrix function 
was used to create "look back" rolling windows, as shown in 
Figure 4. 

 

Figure 2: Vehicle velocity profile for user No.29. (Blue: vehicle speed 

profile. Red: highway speed.) 

 

Figure 3:Day-to-day battery SOC profile for user No.29 (blue: initial SOC 

of the day; red: final SOC of the day; green: change of SOC) 
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III. RDR PREDICTION FRAMEWORK  

The EV RDR depends on two factors including the energy 
available in the battery pack and the energy consumption of 
the EV [4]. These two factors are described below in detail. 

A. Energy Available in the Battery Pack 

The remaining energy in the battery pack can be described 
in (1). 

𝐸𝒃𝒂𝒕𝒕𝒆𝒓𝒚 = ∆SOC ⋅ C    () 

where 𝐸𝒃𝒂𝒕𝒕𝒆𝒓𝒚  s  hhe reaisisi  eier    𝑊ℎ   si hhe V  
bihher . ∆SOC deiohe  hhe dsffereice behweei hhe curreih 
bihher  eier   level  SOC  iid hhe asisaua SOC  𝑆𝑂𝐶𝑚𝑖𝑛  
ih whsch hhe vehscle cii  hsll fuichsoi ipproprsihel . Ii hhs  
work, 𝑆𝑂𝐶𝑚𝑖𝑛  s  4%. C s  hhe eier   cipicsh  of hhe V  

bihher  pick  𝑊ℎ . 

 

Figure 4:Data collection and preparation process. 

B. EV Energy Consumption (𝐸𝐶) 

𝐸𝐶  is the average energy consumption value of the user, 
corresponding to the trip, as calculated in [2]. 

𝐸𝐶 = ∫ 𝑃𝑒𝑙𝑒𝑐𝑑𝑡
𝑡𝑓

0
    () 

where, 𝑡𝑓  deiohe  hhe hrivel hsae; 𝑃𝑒𝑙𝑒𝑐   s  hhe si hiihiieou  

elechrsc power driwi froa or fed siho hhe bihher  pick iid s  
cilculihed si  3  [2]. 

 𝑃𝑒𝑙𝑒𝑐 = {

𝑃𝑑

𝜂𝑝𝑟𝑜𝑝
𝑎 ≥ 0

𝜂𝑟𝑒𝑔𝑒𝑛𝑃𝑑 𝑎 < 0
  () 

where  𝜂𝑝𝑟𝑜𝑝  iid  𝜂𝑟𝑒𝑔𝑒𝑛  ire hhe overill powerhrisi 

effscseicse  si hhe propul soi aode iid hhe re eierihsve 
briksi  aode, re pechsvel ; 𝑎 deiohe  hhe 
iccelerihsoi/decelerihsoi rihe; 𝑃𝑑  deiohe  hhe vehscle'  drsvsi  
power. The vehscle aodel si [2] s  ipplsed ho coapuhe hhe 𝐸𝐶. 

C. RDR Estimation 

The RDR s  cilculihed iccordsi  ho hhe followsi  forauli:  

𝑅𝐷𝑅(𝑡) =
𝐸𝒃𝒂𝒕𝒕𝒆𝒓𝒚(𝑡)

𝐸𝐶(𝑡)
=

∆SOC(t)⋅C.𝜂𝑚𝑒𝑐ℎ

𝐹𝑔+𝐹𝑟+0.5 𝜌 𝐶𝑑𝐴𝑉2+𝑚𝑎̅
   () 

𝐹𝑔 = 𝑚 𝑔 𝑠𝑖𝑛 (∅)    () 

𝐹𝑟  = 𝑚 𝑔 𝐶𝑟 𝑐𝑜𝑠 (∅)   () 

where 𝐶𝑟 s  hhe rollsi  coeffscseih iid ∅ repre eih  hhe  ride 
ii le of hhe roid; 𝐶𝑑 s  hhe ierod iiasc dri  coeffscseih; 𝐴 s  
hhe froihil irei of hhe vehscle; 𝜌  s  hhe isr dei sh ; 𝑚  s  hhe 
vehscle ai  . The vilue  of hhe vehscle piriaeher  aeihsoied 
ibove ire ls hed si Tible 1. 

Note that 𝐸𝐶  should consider different driving modes. 
According to the literature [4][9], driving modes vary 
according to the user's speed profile, which has a significant 
impact on RDR. The prediction of energy consumption using 
the predicted speed trajectory and vehicle model  [2] is the 
foundation for the RDR estimation of EVs. Therefore, the 
CNN-LSTM network used to predict vehicle velocity accounts 
for variations in the user's speed profile during the driving trip. 
As a result, the RDR is updated based on the future average 
predicted velocity, which is fed into the RDR estimation 
algorithm in a prediction time window of 15 minutes, as shown 
in Figure 5. This leads to an updated RDR estimation in (7). 

