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Abstract— The green chile crop is entirely hand-harvested
in New Mexico while the growing labor shortage has caused
a significant reduction in production. This work presents the
robotic harvesting of chile peppers in a lab setting, employing
a 6-DOF robotic arm with a scissor-type cutting end-effector.
The system utilizes a machine learning-based computer vision
and a depth camera to detect and localize chile peppers in
the camera frame. The locations are then transformed into the
robot’s operational frame. A motion planning algorithm was
developed to minimize the robot’s travel time for harvesting.
A correction equation is derived to address inaccuracies in
camera-based localization while eliminating chiles that are not
reachable for the robot. From a dataset of 86 chile peppers, the
study reports key harvesting metrics: a detection success rate
of 62.8%, a localization success rate of 90.74%, a detachment
success rate of 55.10%, a harvest success rate of 31.39%, and
a damage rate of 6.97%.

I. INTRODUCTION

Chile pepper, the signature crop of New Mexico (NM),
holds immense significance for small-scale farmers in His-
panic and Native American areas. Despite the leading role
of NM in chile production, challenges such as drought,
climate change, and labor shortage have severely impacted
this industry. In 2021, only 51,000 tons of chiles were
harvested, which is a drastic decline from the 2000s [1].
One of the main reasons is that green chile peppers are
currently only hand-harvested [2]. Nevertheless, manual har-
vesting poses significant challenges due to the intense heat in
NM. Additionally, the repetitive and strenuous nature of the
harvesting task makes it increasingly challenging to secure
skilled labor, especially given the heightened uncertainty
surrounding the availability of agricultural workers [3]. These
facts emphasize the necessity for the mechanization and
automated harvesting of this crop.

In the last few decades, there has been continuous devel-
opment in autonomous farming and agricultural robotics to
improve the situation of food scarcity due to the shortage
of manual labor for harvesting. For example, a Cartesian
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manipulator robot was developed for harvesting melon-type
fruits. In this system, the fruits are detected and localized
through image processing applied to the fruits’ grayscale im-
ages. The system achieved a detection success rate of 93.6%
and harvesting success of 85.7% [4]. A robot manipulator
with a stereo visual unit, a fruit collector, and a railed vehicle
was designed for harvesting cherry tomatoes and achieved an
83% success rate [5]. A robotic manipulator with an end-
effector consisting of a fruit-grasping mechanism, a size-
judging mechanism, and a peduncle-cutting mechanism was
developed for harvesting eggplants along with a machine
vision algorithm to recognize the fruits [6]. Their system
achieved a harvesting success rate of 62.5%. Goulart et al. [7]
discussed the development and evaluation of gripper systems
for soft tree-fruit harvesting, introducing metrics such as
picking area and volume, grasp force, detachment success,
harvest success, and post-harvest damage assessment, with
an empirical evaluation of gripper designs for mango fruit
harvesting. Their study reports a harvesting success rate of
65%. Another work focused on developing a visual servoing
control system for a robotic manipulator designed for cherry
tomato harvesting, incorporating an RGB-depth camera and
a visual-based control method. The robotic manipulator,
equipped with a novel cutting and clipping integrated mech-
anism, demonstrated efficient cherry tomato harvesting with
an average time of 9.4 seconds per fruit and a success rate
96.25% in laboratory tests [8].

Although there have been several research efforts to de-
velop harvesting robots for different kinds of fruits [9],
[10], only a few studies have been conducted to develop
a robotic harvesting system and fruit detection algorithms
for the chile pepper. In our previous work [11], a 5-DoF
serial manipulator is used to harvest chile peppers in a
laboratory setting where a MATLAB program is developed
for the localization of the fruits, and a human operator is
needed to identify the fruits in the captured RGB image
through a depth camera. In another study [12], advanced deep
learning algorithms are utilized and compared to detect the
chile pepper using a thermal camera and thermal reflections,
facilitating the fruit detection part of the robotic harvesting.

