
  

  

Abstract— This paper presents a design method based on 

distributed current source (DCS) that discretizes the permanent 

magnets (PMs) and electromagnets (EMs) into elemental current 

sources and derives the magnetic field and current-force models 

for design analyses of a 3-degree-of-freedom (3-DOF) planar 

motor with redundant inputs. The DCS models have been verified 

by comparing them with exact solutions and commercial finite 

element analysis (FEA). The results show that the DCS models are 

accurate (within 2.5% of exact solutions) and computationally 

efficient (a three-order improvement over FEA). As an 

illustration, the analytically derived DCS models are employed to 

analyze the geometrical constraints and parametric effects on the 

PM/EM layout and forces/torque performance of a 3-DOF planar 

motor. Using singular value decomposition, two designs are 

numerically evaluated. With the closed-form DCS models, the loci 

of the best/worst manipulability ellipsoids are graphically 

presented. 

I. INTRODUCTION 

Multi-DOF PM motors play an important role in a wide 
variety of applications ranging from traditional to emerging 
human-centered industries; the latter demands new ways to 
design devices that can accommodate bio-joint variations [1][2]. 
Although accurate electric motors are widely available at a 
reasonably low cost, they are often designed to operate at a fixed 
rotational axis, and generally not for rehabilitation like 
exoskeletons that help early stroke patients lacking force 
perception perform in-bed exercises [3][4]. In response to this 
need, this paper presents a field-based method for analyzing the 
parametric effects on the forces/torque of a 3-DOF planar motor 
characterized by redundant inputs to accommodate translational 
motions while flexing in the sagittal plane.  

Muti-DOF PM motor designs involve modeling the 
current-force relationship in the presence of a magnetic field; 
both the forward/inverse models are needed. The forward model 
uniquely determines the forces/torque at a given 
position/orientation for a set of specified inputs, but its inverse 

solutions for a planar motor with redundant inputs (3) will have 
multiple solutions. Although the Biot-Savart law and Lorentz 
force equation for solving the magnetic field/force analytically 
are well established, they are limited to geometrically simple 
problems with ideal boundary conditions. In [5][6], a numerical 
curve fitting or the first harmonic of the magnetic flux density 
(MFD) was used to analyze the MFD field of a 2-DOF PM array 
planar motor; this approach ignores higher harmonics as well as 
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boundary effects resulting in force ripples due to modeling 
errors and must be suppressed, for example, utilizing feedback 
control [7] or an optimization algorithm [8]. For magnetic 
systems with complex geometry, FEA has been most frequently 
employed because commercial software and related techniques 
are available. FEA can be combined with topology optimization 
to find the best layout of different materials (PM, EM, and iron), 
boundary/shape, and magnetization direction [9]. The tradeoff is 
that FEA must incorporate air space in its solution domain, 
resulting in low efficiency and numerical errors. Alternatively, 
the magnetic problems can be formulated using the distributed 
current source (DCS) method originally developed [10] as a 
general and physically intuitive method for modeling the 
magnetic fields of an electromagnetic system, which has been 
extended to solve problems involving eddy-current induced in a 
conductor [11]. The DCS method has also been developed to 
design drive systems for high-speed capsule trains [12] where 
the coil shape of high-temperature superconducting magnets is 
topologically optimized concerning cost/performance. Other 
approaches have also been proposed to analyze material effects 
on magnetic forces [13][14].  

Motivated by the attractive features of the DCS method that 
formulates the magnetic field and solves its solutions in closed 
form, this paper extends the method to streamline the design 
process of a 3-DOF planar motor with redundant inputs. The 
remainder of this paper offers the following: Section II begins 
with the DCS model to describe the current-force relationship of 
a 3-DOF planar motor. As an illustration, both the force model 
and its inverse solutions are derived for a motor design 
consisting of cylindrical PMs and annular EMs to provide the 
basis for studying its parametric effects using eigenvalue 
decomposition and manipulability ellipsoids [15]. In Section III, 
the DCS models are verified with exact solutions and applied to 
study the parametric effects on the force and torque performance 
of a planar motor. The findings are summarized in Section IV. 