𝑅𝐷𝑅(𝑤) =
∆SOC⋅C.𝜂𝑚𝑒𝑐ℎ

𝐹𝑔(𝑤)+𝐹𝑟(𝑤)+0.5 𝜌 𝐶𝑑𝐴𝑉𝑃
2(𝑤)+𝑚𝑎𝑝(𝑤)

 () 

where  𝑉𝑃  and 𝑎𝑝 are the predictive velocity and acceleration. 

𝑤 is the prediction time window. 

IV. CNN-LSTM-BASED PREDICTION APPROACH 

Time series prediction is a significant area of deep learning 
in recent years and has been widely researched for various 
applications, such as EVs [10][11]. From an application 
perspective, it is challenging to establish an accurate 
mathematical model for a complex dynamic system like an 
EV, and accurately predict future speed profiles while 
considering diverse driving patterns and different levels of 
experience. Consequently, data-driven methods can be used to 
predict future behaviour and performance based on historical 
vehicle data for EV users. 

 

Figure 5 Deep learning-based RDR Estimation framework. 

In this work, an accurate prediction system is proposed 
based on a hybrid deep-learning approach. This approach 
consists of three parts. The first part involves preparing the 
dataset for training and testing, which was collected from 50 
EV users during a two-week test-drive program. In the second 
part, a CNN is chosen to automatically extract features from 
the time series data of vehicle velocity. In the third part, LSTM 
is used to complete the prediction system. Under this context, 
this proposed approach was applied to predict the future value 
of velocity every 15 minutes and fed to the RDR estimation 
framework discussed in the previous section. Figure 6 presents 
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the proposed CNN-LSTM-based framework for predicting 
future speed profiles. 

 

Figure 6: CNN-LSTM-based framework for predicting future speed profiles 

A. The CNN-LSTM model workflow 

The proposed model focuses on using deep learning to 
formulate and solve prediction problems. The steps of the 
workflow for the proposed model are: 

TABLE 1: THE TEST VEHICLE PARAMETERS 

Parameters Value Unit 

𝝆 1.28  𝑘𝑔/𝑚3 

𝑪𝒅 0.01 − 

𝑪𝒓 0.28 - 

𝒎 1619 kg 

𝑨 2.576 𝑚2 

1) Training and Model Parameters Tuning  

Fine-tuning of the training and model parameters was 
achieved by using the Bayesian optimization technique. The 
selected values of the parameters are listed in Table 2. 

TABLE 2: PARAMETERS OF THE CNN-LSTM MODEL 

Parameters Value Description   

𝑳𝒂𝒈 1 How many mins to 

look back 

𝑴𝒊𝒏𝒊𝑩𝒂𝒕𝒄𝒉𝑺𝒊𝒛𝒆 64 Minimum Batch 

size 

𝑴𝒂𝒙𝑬𝒑𝒐𝒄𝒉𝒔 60 Maximum number 

of Epochs 

𝑳𝒆𝒂𝒓𝒏𝒊𝒏𝒈 𝒓𝒂𝒕𝒆 0.00611 Learning rate 

2) Training and Testing Data Preparation 

The data was split into training and testing sets, with 90% 
of the data used for training and 10% for testing. To improve 
the convergence process, the data was normalized. After that, 
the lagged time series data in the "look back" rolling window, 
was created using the lag matrix function in MATLAB. 

3) Create a Hybrid CNN-LSTM Network Architecture 

In this work, the sequence look-back lag is set to 15 
minutes, so the CNN learns to identify features in windows of 
15 minutes. The features are passed to the network, and a 
regression layer with one neuron predicts the driving 
efficiency for the next 15 minutes (one step ahead). The 

architecture of the proposed hybrid network consists of three 
stages with 23 layers. Figure 7 presents the architecture of the 
full hybrid CNN-LSTM network. 

Predicting the Testing Data 

The network expects a sequence of lag values, and a rolling 
back window, to predict the cases for the next 15 minutes. The 
lag features of the first input set are fed to the trained model, 
and the prediction output contains the one-step-ahead 
prediction of the sequence. 

Validation of Velocity Prediction Performance 

In the validation process, the data sets from three new 
users, who were not used during the training and testing of the 
deep learning model, were selected for performance 
evaluation. Each user has different lengths of operation and  

 

Figure 7: The architecture of the full hybrid CNN-LSTM network. 

different road feature distributions. The future speed profile 

was predicted every 15 minutes for each user. To 

systematically evaluate the speed prediction results, two 
assessment criteria were selected: Root Mean Square Error 

(RMSE) in (8) and Correlation Factor (CF) in (9). 

𝑅𝑀𝐴𝐸 =  √
1

𝑀
∑ |𝑦̂𝑖 − 𝑦𝑖|

𝑀
𝑖=1   () 

𝐶𝐹 =  
∑ (𝑦̂𝑖−𝑦̂𝑖̅̅̅)(𝑦𝑖−𝑦𝑖̅̅̅ )𝑀

𝑖=1

√∑ (𝑦̂𝑖−𝑦̂𝑖̅̅̅)
2

(𝑦𝑖−𝑦𝑖̅̅̅ )2𝑀
𝑖=1

   () 

where 𝑀 s  hhe  see of ob ervihsoi dihi; 𝑦̂𝑖  iid 𝑦𝑖  ire hhe 
predsched iid ob erved  peed vilue  re pechsvel . 

