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Abstract—This paper seeks to understand the viability of
encrypted robot control. Controllers are susceptible to malicious
attacks unless controller parameters are encrypted; however,
homomorphic encryption is necessary in order to allow con-
troller mathematical operations on encrypted text, but is lim-
ited due to heavy computational overhead. Encrypted control
is accomplished via the implementation of Dyer’s somewhat
homomorphic encryption scheme on multi and single threaded
matrix transformations in order to telecommunicate movement
commands between a virtual-reality joystick and a robot arm.
Results find that encrypted teleoperation via the user interface
is a viable encrypted controller technique, and is optimally
produced on multi-threaded systems.

Index terms: Homomorphic encryption, Teleoperation, Multi-
threading, Security parameters, Virtual Reality, Motion Control

I. INTRODUCTION

Resilience to cyber attacks is becoming more and more
important in many connected robotic systems [1], [2]. Weak
cyber security allows adversaries to attain unauthorized access
to control systems, resulting in data breaches, falsification,
and infrastructure failure [3]-[6]. Control schemes and con-
troller gains are carefully designed and tuned when being
implemented into the system. Falsification of real-time control
schemes, even of a few parameters, may cause a substantial
performance decrease or immediate instability. One of the
cybersecurity measures to prevent falsification is encryption.
In particular, encrypted control is an emerging concept that
encrypts not only signals on communication lines, but also
control schemes and controller gains by applying homomor-
phic encryption algorithms [7]-[10].

Among existing homomorphic encryption algorithms, fully
homomorphic encryption (FHE) can perform both addition
and multiplication on the ciphertext an unlimited number of
times. On the other hand, partially homomorphic encryption
(PHE) performs either addition or multiplication an unlimited
number of times. Where real-time control of robotic systems
is concerned, practically usable FHE has not yet been realized
due to high computational load. PHE however has been used
in the majority of the existing encrypted control studies for
practical reasons; most of these studies are limited to linear
and relatively-low dimensional controllers [7], [11]-[13].
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Expansion of encrypted control methodologies to general
nonlinear and/or time-varying control has not been well stud-
ied. Even “text-level” transformation between coordinates, a
simple kinematics problem in robotics, involves matrix multi-
plications, which cannot be performed by PHE. A “somewhat
homomorphic encryption” (SHE) algorithm proposed by Dyer
et al. has shown promise of real-time controller encryption
[14]. SHE is a family of algorithms that can perform both
additive and multiplicative homomorphic encryption with a
limited number of operations. The authors’ group has applied
that particular SHE algorithm to dynamic controllers with
nonlinear expressions [15]-[17]. Known limitations of SHE
require the users to choose appropriate security parameters
and quantization levels to balance between the performance
and numerical computation stability (i.e., overflow). The orig-
inal message cannot be recovered in case of overflow, and is
a critical issue in leveraging SHE algorithms in systems.
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Fig. 1: Encrypted teleoperation of a robot manipulator.

The objective of this paper is to implement and demonstrate
encrypted homogeneous transformation with SHE as shown
in Fig. 1. Past literature proposing an encrypted controller
presents primarily presents a numerical example of new
methods. In this paper in addition to a simulation of the
proposed methods, a physical implementation of the system is
presented. As an experimental platform, a virtual reality (VR)
interface, in the form of a joystick, was used for teleoperation
of an industrial robot arm. The homogeneous transformation
between the user interface and the robot is encrypted by using



Dyer’s SHE scheme [18].

Given the high computational cost of homomorphic opera-
tions, the execution time of elementary arithmetic operations
(i.e. addition and multiplication) become nontrivial domi-
nating the CPU’s resources [17]. Thus to minimize system
impact, homomorphic calculations should be run concurrently
whenever possible. In the case of matrix multiplication each
element in the product matrix is computed by the dot product
of a row and column in the factor matrices. Each dot product
can be computed independent of each other, thus can be
constructed as a distinct thread-safe job.

In order to ensure a real-time response between the user
interface and the robot, optimal timing is vital. Thus, these
dot product jobs are submitted to a thread manager to ac-
celerate encrypted matrix multiplication and to ensure real-
time computation of encrypted transformations as well as
communication between multiple software platforms.

This paper is organized as follows: Section II gives the
methodology utilized to encrypt and geometrically represent
the matrix operations. Section III describes the encrypted,
teleoperated system. Section IV presents experimental results
and their analyses. Finally, Section V provides concluding
remarks.