II. DCS-BASED FORCE-CURRENT MODELS 

Figure 1(a) shows the CAD model of a 3-DOF planar motor, 
where the rotor houses two rings of Ne EMs sandwiched 
between two sets of 2Np PMs. In Fig. 1(a) where (XYZ, xyz) are 
the coordinate frames at the centers of the (stator, rotor), both 
the (PMs, EMs) are evenly distributed on a circle with radii (rs, 

rr) and angular spacing of (p, e). The (upper, lower) rings, 

which are discriminated by the subscripts (+, −) for simplicity 
in mathematical derivations, are geometrically symmetric about 
the XY and xy planes with displacement (H, h) as shown in Fig. 
1(b) where Jm is the current (volume) density of the mth EM and 
Mn is the magnetization vector of the nth PM.  

In the stator XYZ coordinates, the (mth EM, nth PM) centers 
are defined by their position vectors (1a, b) where m =1, 2, …, 
Ne and n =1, 2, …, 2Np: 
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Fig. 1. Schematics illustrating three-DOF planar motor. (a) CAD model and 
geometrical layouts of rotor EMs and stator PMs. (b) The MFDs contributed by 

the SCD sources of a PM-pair at the VCD sources of an EM-pair. 

For analyzing the electromagnetic field/forces/torque using 
the distributed current source (DCS) method[10], the PM and 
EM are modeled as surface-current-density (SCD) K and 
volume-current-density (VCD) J sources, respectively. The 
DCS method decomposes the nth PM’s circumferential surface 

Sp into NK elemental SCD KnK (area sK where K=1, 2, …, NK), 

and the EM’s volume Ve into Nk elemental VCD Jmk where k=1, 
2, …, Nk. The PM’s MFD field can then be computed using 
superposition, reducing the Biot-Savart integral for computing 
the stator’s MFD Bs at the point-of-interest P to a summation of 

cross-products KnK(P−PnK). Similarly, the volume integral for 
calculating the Lorentz force on the rotor is reduced to a sum of 

the elemental cross-products (JmkBs) over the Nk elements. 
To facilitate design, the geometrical parameters are 

normalized to the PM radius rp in (2): 

( , )( , ) ( , ) ( , )
(1,  1)

( , ) ( , ) ( , ) ( , )

p es r o i

s r p H h p p e p o i p

l lr r H h a a

r r r r       
= = = =  (2) 

For consistency, the position, MFD, SCD, VCD, and force 
vectors are normalized accordingly in (3a~e) in terms of the 

characteristic parameters defined in (3f~g) where 0 is the 
permeability of free space and Jo is a nominal current density 
flowing through the EMs’ cross-sectional area: 

3 3
  p o o o or B M J f

= = = = =
P B K J f

I
P B K J f

 (3a~e) 

0where  and  o o o o o eB M f B J V= = . (3f~g) 

A. DCS-based Magnetic Force-Current Model 

Figure 1(b) defines the coordinate systems, parameters, and 
variables for modeling the magnetic force acting on the mth 
current-carrying EM-pair (Jm at Pm) in the MFD field of the nth 
PM-pair (SCD Kn at Pn); both are uniform across the thickness. 
Given the normalized MFD field of the stator PMs in (4a), the 

magnetic force/torque on the rotor can then be computed from 

(4b, c) by summing the individual forces fmk between the SCD 

elements PnK of the stator PMs and the VCD elements Pmk of 
the rotor EMs:  
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where ,   mk nK mk nK+  + −  −= − = −L P P L P P  (4d, e) 
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In (4a, b), the (area snK, volume vmk) of the (nth PM, mth EM) are 

normalized ( ,  )nK nK p mk mk es s S v v V= = . 

