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Abstract—Instead of taking images with a camera, synthetic
data is generated in a computer simulation. One advantage of
this is that training data can be generated on-demand, e.g., to
automatically retrain robots when a task changes. While this
makes synthetic data a promising approach for autonomous
productions, realizing such autonomous setups is difficult with
current systems for generating synthetic data, which usually
require a programmer for every dataset to be generated.

To overcome this problem, we present a novel framework
for generating synthetic data. This framework restructures the
generation process into asynchronous phases to increase the level
of autonomy in two ways. First, by letting programmers write pa-
rameterized scripts, many different datasets can be autonomously
generated. Secondly, by introducing a user interface, domain
experts are enabled to influence the generation process on their
own without a programmer. Furthermore, by being built as a new
layer on top of existing systems for generating synthetic data, our
framework shows a new way to maximize compatibility with other
research on synthetic data generation.

To test our framework, we have developed a fully functional
prototype based on it. Successfully using this prototype for an
example experiment, we conclude that our ideas work. Future
research can use our prototype for more elaborate experiments
on autonomous productions and to further assess its usability.

Index Terms— Machine Learning, Computer Vision, Expert
Knowledge, User Interfaces, Ontologies, Industry 4.0

I. INTRODUCTION

Modern computer vision techniques offer many advantages,
such as performing better or enabling functionalities that would
not be possible otherwise [1], [2]. While deep learning-based
techniques often achieve the best results, they require big
datasets, which can be prohibitively expensive to create [3]-[6].
The reason for this expensiveness is the usually very manual
process in which datasets are created [1]-[3], [5], [7], [8],
which in computer vision involves taking images with a camera
and then labeling them by hand, e.g., marking the positions of
objects on all images. As this can take several minutes or more
per image, it quickly becomes very costly for big datasets and
thus puts powerful deep learning techniques outside the scope
of many projects.

Synthetic data is a promising approach to solve this problem.
With synthetic data, instead of taking images with a camera,
both the images and their labels are generated in a computer
simulation. Thus, human work is reduced to modeling a task
in this simulation. After that, new images can be rendered in a
fraction of the time of creating real images, allowing also big
datasets to be cost-efficiently generated. [3], [8]

Synthetic data is especially attractive in the context of
production. For instance, 3D models that can be used to model
the computer simulation often already exist in production in the
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form of CAD models, leading to a lower barrier to generate
synthetic data [9], [10]. Moreover, synthetic data can be used
to enable autonomous production processes. For instance, new
synthetic datasets can be automatically generated and used to
retrain machine learning (ML) models when a task changes.
That way, for example, robots can learn to handle new parts
or to cope with changed environments without any human
intervention. [7], [10]

Despite this potential, implementing autonomous production
processes is difficult with current systems for generating syn-
thetic data. On the one hand, such systems are designed for
a workflow in which a programmer writes a script for every
dataset to be generated. This workflow stands in the way of
autonomy as it heavily relies on manual human work. On
the other hand, the scripts that the programmer writes usually
include hard-coded process knowledge. Thus, when a process
expert notices that such knowledge has changed, they have
to ask the programmer to update the script instead of being
able to input the change themselves. As a result, two humans’
attention is necessary in such situations, further shifting such
systems away from autonomy.

In this paper, we present a novel approach for generating
synthetic data specifically targeted to autonomous productions
in two ways. First, by letting programmers write reusable,
parameterized scripts, many different datasets can be au-
tonomously generated without further human input. Secondly,
our approach introduces a user interface to enable process
experts to update knowledge themselves when it changes,
reducing the minimum number of humans involved in these
situations from two to one.

To test the applicability of our approach, we have developed
a fully functional prototype based on it. Using our prototype
as part of a computer vision experiment, we demonstrate
that it can be successfully used to generate synthetic data.
To enable further research and developments in the field of
autonomous and knowledge-based synthetic data generation,
we have published the entirety of our prototype’s source code
online for others to use or extend.

II. STATE OF THE ART
A. Synthetic Data

While there are many ways to generate image data syn-
thetically, in this paper, we’re specifically focused on methods
rendering it in a simulation. Advantages of such methods are
that they can be executed autonomously and don’t require any
real images. With them, human work is reduced to modeling
the simulation. After that, a computer can render an arbitrary
number of images of that kind without further human input.
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Fig. 1. Overview of our concept for autonomously generating synthetic data. Each user role creates artifacts for the succeeding phases. Because artifacts can

be reused, the level of autonomy is increased: the End User can create many knowledge bases without further assistance from the Data Scientist, and the ML
System can create many datasets without further human input. The colors indicate in which phases the artifacts are most relevant: While Forms and Generation
Algorithms are created during the Configuration phase, they’re used during the later phases.