II. METHODOLOGY
A. Geometric representation and its encryption

The positions of the user control device (a hand-held
virtual reality (VR) interface) and the robot end-point are
represented by the coordinate frames shown in Fig. 2. For
a discretized time ¢t = kA; where A; is a sampling time
and k is a counter (k = 0,1,---), the transformation matrix
CO0T} transforming the initial user interface state T to the
current user interface state T (k) is given as “°Tq (k) =°
T5o °Tco(k). Frames CO and RO represent the initial states
of the user interface and robot, respectively, and C and R are
the current states. This transformation is applied to the initial
robot state to move the robot’s end-point as the desired state,
ie.,

OTr(k) =° Tro “°To(k) =° Tg °Ty "Tc (k). (1)

A mathematical representation to evaluate the matrix mul-
tiplicative depth (mmd) is introduced. Reducing multiplica-
tive depth optimizes matrix multiplication time and prevents
overflow of the encryption scheme. A multiplicative depth of
a square m X n matrix is given by the maximum among all
element-wise multiplicative depth, {"™%* (x):

mmd(Enc(T)) := max "™ (Enc(T};)) 2)
1<i,j<n

For example, multiplication between two encrypted matrices

in ciphertext results in a multiplicative depth of one:

mmd(Enc(°Ty) ® Enc('Ty)) =1 3)

Consider the encryption of (1) with SHE, Enc(*Tg4(k)).
Note that only the relative displacement from the VR in-
terface’s initial state to the current state is used for robot
control. The initial states of the robot and VR interface are
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RO: Robot end-point initial frame
R: Robot end-point current frame

CO: User controller initial frame
C: User controller current frame

Fig. 2: Coordinate frames; (a) Initial and current robot posi-
tion, (b) Initial and current input position.

fixed and stored in the system as constants. For improved
security, ideally, the constant matrices, °To and °Trg, are
encrypted at the beginning (on the robot side and on the user
side, respectively) and stored as in ciphertext, not in plaintext:

Enc(°Tr(k)) = Enc(®Tro) ® Enc(°T,) ® Enc(°Tc(k))
“)
As a result, mmd(Enc(°Tr(k)) = 2. If a user wishes to
reduce the multiplicative depth by one, bootstrapping can be
applied on the robot side to replace the first two terms with
Enc(Dec(Enc(°Tro) ®Enc(°T,,))) without risking revealing
either °T'ro or °T, as it is performed only once.

B. Encrypted matrix multiplication with threads

Consider the matrices

A:[ax*y]

B = [y x ] 5)
I'=AB = [ax f]

To calculate T, a8 calculations of the form:

- . - . - . 6
(Ail ® le) @ (Ai2 ® sz) D..d (AinY ® Bﬂ> ©)
must be performed, where & = Enc(z). Each calculation
considers ~y encrypted multiplications with average time p,
and v — 1 encrypted additions with average time o. Then
the computation time for a single entry I';; is given by
& = yu + (v — 1)o. However, in general, homomorphic
multiplicative operations take significantly longer than homo-
morphic additive operations, i.e., ;4 > o. As such we will
make the following simplification &, ~ ypu.
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Fig. 4: Computation time histogram for Method 2 (parallel),
showing distribution of computation times for security param-
eter A of varying bit lengths with semi log scale. Each set is
represented with 10 bins across its range.

Using &, we can construct the time complexity for a single-
threaded and multi-threaded implementation of the matrix
product. For a single threaded implementation, each I';; must
be sequentially processed, thus O (af¢,). While it is not
typical to consider the runtime of “elementary operations,” in
big O analysis, it is justified in this setting as homomorphic
multiplication significantly impact performance [19].

Speedup can be achieved by delegating the computation
of each I';; to its own thread. In the limit that the number
of system cores N, approaches the number of elements to
compute i.e. N — o3, then the complexity reduces to O (& ).

The effectiveness of parallelism is tested by implement-
ing two methods, each tested separately and analyzed for
efficiency in timing. Figure 6 shows the following methods:
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Method 1 (series) executes on a single thread, carrying out
standard matrix multiplication in which each dot product
awaits a preceding operation to complete before performing
its operation. Method 2 (parallel) separates each dot product
of a matrix multiplication into its own thread, allowing each
dot product to be calculated in parallel with the others.

The performance of each method was evaluated during
system operation with a timer. A total of 500 samples were
taken from each operation, and its distribution was plotted
as a histogram for varying A between 128 to 1024. The
histogram in Fig. 4 shows that across an increasing range
of A, the average computation time only increased to 1.8 ms.
In contrast the histogram of Method 1 in Fig. 3 shows the
computation time without parallelism. Here we see clearly
that the distribution increases exponentially with increasing
A

III. ENCRYPTED TELEOPERATION SYSTEM
A. Implementation

Point-To-Point (PTP) direct control of a robot manipulator
(FANUC LR Mate 200iD/7L) requires homogeneous matrix
transformations. These transformations are implemented with
SHE and threading at various levels to enhance performance.