This work presents an effort to make the harvesting
process of green chile peppers fully automatic by utilizing a
robotic arm. Green chile peppers are detected through a deep
learning method and localized by utilizing depth and RGB
color images of a camera. A motion planning algorithm for
the manipulator is developed to make the harvesting process
easier and faster. The system is examined for 86 green chile
peppers and the key harvesting metrics are recorded.
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Fig. 1. Robotic harvesting concept

The paper structure includes an overview of the harvesting
system in Section II, details on fruit detection and localiza-
tion in Section III, and the introduction of coordinate frame
transformation, end-effector reachability, and motion plan-
ning in Section IV. Section V concludes with the harvesting
results and parameter discussions.

II. ROBOTIC HARVESTING SYSTEM

The idea behind automated robotic harvesting is to convert
the manual fruit-picking process into a fully mechanized sys-
tem. To achieve this, a system must be developed to identify
chiles on a plant, determine their locations, reach them, and
perform the cutting operation. These steps encompass fruit
detection using a machine learning algorithm, localization
of the 3D distance of the fruit via robotic vision, motion
planning for a robotic manipulator, and the actual automatic
cutting operation as illustrated in Figure 1. To achieve this
objective, this study employs and integrates a six-degree-
of-freedom robotic manipulator (xArm6 by UFACTORY,
Shenzhen, China), a depth camera (Intel RealSense D435i,
Santa Clara, CA, USA), a customized cutter, and an Arduino
Due (Arduino LLC, Piscataway, NJ, USA) that controls the
cutter. The base of the manipulator is fixed to a table and
a chile plant pot is placed in front of it. The camera, the
RealSense D435i has enhanced depth detection capabilities
by incorporating an inertial measurement unit (IMU) into
the D435 version, enabling it to perceive depth information
while in motion. Given that the minimum depth distance at
the maximum camera resolution is approximately 28 cm, the
chile plant is positioned beyond this distance in the camera’s
z-direction (forward). The camera is attached to the wrist,
creating an “eye-in-hand” configuration, and a customized
cutter is integrated into the manipulator’s end-effector. This
configuration is better suited for this application, as it reduces
the complexity of coordinate frame transformation due to
having a fixed relative pose between the camera and the end
effector. The cutter is composed of two sharp blades, one of
which is fixed and the other of which rotates around a pivot
located inside the blade’s body [11]. To regulate the motion
of the cutter, a digital servo motor that is programmed by an
Arduino is attached to it. The entire robotic harvesting setup
is shown in Fig. 2.

Fig. 2. Experimental setup for automated harvesting of green chile pepper:
Eye-in-Hand configuration

III. FRUIT DETECTION AND LOCALIZATION

A. Detection of Green Chile Peppers in the Plant

Detection of the chile is achieved using Mask R-CNN,
which outputs a bounding box, mask, and label for each
object detected by the network [14]. Mask R-CNN is an
extension of the Faster R-CNN architecture of [15], retain-
ing both the region proposal network (RPN) that identifies
regions of interest (RoI) in the input image and the Faster R-
CNN classifier that generates the bounding box and classifi-
cation for each object identified by the network. The primary
difference between Mask R-CNN and its predecessor is the
addition of a fully convolutional network (FCN) that operates
in parallel to the Faster R-CNN classifier, taking in the same
RoI data generated by the first stage of Faster R-CNN and
outputting candidate masks [14]. These candidate masks are
used to determine which pixels within the image belong to
a chile or peduncle (stem) that has been detected by the
network in order to ensure accurate collection of depth data
during the localization process.

To train Mask R-CNN, a dataset consisting of 285 hand-
annotated (mask and label for each green chile, red chile,
and stem) images was produced. These images were selected
from a larger dataset consisting of 757 1280 × 720 pixel
RGB images that had been sharpened and received both
white balance and gamma corrections. Of the larger dataset,
700 images were produced using an Intel RealSense Depth
Camera D435i that photographed 16 different plants in
both outdoor and greenhouse settings, varying the distance
between the camera and the plant in 6-inch increments in the
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range of [6, 24] inches, varying direction of approach (by the
four cardinal directions), varying the angle of the camera
relative to the plant in 30◦ increments through the range
of [0◦, 60◦], and varying the time of day (morning, noon,
and evening). The remaining 57 images in the larger dataset
did not follow the same acquisition methodology to increase
variability. The 285 annotated images were divided into a
training set (227 images) and validation set (58 images), and
augmented using version 0.4.0 of the imgaug library [16],
producing a total of 3178 training images and 812 validation
images. A full list of augmentations implemented can be
found in [17].