Even when generated in a simulation, the purpose of syn-
thetic datasets usually is to train ML models on them and
then to deploy these models in real settings. This domain
transfer can be a problem because ML models often overfit on
peculiarities of the simulation and then perform badly when
given real images [11]. To overcome this so-called sim2real
gap, several approaches can be utilized. For instance, the
simulation can be heavily randomized so that ML models
become more robust to changes [9], [12], or the simulation’s
level of realism can be increased, e.g., by employing a more
realistic rendering method [9], [13], [14]. Another approach to
increase the level of realism that is especially relevant in the
context of this paper is using knowledge from domain experts
to model more detailed simulations [4], [7], [9], [15].

B. Synthetic Data Generators

Synthetic data generators (SDGs) are software tools that
simplify generating synthetic data by providing functionalities
that many synthetic data projects need [3, pp. 170-171]. For
example, they may already implement methods for rendering
common label types or support advanced realistic rendering
methods like path tracing.

Many SDGs offer similar functionalities. For instance,
BlenderProc [16] is a typical example of a SDG: With Blender-
Proc, images can be generated via a Python API, and it
supports the rendering of images with path tracing. It also
includes the typical problems of many SDGs, such as limiting
the potential for autonomy by requiring a programmer to
write a script for every kind of dataset to be generated and
mixing algorithms and knowledge in these scripts. Despite
these shortcomings, existing SDGs also play a big role in the
software framework presented in this paper. This is because our
framework is built as a new layer on top of existing SDGs, and,
in particular, we use BlenderProc for this in our prototype.

While many SDGs only offer a script-based workflow, one
SDG with similar aims to ours is Minervas [17]. Minervas
also includes a Python API, but in addition to this, it also has

a user interface to enable experts to generate synthetic data
themselves without a programmer. Furthermore, it is described
as more high-level than existing SDGs such as BlenderProc.
Despite these similarities, Minervas is more limited than our
approach in several ways. First, it can only generate synthetic
data for interior designs, whereas our approach is extendible
to any domain. Secondly, Minervas’ user interface only offers
a subset of the features of its API and consists of only one
predefined form that cannot be changed. In contrast to this, any
kind of user interface with any kind of rendering functionality
can be implemented with our system. Thirdly, despite offering
high-level functionalities, Minervas also implements low-level
functionalities, such as rendering, itself instead of reusing
existing low-level SDGs for this. Lastly, Minervas also doesn’t
provide any mechanisms for autonomous generation.

C. Knowledge-based Generation of Synthetic Data

Knowledge plays an important role in many synthetic data
projects. It can define the basic task to be solved, e.g., which
objects are to be recognized, and incorporating more detailed
expert knowledge increases the probability of successful do-
main transfers [7], [9]. In this context, in [18], the topic of
knowledge-based synthetic data generation is examined. First,
user roles relevant to such systems are formalized. Thus, for
example, programmers are formalized as a Data Scientist role.
Secondly, six implications for knowledge-based synthetic data
generation are derived, such as knowledge being also implicitly
added by the Data Scientist role. The framework presented by
us in this paper builds upon the work from [18], e.g., we try to
incorporate the six derived implications in our prototype and
we use the same user roles in our concept.

III. CONCEPTUAL OVERVIEW

To enable autonomous production processes, our approach
restructures synthetic data generation into separate phases
and introduces two new entry points besides the script from
the programmer. These entry points are a form-based user
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interface, which allows domain experts to enter knowledge
about a task without help from the programmer, and an API,
with which synthetic data generation can be automatically
triggered. While Fig. 1 shows a first overview of our concept,
the following subsections explain further characteristics of this
concept and how they’re integrated to achieve more autonomy.

A. User Roles

Following [18], our approach knows three user roles: Data
Scientist, End User, and ML System. The Data Scientist role
programs the algorithms for generating synthetic data and
designs the form-based user interfaces. The End User role
is a domain expert who uses the user interfaces created by
the Data Scientist to enter knowledge about specific tasks.
Finally, the ML System is an external software system that
uses our system’s API to trigger synthetic data generation.
When triggering the generation, the ML System can attach
parameters, e.g., the 3D model to be recognized, so that
many different datasets can be autonomously generated without
further human intervention.