As illustrated in Fig. 1(b), the PM elements at PnK and EM 

elements at Pmk (4d, e) form a trapezoid symmetric about the 
XY plane implying (5a~c) where L is the length of L: 

 and  L L L L++ −− +− −+= =  (5a, b) 

( ) ( ) ( )      2mk mk nK nK mk nK+ − + −+ − + = −P P P P P P  (5c) 

Substituting (4a) into (4b) along with the properties (5a~c), the 
normalized magnetic force can be rewritten as 
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Although the PMs’ MFD at the EMs (4a) are three dimensional 

(3D), the relative displacement (Pmk−PnK) and the elemental 
(SCD KnK, VCD Jmk) are planar (Fig. 1b). Hence, the force in 

(6a) has no Z-component at Zc=0 but creates a moment of the 
Z-axis, which can be computed from the sum of the elemental 

cross-product (Pmk−Pc)fmk. 

For a given design (known Pn and pm), Pm can be 
determined from the forward kinematics (1a, b); hence the 
normalized forces/torque of the 3-DOF planar motor can be 
written compactly in matrix form: 
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In (7b), the mth column vector m (ℝ31) of the force-current 
matrix [A] is position/orientation q dependent and a function of 
the PM/EM layout/geometry. 

B. Force-Current Coefficient Vector m 

Without loss of generality, the column-vector m of [A] in 
(7a) is illustrated with cylindrical PMs and annular EMs 
characterized by the following properties: 

− PM (lp thick, radius rp, and M=Mo[0 0 1]T: The SCD is 
uniformly discretized circumferentially and axially into NK 

equal-area ( 2 ,  1 )p p p nK KS r l s N= =p elemental SCD sources: 
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The VCD is discretized uniformly in the circumferential and 
axial directions but decreasingly radially into equal-volume 

Nk elemental VCD sources 
2 2( ( ) ,  1 )e o i e mk kV a a l v N= − =p . 

In (9a), (ao−ai) is discretized radially into nRad layers, and its 
radial position (normalized to rp) of the jth elemental VCD 
source between two adjacent edges is described by  
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Using (4f) and (6a, b), the column vectors of the force- 

current matrix [A] are derived for a design with known [p, (s, 
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In (10e), the normalized radial position mk has been defined in 

(9c) where the subscript j=mk. From the distance vectors in 

(11a) and their lengths in (11b, c), 
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Given the force-current coefficient vectors m (where m=1, 
…, Nk), the force vector F can be uniquely determined by 
computing the forward force model (7a~e) for a specified 
displacement vector q. 

C. Inverse Model and Design Optimization 

Theoretically, three or more independent inputs (Ne3) are 
needed to provide three-DOF planar motion. However, if the 
actuation system has redundant inputs (Ne>3), the inverse 
solutions to the forward model (7a~e) are nonunique but can be 
solved for a least-norm solution that minimizes ||uTu|| subject to 
the constraint (7a). The optimal solution can be derived via the 
Lagrange multiplier leading to the right pseudoinverse (12): 

( )
1

T T
−

=u A AA F  (12) 

For a specified rotor position/orientation, the 3-DOF planar 

motor is in a singular state (losing one or more DOF) if 
rank(A)<3. To optimize the manipulability of the planar motor 
by design, this problem is analyzed using singular value 
decomposition (SVD). The SVD is formulated in terms of AAT 

characterized by eigenvalues (123) in  and singular 

values i i =  where i=1,2,3: 
T T T and  = =A UΣV AA UΛU  (13a, b) 

( )1 2 3where diag=     Σ 0  (13c) 

In (13a, b), the columns of [U, V] are the orthogonal 
eigenvectors of (AAT, ATA). The design evaluation of the 
planar motor can then be visualized graphically in terms of a 
manipulability ellipsoid characterized by the eigenvector U. For 
quantitative evaluation, two measures are defined in (14a, b) 
where the ellipsoid-flattening EF measures its directional 
uniformity, and scalar EV is a measure of its volume: 
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III. RESULTS AND DISCUSSION 

The forward/inverse models describing the force-current 
relationship of a 3-DOF planar motor and manipulability 
ellipsoid for parametric analyses are best illustrated numerically. 
Two numerical studies are performed: 

− Presented in Section III.A, the 1st study has a three-folded 
objective: It begins with verifying the DCS (MFD, force) 
models with the exact solutions derived from the Biot- Savart 
law and Lorentz force integral to provide the ground truths for 
comparison. Next, the discretization effects on computation 
errors and time are analyzed. Thirdly, the effectiveness of the 
DCS models is evaluated by comparing them with FEA 
results simulated using commercial FEA software 
(COMSOL) in terms of the root-mean-square error (RMSE) 
and computation time. 