To determine the optimal training method (specifically the
number of epochs, which layers should be frozen during
training, and what the loss weight should be) for Mask
R-CNN, training was initially performed using the non-
augmented dataset. The training was then repeated with the
full augmented dataset, retraining from scratch using the
training method devised on the non-augmented dataset and
altering the parameters and configuration of the network
(such as the backbone of the RPN) to determine the optimal
configuration. In all training cases, the images were resized to
1024×1024 pixels, using zero padding to maintain the same
aspect ratio. For the final network, the RPN was modified to
have an “anchor box” (reference boxes that allow the network
to identify RoI of different scales and aspect ratios [14]) sizes
of [16, 32, 64, 256, 512] pixels, and built using ResNet-101
[18] as the backbone. Mask R-CNN was initialized using the
COCO weights and trained using the default parameters of
[14], except where otherwise noted. The training was divided
into three stages, each lasting 10 epochs. In the first stage,
all weights except those in the head (portion of the network
responsible for the final classification) were frozen, and the
loss weight was reduced to 1 × 10−4. In the second stage,
the ResNet-101 layers C4 and higher were unfrozen, and
the loss weight was unchanged. For the final 10 epochs, the
loss weight was reduced to 1 × 10−5 and all layers were
trained. The final network had a precision of 76.09%, recall
of 56.39%, a mean Average Precision (mAP) (evaluated for
an intersection over union threshold of 0.5 in the output mask
compared to ground truth) of 79.26%, and an F1 score (Dice
coefficient) of 64.77% on the augmented validation set. An
example of the output of Mask R-CNN, compared to the
ground truth bounding box and mask, is presented in Fig. 3.

B. Localization of Green Chile Peppers

The Intel RealSense depth camera creates two types of
frames during the process of capturing a scene: the color
frame and the depth frame. The color frame contains the
visual information of the scene in the form of a regular
RGB image. On the other hand, the depth frame contains
information about the distance (depth) of each point in the
scene from the camera.

The Mask R-CNN model is utilized to detect objects in the
color frame. The model identifies objects of interest, such as
the chile, and provides their specific locations (at the green

Fig. 3. Example of chile detection. In this image the green masks and
bounding boxes represent the ground truth, the prediction is presented in
red, and areas of agreement between the ground truth mask and the predicted
masks are shown in orange.

dot, just after the stem’s position represented by the yellow
dot, see Fig. 4) in pixel coordinates expressed in the color
frame. Now, the depth and color frames are aligned using the
rs.align function, ensuring that depth values correspond
accurately to the detected pixels in the color image.

The camera calibration process establishes the mapping
between the captured image’s pixel coordinate system and
the real-world coordinate system, thereby obtaining the
intrinsic parameters of the camera (i.e., focal length and
principal points). The camera takes the depth information
from the depth frame of each detected chile, along with its
intrinsic parameters, to mathematically reverse the projection
that occurs during the capture of the image. Thus, it provides
the 3D position of the detected chile in the real-world system
with respect to the camera.

After testing the localization process for the chiles, even
though the z-coordinate of the detected chile was accurate,
there was a deviation in the x and y-coordinates measured
by the camera compared to the actual physical location of
fruits. The dynamic calibration of the camera was performed
to correct the lens distortion effect. However, as the issue
persisted, an experiment was conducted to address it directly.
In this experiment, a single chile was positioned at the center
of the image frame and moved from left to right (along the
camera’s x-axis) and from top to bottom (along the camera’s
y-axis) as shown in Fig. 4. Throughout these movements,
the camera’s readings for the chile were recorded. 17 data
points were collected for the left-to-right (x-axis) movement,
while 9 points were collected for the chile’s top-to-bottom
(y-axis) movement. The resolution for the camera was set
as 1280×720 pixels, which results in a larger number of
collected data points in the x-direction than in the y-direction.
The experimental procedure is shown in Fig. 4.