With these user roles, the degree of autonomy reached
depends on how much a production task changes over time. If
only parameters change that the ML System can send via the
API, datasets can be generated fully autonomously. If aspects
of the task change that can be set via the user interface, then
the End User can input the changes themself. Only when
a completely new functionality is needed the Data Scientist
becomes necessary and has to adapt their scripts.

B. Phases

Our approach splits the generation process into three suc-
cessive phases. In each phase, another of the three user roles
is active. First, the Configuration phase is where the Data
Scientist is active, creating new algorithms or user interfaces.
Following that, the Knowledge Elicitation phase is where the
End User enters knowledge into the forms. Lastly, in the Data
Generation phase, the ML System triggers the generation of
synthetic datasets.

Each phase creates artifacts that the following phases build
upon. For instance, the result of the Configuration phase is a
module defining both a form for the Knowledge Elicitation
phase and a generation algorithm for the Data Generation
phase. The result of the Knowledge Elicitation phase is a
knowledge base, which the Data Generation phase also uses.
Finally, the result of the Data Generation phase is the finished
synthetic dataset, which is then transferred to the ML System.

One important aspect is that the artifacts can be reused.
Thus, the End User can create many knowledge bases based on
one module, and the ML System can generate many datasets
based on one knowledge base. Furthermore, the phases also
don’t have to be executed contiguously, but any arbitrary time
interval can pass between them. For example, the End User can
enter knowledge whenever they want to once the Data Scientist
has saved one module, and the ML System can trigger the
generation process whenever it needs to once the End User
has saved one knowledge base.

—  Addons |—— WebPage —— REST APl }——

Autonomy layer

Application layer

1_Objects |

Abstraction layer: Ontology layer

1 API I

Rendering layer: BlenderProc

Fig. 2. Overview of the three-layer architecture implemented in our prototype.

IV. IMPLEMENTATION

Building upon the concept, we have developed a pro-
totypical implementation, which we’re describing in this
section. The entire source code of our prototype can be
found online so that others can view, use or extend
it: https://github.com/davidd7/knowledge-based-synthetic-data-
generation.

A. Basic Structure

At its core, our prototype is a web application that offers
different interfaces for the three user roles. First, the Data
Scientist can program addons and load them into the software
to extend it with any rendering functionalities or user interfaces
they need. Secondly, the End User can interact with the
software via a web page, in which they can choose from
the forms created by the Data Scientist and enter knowledge
into them. Finally, the ML System can use a REST API to
trigger synthetic data generation and to download the resulting
datasets.

To implement these functionalities, our prototype follows a
three-layer architecture, as shown in Fig. 2. At the top of this
architecture is the autonomy layer, which implements all fea-
tures of our concept, such as the three phases and entry points.
Below that is the ontology layer, which simplifies all rendering-
related aspects by abstracting a low-level SDG: instead of
using the SDG itself, modules of the autonomy layer specify
how synthetic data should be generated using functionalities
defined in the ontology layer. Thus, less effort is needed, as
general algorithms can be reused while task-specific knowledge
is confined to the autonomy layer. Moreover, this setup also
has advantages for the six implications for knowledge-based
synthetic data generation (cf. Section II-C), which will be
explained later. At the bottom of our three-layer architecture
is the SDG itself, for which we’ve used BlenderProc in our
prototype. In the following, the two top layers are explained
in more detail.

B. Autonomy Layer

The autonomy layer contains the entire process of the
concept, i.e., all three phases and entry points are implemented
here. As can be seen in Fig. 3, the Data Scientist can extend the
autonomy layer by creating two types of custom code: modules
and form components. While form components are single
elements, modules are made up of up to four parts specifying
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Fig. 3.  Overview of custom code that the Data Scientist can create for the

autonomy layer. Each module defines a specific form and generation algorithm.
Because form components can be reused in many forms, the effort of creating
new forms is minimized.

different aspects of their behavior: a form file defining a
form, two files with default values, and a function called
json_to_onto that specifies how synthetic data is generated
based on knowledge entered into the form.