− With a CAD model illustrating the design concept of a 
prototype three-DOF planar motor, Section III.B identifies the 
key parameters significantly influencing its PM/EM layouts 
and numerically analyzes the effects of the identified 
parameters on the force/torque characteristics studies using 
the design theory described in Section II. 

A. DCS Model Verification with FEA Model 

The accuracy and efficiency of the DCS models are 
evaluated by comparing their predictions with COMSOL 
simulations and analytically derived solutions. The results 
comparing the MFD of an axially magnetized cylindrical PM 
(for which the exact solution along the magnetizing axis is 
available in closed form) and the Lorentz force for the 
fundamental configuration (Fig. 1b) are presented in Sections 
A.1 and A.2 and discussed in Section A.3. 

A.1 DCS MFD field model 
As described in Section II.B, the DCS method discretizes 

the PM into NK equal-area elemental SCD sources. The 
parametric values of the DCS and FEA models used in the 
evaluation are listed in Table I, where three DCS (PM1, 2, 5) 

models are used to study the effects of discretization (NK=110, 

220, 550) on the computation effectiveness. Unlike the DCS 
model, the 3D FEA meshes must include a sufficiently large air 
domain around the magnetic system (Table I), where the 
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tetrahedrons are automatically created by COMSOL. To ensure 
sufficient accuracy without sacrificing computation time, the 
element lengths of the tetrahedrons for the PM are smaller than 
1mm, and those for the air domain are predefined in the range of 
0.4 to 5mm. The results are summarized in Fig. 2 and Table I. 

TABLE I.  PARAMETERS USED IN NUMERICAL VERIFICATION 

PM: 0Mo=1.44 T, rp=10 mm,  =2rp/lp=4 

DCS 
SCD, NK =  

nAxi  nCirc 

Surf area 

sK (mm2) 

RMSE 

(mT) 

Comp. 

Time (s) 

PM1 1  10 31.4 2.4 0.039 

PM2 2  20 7.85 0.58 0.045 

PM5 5  50 1.26 0.093 0.086 

FEA Tetrahedron (free) 151835 7.9 23 

 

Air Domain 100100100 mm 

(Predefined: 0.4~5 mm) 
125,806 elements (83%) 

PM Domain 

(Custom: Max 1 mm) 

26,029 elements (17%) 

CPU: AMD Ryzen 7 with Radeon Graphics 3.20GHz, 16GB RAM.  
MATLAB R2022a with Parallel Computing Toolbox. 

COMSOL Multiphysics 6.0 with AC/DC magnetic fields. 

*Average computation time for 10 simulations. 
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Fig. 2. DCS and FEA computed MFD fields of the PM and their errors relative 

to solutions derived from the Biot-Savart integral. 

Figure 2 compares the MFD fields of the PM, where the 
exact solution (15) for verification in terms of the % Error (16) 
is derived from the Biot-Savart integral [16]: 
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 % Error 100 / ExactExact DCS (or FEA)=  −  (16) 

The DCS models are numerically evaluated in Table I in terms 
of the root mean square error (RMSE) defined in (17) over N 
data and computational time (seconds): 