The collected data and trend lines for x-coordinate and y-
coordinate correction are shown in Fig. 5 and Fig. 6. Analysis
of these trend lines reveals a linear relationship between the
camera measurement and the actual measurement. Conse-
quently, mathematical correction equations were obtained by
a simple linear regression based on the experimental data
representing the linear trend between the actual position and
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Fig. 4. Experiment for x and y coordinate correction. A single chile is
moved 0.05 m from the image center to the (a) left, (b) right, (c) top, and
(d) bottom, and the corresponding reading by the camera is shown.

Fig. 5. Actual vs. experimental reading for x-coordinate of the detected
chile. (1) is obtained from the trend line.

the camera’s readings as follows,

xact = 0.6980xexp + 3.4899, (1)

yact = 0.6903 yexp − 2.3011. (2)

where xexp and xact represent the camera reading and the
actual reading of the distance for the x-coordinate correction,
respectively, and similarly for the y-coordinate in (2).

One possible reason for this linear relationship could be
attributed to the fact that the transformation of any point
from the color frame to the depth frame is affine, which
preserves a linear relation between the original and the
transformed point. However, during the localization process,
perfect alignment between the depth and color images may
not have occurred. This creates a deviation between the
actual (xact,yact) location of the chile and their correspond-
ing camera measurement (xexp, yexp), as well as the linear
relationship between them. Fig. 7(a) and (b) show an
example of a localized chile pepper obtained in this process
before and after correction, respectively. Based on the results

Fig. 6. Actual vs. experimental reading for y-coordinate of the detected
chile. (2) is obtained from the trend line.

Fig. 7. Localized chile pepper (a) before and (b) after fixing x and y-
coordinate error of the camera

of the localization success discussed in the results section, it
can be said that the correction equations were consistent for
the experiment.

IV. MOTION PLANNING OF THE MANIPULATOR

Task and motion planning are essential parts of robotic
harvesting systems. Significant progress has been made re-
garding task and motion planning strategies for harvesting
which are mainly based on coverage path planning to pick all
available fruits in a scene or to minimize the required time for
moving between fruits [20]. The direct displacement towards
the desired position of the end-effector is the most common
approach for the path planning of robotic manipulators.
This approach was achieved using position-based control and
visual feedback control.

A. Coordinate Frame Transformation

Coordinate frames are attached to the main components
of the experimental robotic setup as shown in Fig. 8. Here,
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{B}, {C}, {W}, and {T} represent the frame attached to
the manipulator’s base, the camera frame, the wrist frame
originating at the flange center of the manipulator, and the
tool frame, respectively. The tool frame takes into account
the dimensions of the attached cutter. The 3D location of
the chile, obtained in the previous section, is with respect
to the camera frame, {C}, defined as Cp = [xact yact z]

T ,
where the x and y-coordinates are obtained based on the
correcting equations in (1) and (2). The cutter’s center point
(the origin of the tool frame) needs to reach the chile to
start the harvesting. For the manipulator’s end-effector (here,
the cutter’s center position) to reach a certain position, all
distances should be measured from the base, frame {B}.
Therefore, the location of the chile in the frame {C} is
transformed to the wrist frame, {W}, by multiplying the
chile’s locations in the frame {C} with the rotation matrix of
the camera frame with respect to the wrist frame (WRC) and
adding the translation vector (tC). The wrist frame and the
tool frame are the same. Because of having a Tool Center
Point (TCP) offset (which considers the dimension of the
cutter in the motion of the manipulator) in the settings of
the robotic arm, by subtracting the distance of the cutter’s
center position (dT) from the origin of the {W} frame, the
chile’s location is now obtained in the tool frame (Tp):

Tp = WRC
Cp+ tC − dT. (3)

From the tool frame, the chile’s location is transformed to the
base frame, {B}, with a similar process. The Python function
arm get position(is radian=True) of the XArm6
provides the 3D position (x,y,z), and rotation (roll (α), pitch
(β), and yaw (γ) angle) of the cutter’s center position with
respect to the base frame, {B}. Thus, the 3D rotation matrix
BRT, which is composed of the rotation by angles α, β, and
γ around the X , Y , and Z axes respectively, is formed and
the 3D location of the chile with respect to the base (Bp)
can be obtained so that the cutter center position can reach
them to perform the harvesting :

Bp = BRT
Tp+ tT, (4)

where BRT = RZ(γ)RY (β)RX(α) and tT ([x y z]T ) is the
translation vector of the tool frame with respect to the base
frame. Note that, the order of rotation is based on the X-
Y-Z convention and the successive rotations are relative to
the fixed frame, so pre-multiplication is done to form the
rotation matrix, BRT. The sequence of coordinate frame
transformations is shown in Fig. 9.