A virtual reality (VR) headset (Meta Quest 2) is the user
input device in this system. The VR joystick was attached
to a controllable Universal Robots 6R Manipulator in order
to repeat the experimental path consistently as shown in Fig.
5. The position of the controller was acquired on the local
computer. OpenVR API (Valve Corporation) was used in this
implementation. The current pose of the user interface T (k)
is acquired, and the homogeneous transformation matrix
CO0T, from the initial pose of the controller to the current
pose is processed, and then encrypted to be processed in the
operator module. This portion of the system is considered
local, with full access to all keys as in Fig. 7.

The operator module was implemented with C#, The first
part is the cipher, which implements the Dyer’s SHE algo-
rithm. The second part of the operator module implemented
matrix multiplication in cipherspace. This part is represen-
tative of a “cloud” controller shown in Fig. 7 , and will not
access any information needed for encryption and decryption.
To that end, the two matrices *Tro and “°T (k) are en-
crypted when it is received by the thread on which operation
are being carried out. A client on the remote side will receive
the encrypted message from the cloud. The final command is

UR Experimental Path VR Remote Moves on UR Path

Fig. 5: VR experimental path for UR-VR Mount.



decrypted and sent to the robot controller (RoboDK). Once
RoboDK receives this command, a trajectory is sent to the
FANUC Manipulator, resulting in a translation and rotation
to the desired robot pose as shown in Fig. 7. It is noted
that this implementation uses threads in favor of processes
for homomorphic operations. An inter-process model would
be a closer representation of an ideal teleoperation system,
as there is extra communication overhead. While there is no
inter-process communication, threads are being executed in
an asynchronous manner as would be expected of a multi-
process system. For the purposes of this study, a multi-
threaded architecture can sufficiently represent a successful
physical system that only operates on encrypted information.

B. Threading

As established in Section II-B, encrypted matrix opera-
tions can be sped up by distributing computational overhead
across multiple processors. Multi-threading has been chosen
to implement the parallelism proposed in Method 2 in Fig. 6.
Performance of a multi-threaded program is dependent on the
size and scheduling of the tasks put on each thread. The size
of the task should not be smaller than the overhead to start
threads. If this occurs, implementing parallelism could lead to
performance degradation. Computation time of homomorphic
operations has been evaluated in detail in [17], including
that of Dyer’s SHE algorithm. Based on these findings,
it is expected that for low security messages with lighter
computational load, gains from parallelism will be comparable
to the threading scheduling overhead. However, with increase
in message length, parallel computing gains as discussed in
will dominate as discussed in Section II-B.

C. Simulation

To motivate our choice of security parameters we ran
simulation of single-threaded vs multi-threaded execution. To
simplify this choice we define all security parameters to be
in terms of one parameter A by p = 10log,())
and p’ = 2p. This parameterization ensures that the cypher
has sufficient entropy to prevent a cyphertext attack [18].
Furthermore, by parameterizing p and p’ by A, we have
collapsed the parameter space to a single dimension, thus
making a sweep of parameter space far less computationally
burdensome. Ultimately, the security of the cyphertext against
brute force attacks will be determined by the bitlength of the
encrypted values. With the above parameterization we can
see that bitlength is related to A as shown in Fig. 8. The
computation time to complete one matrix multiplication with

Ar By =Ty

Aj. By =Ty

Start Ay - Bz =Ti3 End Start ||Tyq ||Tug | Tug || Lij End
Ap - Biy =Thy

(a) Method 1: Series Matrix Operations (b) Method 2: Parallel Matrix Operations

Fig. 6: Threading methods
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and without threading was simulated on a 11th Gen Intel(R)
Core(TM) 17-1165G7 CPU. Computation was averaged over
10 runs for each choice of A. The results of this simulation
can be seen in Fig. 9.

Notice in Fig. 9 that for low security parameters the series
method performs better than the multi-threaded method. This
is due to the overhead of creating and managing multiple
threads, and indicates the threaded tasks require so little
computational effort that the threading overhead is actually
detrimental. Typically, we want our security parameters to be
as large as possible, so such a situation is unlikely to occur
in a production system.

IV. EXPERIMENTAL RESULTS & ANALYSIS

In order to verify encrypted operation, experimental data
was collected with security parameter A chosen from the
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set {128,256,512,1024}. Figure 10 presents translation data
of the end effector for a test case with A = 1024. These
results show that the robot manipulator closely tracked the
VR remote while command calculations were performed in
cipherspace. For example, at the lower left corner, the robot
tracked better with Method 2 (parallel) since the reference
command was generated faster than Method 1 (series). This
observation is expected to hold for complex path tracking.

Table I shows the median deviation of the robot end
effector from the ideal path in millimeters at varying security
parameters. The deviation showed non-normal distribution
for all trials tested with the Shapiro-Wilks normality test
with 95% confidence. One tailed Mann Whitney U test was
performed at the significance level of 0.0125 to determine if
deviation of the system was significantly smaller when method
2 is used over method 1. Results showed that there was a
significant difference in deviation between methods for cases
A = 512 and 1024.