2

2
RMSE Exact DCS (or FEA) / N= −  (17) 

A.2 DCS MFD field model 
The effectiveness of the DCS model (Section II.B) for 

computing the force FPM acting on the EM-pair (through which 
the current density JPM flows) in the MFD field BPM of the 
axially magnetized PM-pair is evaluated by comparing its force 
predictions with the force simulated using the COMSOL FEA 
model (Fig. 3). As for the DCS-modeled PM (Table I), the EM 
is similarly discretized but into Nk elemental VCD sources of 
equal volumes defined in (9a) to (9e). The parametric values of 
the DCS-modeled EMs and the 3D FEA model for simulating 
the fundamental configuration (Fig. 1b) are listed in Table II. 
As a ground truth for verification, the Lorentz force is 
calculated using the volume integral (18a) where (R’, R) are the 
(source, observed) points for computing BPM in the 

Biot-Savart’s surface integral (18b): 

( )
EM

EM EM PM
V

dV= F J B  (18a) 
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Fig. 3. FEA force simulation. (a) Solution domains and COMSOL meshes. (b) 

COMSOL simulated magnetic field. 

The DCS-predicted forces are verified by the integral 
solutions (18a, b) and compared with COMSOL simulation in 
Fig. 4. The discretization effects of the DCS models on its 
effectiveness (evaluated in terms of its RMSE and computation 
time) are illustrated with three DCS (PM1/ EM1, PM2/EM2, 
and PM5/EM5) models in Table II. 
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Fig. 4. Comparison of forces predicted by the DCS and FEA models relative to 
integral solutions. (a) Computed forces. (b) Numerical errors. 

TABLE II.  PARAMETERS USED IN NUMERICAL VERIFICATION 

EM: Jo= 4 A/mm2 (dw=0.5 mm), ao=10, ai=4, le=5 mm. 
PM and its DCS models are given in Table I 

DCS 
VCD, Nk =  

nAxi  nRad  nCirc 

Volume  

vk (mm3) 
RMSE 

(mN) 
Comp. 

Time (s) 

EM1 1110 131.9 31.3 0.065 

EM2 2220 16.49 10.7 0.29 

EM5 5550 1.056 4.82 7.1 

Numerical Integral (AbsTol=RelTol=10−3)  Exact 2,133.6 

FEA (Tetrahedron 239,246 elements) 51.6 427 

Solution 

Domain 
PM-pair 

51,848 (21.7%) 
EM-pair 

42,754 (17.9%) 
Air 

144,644 (60.4%) 

A.3  Discussion of results 
Some observations can be revealed from the findings 

presented in Sections A.1 and A.2: 

− With as small as NK=Nk=10 elements, the DCS models 
predict relatively accurate the PM MFD and forces between 
the EM-pair and PM-pair; both the (RMSE, Max) errors are 
smaller than FEA [Tables (I, II); Figs. (2, 4)]. The DCS 
model accuracy can be improved by refining the 
discretization which increases the time from 39ms to 86ms 
(250 SCDs) for computing the MFD, and from 65ms to 7.1s 
(1250 VCDs) for calculating the force. The DCS5 models and 
the exact solutions yield nearly an identical prediction of the 
MFD (Fig. 2) and force (Fig. 4). Based on this study, the (PM, 

EM) are modeled with NK=550 SCDs and Nk=5550 
VCDs in Section B. 

− The DCS model is time-efficient (a 3-order improvement 
over FEA) and potentially can be further optimized for 
real-time computation. The exact solutions take nearly 6 
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hours to calculate the Lorentz force from the volume integral 
(18a). Although COMSOL can automatically mesh an FEA 
model, a large percentage (80%, 60%) of its free meshed 
tetrahedrons (151,835, 239,246) for the (MFD, force) 
computation is used in the air domain. The need to include 
the air domain not only is time-demanding (7.9s for MFD and 
427s for force) but also results in noisy solutions as revealed 
in the error plots in Figs. 2 and 4(b). 

B. Design of a Three-DOF Planar Motor 

The geometrical constraints and parametric effects on the 
force/torque of a prototype 3-DOF planar motor (Figs. 1a, 5) are 
analyzed in Sections B.1 and B.2, respectively. 