B. Workspace Reachability of the End-Effector

The workspace of a robotic manipulator is the entire
volume it can cover by the end-effector while executing every
movement that each of its joints can carry out within its
limits. When all of the links are in the vertical position, the
workspace of the robotic arm measures 1029 mm from the
base to the top and 416 mm from the base to the bottom. A
circle with a radius of 762 mm is covered by the manipulator
when joint-1 moves and all of the links are in the horizontal
position [13]. As shown in Fig. 10, a 3D filter is created

Fig. 8. Various coordinate frames in the experimental setup

Fig. 9. Sequence of transformation from one coordinate frame to another

based on the arm’s workspace to remove any coordinate
position of the chile that the manipulator cannot reach. After
converting each location of the chile pepper to the base
coordinates of the robot, the square root of the total squared x
and y coordinates of the pepper should fall within (762+150)
mm, and the x-coordinate should always be positive. The
z-coordinate should also fall inside the height restriction
(1029+150 mm for a positive z). Adjustments are made for
the height of the cutter (150 mm), which is connected as the
end-effector.

C. Motion Planning

A motion planning algorithm in Cartesian space has been
developed to guide the cutter in transitioning from its starting
point to each detected chile’s location for the harvesting task.
The algorithm is based on finding the minimum path between
the starting point of the cutter and all detected/localized
chile peppers in the plant. We kept the orientation of the
tool to be fixed as the roll, pitch, and yaw angle are set
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Fig. 10. A 3D filter (green color) to filter out any coordinate outside of
its boundary (left: top view, right: side view). 150 mm length is added to
the workspace of the robot to accommodate the height of the cutter.

to be α = 0◦, β = −90◦, and γ = −180◦ during the end-
effector movement. The robotic arm end-effector moves with
a constant velocity of υ along a straight line between any
two points in Cartesian space at each step, given n localized
green chile pepper, the total time of harvesting, ttot, can be
obtained as follows,

ttot =

n∑
i=1

∆ti =
1

υ

n∑
i=1

∥BpTo − Bpi∥ (5)

where, ∆ti is the required time interval at each step, BpTo is
the position vector of the current location of the tool, and Bpi

is the position vector indicating the location of ith green chile
pepper, respectively. A 3D graph comprised of vertices at the
green chile peppers’ location connecting by straight lines
(edges) was established. The sequences of the end-effector’s
path between chiles was determined based on searching the
graph where for any vertex i find the next vertex j ∈
{1, 2, · · · , n} such that j ̸= i and min ∥Bpi − Bpj∥. The
cutter subsequently proceeds to the next closest chile and
repeats this process until reaching the final one. Finally, the
cutter returns to its initial position. This approach reduces
the harvesting time of the robot and ensures the shortest
travel time. To achieve this, all the detected chile’s locations
are stored in a list called chile position, and an empty
list called sorted chile is created. The cutter’s initial
position is set as the first element of the sorted chile
list. The Euclidean distance between the last-added ele-
ment of the sorted chile list and all the elements of
the chile position is calculated. The element in the
chile position that creates the minimum distance from
the last-added element in the sorted chile list is named
as the closest tuple. This closest tuple is then
added to the sorted chile list and removed from the
chile position list. The end effector of the manipulator
moves based on the sequence of the chile’s coordinates sorted
in the sorted chile list. In Algorithm 1, the process
of motion planning is described. The movement of the
cutter (the opening and closing of the blades) is controlled
by an Arduino Due. In the Python code of the XArm6,
communication occurs with the Arduino, and the end effector
waits for 1 second with an open blade position after reaching
the targeted chile. Then, it closes the blade to perform the