Form creation: To design a form, the Data Scientist interacts
with two elements of the custom code: the form components
and the form file. The form components are single, reusable
user interface elements, e.g., a dropdown menu. Once the Data
Scientist has created a form component, it can be reused in any
module’s form file without further work. In the form file, the
form components can be freely combined and nested to define
a form. That way, even complex forms like the one shown in
Fig. 4 can be easily created.

Saving form input: Knowledge entered into the form is
saved in JSON format. Instead of custom load and save
functions, this is done in a more automatic way to minimize
the amount of effort required from the Data Scientist. First,
the Data Scientist must create an end_user_default file as part
of every module. This file consists only of a JSON object that
specifies keys for the different knowledge points that the End
User can enter into the form as well as default values that
should be used when no knowledge is entered. These keys are
then used in the form file, where all used form components
must be bound to one of the keys. Using these bindings, the
prototype can then automatically save knowledge entered into
the form in JSON format and also automatically load data back
into the form so that End Users can edit their input later on.

Generating data based on the input: The last required
part of every module is a Python function called json_to_onto.
This function is executed in the Data Generation phase and
determines how to generate the synthetic dataset. As seen in
the code snippet shown in Fig. 5, this is done by creating
objects of different classes and setting their attributes. Cru-
cially, the json_to_onto function is also where the knowledge
from the different sources is integrated. On the one hand,
the function receives two parameters for this: end_user_data
contains the values entered by the End User via the form, and
ml_system_data contains values sent by the ML System via the

Objects to recognize

Object 1 x

L
3D model: No file uploaded selectfile| |

How many instances of this object type should appear per image:

0 1 2 3 a 5 I
Object 2 X
3D model: No file uploaded Select file
How many instances of this object type should appear per image;

2 3 4 5

Add object

Area, in which all objects appear

!
Length in the X direction: 300 o [
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Fig. 4. Example form with form components highlighted: a) DynamicList, b)
3DModellnput, ¢) Rangelnput, d) NumberInput. The DynamicList component
allows End Users to create an arbitrarily long list of objects, e.g., so that
they can specify objects to be recognized in a task without the Data Scientist
having to specify how many objects there will be beforehand. For each object,
all form components nested within the DynamicList component are loaded so
that the End User can set attributes for each object.

APIL. On the other hand, the function also makes knowledge
added by the Data Scientist themself visible, namely all hard-
coded values and the decisions which classes and attributes
are used. Fig. 5 also shows what this integration can look like:
the End User enters the depth and width of an area in which
objects can appear, but the Data Scientist is deciding that they
always appear 500mm above the ground without asking the
End User for a value for this.

When the json_to_onto function is finished, the created
objects are passed down to the ontology layer, which then
renders the synthetic dataset solely based on the information
in them. At the end of this, the autonomy layer makes the
generated dataset available for the ML System to download.

def json_to_onto(onto_classes, end_user_data, ml_system_data):

volume = onto_classes.SimpleVolume(
Has_XCoordinate = [-end_user_data["area_length_x"]1/2],
Has_YCoordinate [-end_user_data["area_length_y"]/2],
Has_ZCoordinate = [500.0],
Has_XLength = [end_user_data["area_length_x"]], o
Has_YLength = [end_user_data["area_length_y"]] +a

)

# ... b

root = onto_classes.GenerationRoot( 4
Has_NumberOfImagesToRender = [ml_system_data["count"]],
Has_Volume = [volume],
Has_Object = obj,
Has_Camera = [camera],
Has_Label = [label]

)

Fig. 5. Example json_to_onto function. Most knowledge is hard-coded by the
Data Scientist, but for the volume’s depth and width, values entered by an End
User via the form are used (see a), and for the dataset size, a parameter sent
by the ML System is used (see b). A root object is created to bind everything
together.

C. Ontology Layer

As described in the preceding section, the Data Scientist
defines in the json_to_onto function how to generate synthetic
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Fig. 6. Overview of custom code that the Data Scientist can create for the
ontology layer. The ontology defines which classes and attributes can be used
in the json_to_onto function and how they can be connected. The handlers
specify how objects of these classes influence the rendering process.

datasets by creating objects of different classes. Which classes
can be used in this function is defined in the ontology layer.