For specified hu and gh, 

For specified dc, rl and ru,

C1: ( )l p c s u pr r d r r r+ +   −

C2: ( )l o r u o cr a r r a d+   − +

C3: sin (2 )p s pr r N p

lp

le gz

gh hu

rs=rr rp

ao ai

ru

rl

dc

Stator PM

Rotor EM

Flange for 
output shaft

( )C5: 2p e z u hl l g h g+ +  −

Ensure some PM-EM overlap,  

C6: +s r p or r r a− 

( )C4: < sini o r ea a r N p

 
Fig. 5. CAD model of a prototype planar motor illustrating its geometrical 

constraints and design parameters.  

B.1 Geometrical Constraints on the PMEM Layouts  
The geometrical constraints imposed on the PM/EM layout 

are described by the inequalities (C1) to (C5) in Fig. 5 where 

dc is the specified (Xc, Yc) range bounded by the flange (radius 

rl) and enclosure (ru, hu). The criterion (C6) limits |rs−rr| to 
maintain some overlaps between the PMs and EMs preventing 
trivial motion singularities. In practice, (rp; ao, ai) depend on the 
forces/torque specified for an application, which may result in 
an increase in (rs, rr) accordingly at the expense of a larger 
overall enclosure (ru and/or hu). To help visualize, Fig. 6 
numerically illustrates the constraints imposed on the 
stator-PMs (rp, lp, rs, 2Np) and rotor-EMs (ao, le, rr, Ne) for the 

bounds (rl=10, ru=52.5) mm and motion range (dc=7.5mm).  
The bounding curves (Fig. 6) are derived by substituting the 

upper limits of the outer radii (C3, C4) of the (PM, EM) into 
(C1, C2). The regions satisfying the two resulting constraints 
[(C3) in (C1), (C4) in (C2)] are denoted by the (red, 

blue)-colored pairs of arrows (,) in Fig. 6. The lower/upper 
curves intercept at (27.5, 35)mm constraining the (PM, EM) 

layouts. The (rsrr=30mm) configuration indicated as  

(rs=28.3, 2Np=8) and  (rr=30mm, Ne=6) in Fig. 6 is used to 
calculate the largest (rp, ao) from (C3, C4). 

B.2 Parametric Effects on Force/Torque Performance 
For a given [A], the inverse model (7a~e) computes the 

current inputs (Ne3) for a specified set of forces/torque. The 
parametric effects on (AAT) and hence the forces/torque are 

illustrated with Ne (6, 9); both with 2Np=8 and rs=rr=30mm 
(black dashed line in Fig. 6). The eigenvalue decomposition 
results are summarized in Figs. 7(a, b) and 8 and in Table III. 

The 3D heat maps (Fig. 7a) graphically compare the effects 
of Ne(6, 9) on EF and EV indicators (14a, b) in 1st and 2nd rows for 

Ne=6 (left) and Ne=9 (right), where the vertical layers correspond 

to four  values (0: 15: 45) for Ne=6 and eight  values (0: 

5: 35) for Ne=9. Because the EMs are equally spaced at 

360/Ne and move as a rigid body relative to the stator-PMs 

spaced at 360/(2Np), the forces and torque on the rotor are 
periodic and symmetric about a radial axis through the EM 
center. To avoid repetition, the EF and EV data (Fig. 7a) are 

organized and plotted along rc for four  values (0, 45, 90, 

135) in Fig. 7(b) where 
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Fig. 6. Effects of geometrical constraints on the layout configurations and 
design parameters of the stator-PMs and rotor-EMs.  

TABLE III.  NUMERICAL RESULTS 

Common parameters:  

Geometry (mm): rr=rs=30, le=lp=5, gz=1.5, gh=2. 

Np=8, PM (rp=11.5 mm, Bo=1.44 T), EM (ai=4 mm, Jo=4 A/mm2). 