Figure 8, Figure 9, and Figure 10 present the results for 
velocity predictions for three unique EV users. As can be seen 
from Figure 8, while the average vehicle velocity changed 
rather dynamically during the operation for User 1, the 
predictions of the average vehicle velocity in each interval 
match well with the observed (measured) values, with the CF 
= 0.9964 and RMSE = 0.1098 for User 1. The good agreement 
between the predicted average vehicle velocity and the actual 
values can be observed in Figure 9 and Figure 10. It was found 
that CF = 0.99235 and RMSE = 0.1188 for User 2. For User 3, 
CF = 0.98788 and RMSE = 0.1030. 
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Figure 8: User 1: Velocity prediction of three EV users. The red curve is the 

prediction result. The blue line is the observed (measured) data. 

 

Figure 9: User 2: Velocity prediction of three EV users. The red curve is the 

prediction result. The blue line is the observed (measured) data. 

 

Figure 10: User 3: Velocity prediction of three EV users. The red curve is 

the prediction result. The blue line is the observed (measured) data. 

B. Validation of RDR Estimation Algorithm 

Based on the prediction of future speed profiles for EV 
users, the proposed RDR prediction framework was validated. 
RDR is calculated at each time interval and its value is updated 
every 15 minutes using the predicted velocity value. Figure 11 
and Figure 12 present the SOC profile and results of RDR 
predictions for User 1, respectively. Figure 13 and Figure 14 
present the SOC profile and results of RDR predictions for 

User 2, respectively. Figure 15 and Figure 16 present the SOC 
profile and results of RDR predictions for User 3, respectively. 

To evaluate the RDR prediction results, the absolute error 
is quantified in (10). 

𝐸 =  
1

𝑀
∑ |𝑅𝐷𝑅̂𝑖 − 𝑅𝐷𝑅𝑖|

𝑀
𝑖=1   () 

where 𝑅𝐷𝑅̂𝑖  and 𝑅𝐷𝑅𝑖  The predicted and observed RDR 
respectively. 𝑅𝐷𝑅𝑖  is calculated based on (4) using the 
measured average vehicle speed at the time interval of 15 mins. 

𝑅𝐷𝑅̂𝑖  is computed using the proposed RDR estimation 
algorithm. 

The average absolute errors for the three users in the 
evaluation process are presented in Table 3. As can be seen 
from Table 3, The estimation errors are 1.07 km, 4.88 km, and 
5.34 km for Users 1-3, respectively, with an average 
estimation error of 3.76 km. The observed prediction errors in 
RDR are small and within an acceptable range. This finding 
suggests that the proposed framework has the potential to 
serve as a valuable tool for EV manufacturers to predict the 
RDR and enhance their vehicle's performance. 

The observed variability in RDR prediction errors, from 
1.07 km to 5.34 km, among the three users suggests that the 
accuracy of RDR prediction may be influenced by individual 
driving behaviors. This variability could be attributed to 
different driving patterns, such as variations in speed, 
acceleration, and deceleration, as well as variations in the 
number of stops and starts. Additionally, driving behaviors can 
affect the battery's efficiency and energy consumption rate, 
which can ultimately influence RDR predictions. 

 

Figure 11: SOC profile for User 1. 

 

Figure 12: RDR prediction for User 1. 
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Figure 13 SOC profile for User 2. 

 

Figure 14: RDR prediction for User 2. 

 

Figure 15 SOC profile for User 3. 

 

Figure 16: RDR prediction for User 3. 

V. CONCLUSION AND FUTURE WORK 

This paper aims to fill the gap between RDR estimation 
methods that have unsatisfactory estimation accuracy under 
complex conditions. An efficient hybrid deep learning 
approach for RDR estimation was introduced in this study to  

TABLE 3: RDR ESTIMATION ERRORS IN VALIDATION 

User No E Unit 

𝒖𝒔𝒆𝒓 𝟏 1.07 km 

𝒖𝒔𝒆𝒓 𝟐 4.88 km 

𝒖𝒔𝒆𝒓𝟑 5.34 km 

𝑨𝒗𝒆𝒓𝒈𝒆 3.76 km 

overcome these issues. The proposed approach is divided 
into two stages: vehicle velocity prediction and RDR 
prediction. In the first stage, a CNN-LSTM-based framework 
was implemented for predicting EV speed profile based on 
real-world data from new EV users. Based on the predicted 
speed profiles, the RDR estimation framework was 
constructed in the second stage. The validation results 
demonstrate that the proposed predictive approach has a high 
accuracy in EV speed profile prediction and RDR estimation. 
Future work will include combing the prediction of remaining 
discharge energy as a function of future load prediction, and 
the RDR estimation method based on updated future average 
power and speed prediction. 
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