Similar to the autonomy layer, the ontology layer can be
extended by the Data Scientist with custom code. As can
be seen in Fig. 6, there are two kinds of custom code in
the ontology layer: the ontology itself and so-called handlers.
While the ontology defines which classes and attributes can
be used in the json_to_onto function, the handlers define how
synthetic data is generated based on them. Both the ontology
and the handlers are reusable so that functionality implemented
once is available to all modules in the autonomy layer. Thus,
the ontology layer only has to be adapted when completely
new rendering functionalities are required, e.g., when a special
method for rendering steam is needed for a new task and hasn’t
been implemented before.

The ontology: Ontologies are a tool to standardize how
data is structured. An important decision in creating ontologies
is what exactly they describe (cf. [19]). In the context of
our prototype, our ontology describes how to render synthetic
datasets. Thus, unlike an ontology that might describe the
real world, our ontology also includes classes for things that
don’t exist in reality, like rendering random backgrounds.
Furthermore, the classes in our ontology are not specific to a
particular SDG but are meant as general descriptions that can
be translated into API commands for many different SDGs.

In the following, we want to go over a few characteristics of
our ontology. First, because ontology objects can be referenced
by multiple other objects, the ontology enables reusability
of information. For instance, an exemplary class out of our
ontology is the Volume class, which defines 3D areas in a
scene, e.g., to coarsely specify where objects can appear. By
referencing the same Volume object in attributes from multiple
other objects, it can be modeled that all these objects should
appear in the same area without having to repeat that area’s
parameters for every object.

A second pattern of our ontology is that because it supports
inheritance, one can define a general parent class for a feature
and child classes for different strategies how to implement
it. For instance, the class Rotation in our ontology defines
how objects connected to it should be rotated. As part of
our prototype, we have implemented two child classes for it:
RandomRotation chooses an entirely random rotation for every

image, whereas LookAtVolumeRotation rotates the object so
that its front side is always oriented towards a random point in
a specified volume, which could be used for example to orient
lights towards random points on the ground.

The final aspect of our ontology that we want to pick
out is the GenerationRoot class. In the json_to_onto function,
the Data Scientist must create an object of this class that
is connected directly or transitively to every other object
that should influence the module’s generation procedure. The
reason for this is that GenerationRoot objects are used as the
starting points of the generation process. Each GenerationRoot
object describes how to generate one specific kind of dataset,
and what’s not connected to it will be ignored.

Handler classes: Besides defining which classes are avail-
able in the json_to_onto function, one also must specify how
synthetic data is generated based on them. For that, the Data
Scientist writes handler classes in Python. While the ontology
is not related to a specific SDG, the handler classes can be seen
as adapters that transform abstract information from ontology
objects into commands of a specific SDG.

Usually, for each class in the ontology, there’s a handler class
that specifies how to render it. During the Data Generation
phase, the handlers search through the objects created in
the json_to_onto function and adapt the simulation based on
their attributes. For instance, a LightHandler may specifically
search for light objects. To adapt the simulation, each handler
implements three functions: init, iterate, and end. At the start of
the rendering process, every handler’s init function is executed,
and at the end, all end functions are executed. Between this,
all iterate functions are executed in a loop as often as how
many images should be generated. Within these functions,
the handlers directly interact with a specific SDG’s API to
influence the simulation. In the prototype, all handlers were
implemented using BlenderProc, but which SDG is used is
interchangeable as long as all registered handlers use the same
one.

V. EVALUATION

To test the applicability of our approach, we have used our
prototype as part of an example experiment. This example
experiment revolves around the topic of expert knowledge,
because a central aspect of our approach is that it simplifies the
integration of expert knowledge in synthetic data generation.
Crucially, the central aim of the experiment is to see whether
the components of our prototype can be successfully used to
generate synthetic data for such a task. Thus, the experiment
itself is designed to be rather simple, and while the results
open up several interesting questions, the further investigation
of these questions is outside the scope of this paper.

In the following, first, an overview of the example ex-
periment’s setup is given. After that, we describe how our
prototype was used as part of the experiment. Finally, the
experimental results are discussed.

A. Experimental Setup

Our experiment examines the influence of two types of
knowledge on the performance of ML models and whether
more realistic knowledge leads to better performances. The
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examined knowledge types are the number and location of
two kinds of objects that are to be recognized on images.
These knowledge types were selected because they are simple
to understand and enter into a form for humans, leading to the
interesting question whether such simple knowledge types may
still have a positive effect on ML model performance.