EM 
Ne: ao (mm2), Ve (mm3), fo (N)=BoJoVe, o (Nm)=rp fo 

6: 15.0, 3283, 18.9, 0.22 9: 10.3, 1402, 8.07, 0.09 

Fig. 9 EF  EV  EF  EV  

Max  0.8251  0.0683  0.9714  0.1904 

Min  0.7231  0.0318  0.7796  0.0016 

Inverse Model Eq. (12) with  
T T

1 1 1X Y Zf f = = F  

 
Ne=6 Ne=9 

(rc, , ) ||u||2 

2  (rc, , ) ||u||2 

2  

Best 
(6, 0, 30) 28.43 (6.5, 0, 0) 19.15 

u: (−0.49, −2.00, −1.66, 1.38, −3.10, 

3.16) 

u: (−0.49, −0.66, 0.85, 1.09, 

−3, 1.11, 0.94, −2.82, 1.79) 

Worst 
(7.5, 0, 0) 80.37 (5.5, 0, 20) 954.3 

u: (−1.10, 5.89, 2.26, −1.20, , 

−5.89) 

u: (4.98, 14.7, 10.5, 11.0, −450, 

−3, −11.1, −17.5, −3) 

For ease of comparison, both color bars (Fig. 7a) are 
presented in log10 scale from blue to yellow, designating the 

best to worst measures. The (rc, , ) locations at which the 
worst and best (EF, EV) measures of the two designs (Ne =6, 9) 
are identified in Figs. 7(a, b):  for worst (or max EF),  for 
best (or min EF),  for best (or max EV), and  for worst (or 
min EV). As shown in Figs. 7(a, b), EF(max) and EV(min) occur at 
the same rc while the locations of EF(min) and EV(max) differ but 
close. To help visualize, these “best” and “worst” AAT ellipsoid 
indicators are displayed in Fig. 8: 

Ne =6: Worst AAT at rc=7.5mm. Best AAT at rc=6 mm (average of 

EF(min) at 7 and EV(max) at 5). 

Ne =9: Worst AAT at rc=5.5mm. Best AAT at rc=6.5mm (average of 

EF(min) at 7.5 and EV(max) at 5.5). 

As shown in Fig. 8(a, b), the loci connecting the best (or 
worst) ellipsoids can be described by a helix. The effects of the 
best and worst AAT on the optimal u (12) are analyzed in Table 
III where the inverse solution solves for u at the locations 
(denoted by the boxes in Fig. 8) to meet the specified force 
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vector
T

1 1 1X Y Zf f  = = =  . As shown in Fig. 8 comparing the 

manipulability ellipsoid two Ne (6, 9), the largest radii of both 

layouts incline to z. The manipulability ellipsoid of the 
8PM/6EM layout are uniform over the entire operating range 
except at its boundary. However, the 8PM/9EM layout exhibits 

a wide range of ellipsoid volume/flattening (EV(max)/EV(min)=119, 

EF(max)/EF(min)=1.25), as a result, demanding a significantly lager 
currents at the “worst” locations (Table III). 
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Fig. 7. Ellipsoid indicators: EF (1st row) and EV (2nd row) for Ne=6 (left) and 

Ne=9 (right). (a) 3D heat maps. (b) (EF, EV) along radial paths.  
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Fig. 8. Loci of the best/worst (EF, EV) of AAT ellipsoids. (a) Ne=6. (b) Ne=9. (c) 

Plan views: Ne=6 (top) and Ne=9 (bottom).  

IV. CONCLUSION 

A field-based method employing the DCS models as a design 

tool for analyzing the parametric effects on the forces/torque of 

the 3D planar motor has been presented. The findings, which 

have been verified by comparing the (MFD, force) results with 

exact solutions and with the commercial FEA, demonstrate that 

the DCS models are computationally accurate (RMSE: 

0.093mT, 4.82mN) and time-efficient (0.086s, 7.1s) 

representing significant improvements over FEA of (RMSE: 

7.9mT, 51.6mN) and (23s, 423s). With the magnetic 

forces/torque derived in closed form, different design 

configurations can be analyzed using singular value 

decomposition where their parametric effects can be 

graphically visualized using manipulability ellipsoids to 

identify the “best” and “worst” forces/torque performance. 

While illustrated with two different Ne(6, 9) EMs of a motor 

design, other parametric effects on motor performance can be 

analyzed similarly. 
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