Algorithm 1 Motion Planning Algorithm
1: Get the list chile position
2: Create an empty list sorted chile
3: InitialPosition← getInitialPositionOfCutter()
4: sorted chile.append(InitialPosition)
5: LengthChile← length of chile position
6: counter← 0
7: if counter < LengthChile then
8: Create an empty list distances
9: for tuple in chile position do

10: distance← 3Ddistance(sorted chile[−1],
11: tuple)
12: distances.append(distance)
13: end for
14: minDistance← min(distances)
15: closestIndex← distances.index(minDistance)
16: closestTuple← chile position[closestIndex]
17: sorted chile.append(closestTuple)
18: chile position.remove(closestTuple)
19: counter← counter + 1
20: else
21: Stop
22: end if
23: sorted chile.remove(InitialPosition)
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Fig. 11. Harvesting Parameters

harvesting and moves backward (100 mm) before going to
the next one.

V. RESULTS

Of 86 green chiles, 54 were correctly detected in the
laboratory test. Then, out of the 54 correctly detected chiles,
49 were correctly localized, and 27 were successfully har-
vested without damage. A total of 6 fruits were damaged
during the harvesting process. The harvesting performance
metrics are shown in Fig. 11. The definitions of these metrics
that have been adopted from [11], [19] and they are as
follows, 1) Fruit detection success (62.8%): The number
of successfully detected green fruit per total number of
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green fruit visible from the direction of the camera; 2) Fruit
localization success (90.74%): The number of successfully
localized fruit per total number of correctly detected fruit;
3) Detachment success (55.1%): The number of successfully
harvested fruit per total number of correctly localized fruit;
4) Harvesting success (31.39%): The number of successfully
harvested fruit per total number of fruit; 5) Damage rate
(6.97%): The number of damaged fruit, caused by the cutter
during the harvesting, per total number of fruit; 6) Cycle time
(20s): The average time of entire harvest operation, including
detection, localization, detachment, and robot transport to
the next fruit. While all other performance metrics show
improvement, the detachment success rate (55.1%) is slightly
lower than the one in our earlier work (65.5%) [11]. Note
that in contrast to this work, the fruit detection was entirely
done by a human in our previous work, resulting in a
100% accurate detection, whereas, currently, a 62.8% fruit
detection success rate was achieved using the Mask R-CNN
algorithm developed in this work. Additionally, any error in
the camera calibration process can contribute to inaccuracies
in the localization success rate. Moreover, the movement
of the cutter in the crowded cluster of chiles causes the
chile’s location to change. Since the localization process is
completed before the manipulator moves, even the slightest
movement can lead to an inaccurate chile location. This
inaccuracy affects the detachment success rate by damaging
the fruit if the cutter cuts the chile at any place other than the
stem or causes the cutter to miss its precise position entirely.
Moreover, due to the detection carried out by a machine
learning-based system, which constitutes an additional step
compared to the previous study [11], the cycle time exceeds
that of the earlier work. Compared to the state-of-the-art
harvesting robots [19], the localization success rate exceeds
the average of 85%, and the cycle time is shorter than the
average of 33 seconds. Although the detachment success
rate is below the average of 75%, it still falls within the
range of 42% to 93%. However, harvesting success rates fall
below the average of 66% and remain outside the range (42%
to 93%). Additionally, the damage rate slightly exceeds the
average of 5%.

VI. CONCLUSIONS

This paper presents the automatic harvesting of green
chile pepper to alleviate the problem of manpower shortage.
With the help of machine learning, robotic vision, and a
customized cutter, the harvesting process is transformed
from manual to mechanized without damaging the fruit.
The success rate of detachment is 55%, which shows the
promising nature of this research. Nevertheless, this study’s
drawback is that, from one direction of the plant, all the fruits
are detected and localized at one time, and the sequence
of the harvesting is determined. However, when the actual
harvesting occurs, there can be a small shift in the following
chile’s placement because of the cutter’s action or a small
movement in the branches as a result of harvesting the
preceding chile. It causes the cutter to miss any chile or
damage the fruits while harvesting. If the chile’s detection

and localization could be completed while the end effector
travels rather than all at once, this might be avoided.
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