All X\ values show similar results, confirming the viability of
encrypted robot control through the VR system. Additionally
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TABLE I: Median Robot - VR path deviation in mm at
varying security parameter A for Method 1 and Method 2,
and Mann Whitney U test score U by A (*U < 0.0125)

A Method 1: Series  Method 2: Parallel U
128 16.41 16.16 342
256 21.64 23.26 953
512 31.60 18.48 < .001*
1024 42.27 18.87 < .001*

tested was computation time again with varying A chosen
from the same set {128,256,512,1024}. Results of this test
can be seen in Table II. Observe that Method 2 gains benefit
as the A parameter increases, approximately seven times faster
than that of the series implementation in the A = 1024 case.

One tailed Mann Whitney U test was performed to de-
termine if the positive shift in the overall distribution was
statistically significant. It was found that reduction in compu-
tational time is significant from A = 256 and above. Although
there is significant time increase for A = 256 case, amount of
reduction is suspected to be too small to result in performance
increase. For A = 512 and 1024 case, time reduction and
performance increase were consistent.

TABLE II: Median and standard deviation, computation time
of reference command generation (ms), and Mann Whitney
U test score U by A (*U < 0.0125) .

A Method 1: Series  Method 2: Parallel U
Mdn o Mdn o
128 0.204 0.001 0.252 0.023 1
256 0.574 0.026 0.285 0.042 < .001*
512 2.098 0.193 0.441 0.056 < .001*
1024 7.661 0.383 1.068 0.236 < .001*

V. CONCLUSIONS

This paper presented a physical system implementing
a somewhat homomorphic encryption algorithm to secure
communication between distinct systems in the form of a
VR hand-held remote controller and a 6DOF manipulator.
Messages between the local and remote systems were in the
form of a homogeneous transformation matrix. A method
to accelerate computationally heavy, encrypted calculations
exploiting the parallel nature of matrices was devised and
evaluated for algorithmic complexity. The new method was
shown to significantly reduce update times once security pa-
rameters were large enough to offset communication overhead
inherent in parallel computing. Among the tested security
parameters the median computation time was 7.22 times faster
compared to when parallel computation was not applied. This
improvement in computational time was shown to meaning-
fully decrease positional deviation of the robot end effector
from the ideal path up to 2.25 times. Usage of a larger security
parameter will result in even larger performance gains. Further
research would implement filtering in cipherspace in the form



of an extended Kalman filter and model predictive controllers

leveraging improved performance of matrix operations.
APPENDIX

A. Cryptographic Operations

This study adopts the SHE algorithm proposed in [18] that
can be summarized as follows:

Gen: Set security parameters A, p, p’. Let:

v=yp —p (N
)\2
n="7 - ®)

Randomly choose a A-bit prime p, a v-bit prime
k, and an 7n-bit prime g. Generate a key k = (k, p)
and publish N = pq. In range of plaintext integer
numbers: M = {0,1,2,...,M — 1}, to compute
any polynomial expression: P(mq,ma,...,m,) and
P(my + s16,ma + S2k,...,My + Spk) Up to the
degree of d, key lengths x and p are lower-bounded
by the power of d given by:

K> (n+1)2M? )
p> (n+1)4UM + k)4 (10)
where s; € {0,1,...,k—1}(i = 1,...,n) are random

integers.
Enc: Plaintext m € M is encrypted by:

c=m+4+sk+rp mod N (11

where s € {0,1,...,s — 1} and r € {0,1,...,¢ — 1}
are random noise.
Dec: Ciphertext ¢ € C is decrypted by:

m= (¢ modp) mod k (12)

Add: Additive homomorphism Enc(m) @ Enc(m’)
mod N = Enc(m +m/'), Vm,m' € M is realized
if:

m+m <k (13)
(m+m')+ (s+s)k<p (14)
where s’ is random noise corresponding to m/’.
Mult: Multiplicative homomorphism Enc(m) & Enc(m')
mod N = Enc(mm/), Ym,m' € M is realized if:
mm’ < Kk (15)
mm’ + (ms' +m's+ss'k)k <p  (16)
Equations (9), (10), (13), (14), (15), and (16) are conditions
that must be satisfied at all times.
B. Numerical Limitations

The primary limiting factor of Dyer’s SHE is the divergence
of noise introduced into the ciphertext, primarily by multipli-
cation. The largest possible value among all encrypted signals,
parameters, and products should be smaller than:

M(md’)\’y)'_\‘mm{n—ﬁ—l’n—i—l_ﬁ}J 17
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where d is the degrees of polynomial, p is the A-bit prime,
k 1is the v-bit prime—the scheme’s security parameters [15],
[18].
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