At the start of our experiment, we created a test dataset Treq;
by manually taking images with a camera. Each image in Treq;
contains exactly 3 gears with a few big teeth (class 1) and 3
gears with many small teeth (class 2). Furthermore, all gears
are located within the left half of each image. After taking
these images, we manually labeled them with segmentation
masks marking the two gear classes.

Following the creation of T'r.q;, We generated six synthetic
datasets D1, ..., Dg. Each of these datasets was generated
exactly the same except for the number of gears per image
and the location of the gears within the images:

o Number of gears per image: D1 and Ds have exactly 3
gears of each class per image (same as Treq;), D3 and Dy
have between 0 and 6 gears of each class per image (same
average as Treq1), and D5 and Dg have exactly 20 gears
of each class per image.

o Location of gears: In D, D3, and Ds, all gears are
located on the left half of every image (same as Treq),
whereas in Ds, Dy, and Dg, the gears appear on both
halves.

The consequence of these different values is that some of
the synthetic datasets are more similar to T'req;, and others
are further away from it. For instance, in D;, the number of
gears and their location are exactly as in TReq;, Whereas Dg
is most different from T'r.,;, With different locations and the
gear numbers not even being the same on average. Overall,
the different value combinations thus represent different sets
of expert knowledge with varying degrees of realism.

In the last phase of our experiment, we first trained a
different ML model on each synthetic dataset, resulting in the
ML models Mj, ..., Mg. Then, we tested their performances
on Treq. Based on the assumption that expert knowledge
improves the performance of the resulting ML models, we
expected the models trained on more realistic datasets to
achieve better scores on Treq;.

B. Creating the Synthetic Datasets

To generate the six synthetic datasets, we used our prototype,
going over all steps of our concept. First, we took on the role
of the Data Scientist to create a new module that specifies
the form shown in Fig. 7 and a corresponding json_to_onto
function. As part of this json_to_onto function, we specified
a few fixed knowledge points without asking the End User
for values for them, such as setting camera properties similar
to the camera used for creating Tre,; and enabling random
background images and lights. Moreover, we set a physical
plausibility effect, which simulates gravity to let the gears fall
into random but realistic poses on each image (cf. physical
plausibility, e.g., [20]). Because we mostly used components
that we had already created for a previous experiment, we could
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Fig. 7. Form created as part of our experiment with knowledge base for
generating D3 loaded.

Fig. 8. Example images from the different created datasets. In D3 and Dy,
the number of gears per image is random, ranging from 0-12. Each synthetic
dataset contains 1000 images.

take advantage of their reusability and didn’t have to create any
new ones, except for a drop-down form component.

Once the module was ready, we switched roles and used
our software as an End User. Using the web app, we created
six knowledge bases by entering the respective gear numbers
and locations into the form. Finally, taking the role of the
ML System, we triggered the generation of one dataset for
each knowledge base via the API, resulting in the six datasets
Dy, ..., Dg, of which example images can be seen in Fig. 8.

C. Training and Results

For our ML models’ architecture, we selected U-Net [21].
We left the training parameters as predefined in the PyTorch
implementation that we used, i.e., we trained each model in
5 epochs with a batch size of 1, a learning rate of le—>5, and
10% of the respective dataset split into a validation set [22].
The resulting performances of our trained ML models on T'rcq;
can be seen in Table I.

The highest scores are achieved by M, ..., My, ie., the
models trained on 3 or 0-6 gears per class per image, with
scores between 0.82 and 0.89. Notably, the best-performing
model is Mo, even though it has less realistic knowledge than
M . Following these four highest scores come Mg, with a score
of 0.65, and M5, which appears to be an outlier, with a score
of 0.39.
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TABLE 1
PERFORMANCE OF THE TRAINED MACHINE LEARNING MODELS ON TReq1

Dataset | Model | Performance on Treq (dice score)

Dy My 0.86
Do Mo 0.89
D3 M3 0.86
Dy My 0.82
Ds Ms 0.39
Dg Ms 0.65

Overall, it appears as if the number of gears per image is
more important than their location. In each instance, a more
realistic gear number improved performance, whereas models
trained on more realistic locations performed worse in two
cases. While this suggests that modeling the location has no
benefit at all, we’re cautious about such a conclusion because,
except for the outlier M5, realistic locations did lead to better
performances in a preparatory experiment of ours. Thus, to gain
more clarity, we suggest repeating the experiment several times
and then comparing the average scores and standard deviations.

While M5 also performs worse than the less realistic Mg,
we suspect this rather has something to do with peculiarities
of Mj5. One hypothesis is that the high number of gears in a
smaller space might move them closer to the camera, making
them appear bigger than in Tr.,;. To test this, a dataset could
be generated similar to D5 but with a lower ground. Another
hypothesis for the low performance of M; is that models
may need more examples to understand the complex relations
coming from 40 gears per image, and every image seen by Mg
having examples of such poses on both halves might be more
valuable here than Mj5 seeing where the gears are located in
the real dataset. Further experiments could increase the training
set size to see if Mj5’s performance improves if it sees more
examples.

Once these more basic open questions have been tackled, the
experiment could be expanded on in several ways. For instance,
a bigger number of knowledge types could be compared, dif-
ferent ML tasks could be used, or it could be measured whether
bigger dataset sizes can substitute more realistic knowledge at
the expense of taking longer to generate.

VI. DISCUSSION

As seen in the preceding sections, we were able to realize
our concept in a fully functional prototype. This prototype
implements all features mentioned at the beginning of this
paper. For instance, data can be automatically generated via an
API, experts can influence the generation via forms, and the
prototype is easily extendible to new domains and algorithms.
Many of these features were used in our experiment, where
we first created a parameterized script and then used this one
script and the form-based user interface to generate six datasets
with different expert knowledge. As this worked seamlessly, we
conclude that our concept works at a basic level and that the
prototype can be used to generate synthetic data.

Using our prototype, further research on autonomous pro-
ductions can be conducted. On the one hand, because the
experiment presented in this paper only assessed that the

Application layer:

Abstraction layer:

Autonomy layer

Ablation
study layer

Curriculum
learning layer

i

l

i

Ontology layer

Ontology layer

Ontology layer

! { !

NVISII

Rendering layer: BlenderProc BlenderProc

Fig. 9. Examples how other applications could be created following the
three-layer architecture.

prototype works as expected, further experiments should more
deeply evaluate the value that the prototype actually adds
to autonomous productions. To do this, one could conduct
user experiments or experiments in the style of [7], in which
datasets are automatically generated to retrain robots. On the
other hand, our prototype can also be used as one building
block of a more complex autonomous process. Such a process
as a whole can then be the focus of another line of experiments,
e.g., testing how robust it works and how well the building
blocks can be combined into such a system. Our prototype
can thus help answer questions about our concept as well as
about autonomous production in general.

While our prototype adds features for autonomous produc-
tions, its rendering capabilities are entirely based upon an
existing SDG. The main advantages of this are in reusability:
Not only did we save effort by reusing functionalities from
BlenderProc, but our software can also be easily extended
with algorithms from other researchers using BlenderProc.
Furthermore, as outlined in Fig. 9, the layers of our architecture
are exchangeable so that another SDG than BlenderProc can
be used, or the autonomy features be replaced with alternative
applications. Overall, this approach works surprisingly well
in our prototype, especially considering that BlenderProc was
not designed for such use. We thus think that this three-
layer architecture represents a promising new way to generate
synthetic data, enabling higher levels of reusability.

Another feature of our prototype is that it implements
features relevant to knowledge-based generation of synthetic
data. In [18], six implications for such generation approaches
were named. Table II shows how our prototype incorporates
these implications. Except for one implication, all are part of
the prototype, and for all of these, the ontology plays a central
role. Our prototype thus shows that the implications can be
realized and that ontologies appear to be an appropriate tool
for this task.

To better understand our approach’s efficiency, further ex-
periments could test what amount of overhead is introduced
by it. As the ontology layer creates and searches through
ontology objects, the overall rendering time likely increases.
To measure by what margin it increases, the same dataset
could be rendered once with our prototype and once by directly
using the underlying SDG. Comparing the respective rendering
times can then show whether the features introduced by our
software come with an acceptable overhead, and be a basis for
optimizations in future prototypes.
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TABLE I
HOW THE IMPLICATIONS FROM [ 18] ARE INCORPORATED IN OUR
PROTOTYPE

Implication
Data Scientists implicitly add
own knowledge

Incorporation in prototype

Knowledge from Data Scientists be-
comes visible because they define it
using ontology objects. Saving these
objects along with the datasets, it can
be examined how a dataset was created
later on, e.g., to rule out human errors
or for analyses.

Some knowledge is only rele- | Knowledge only relevant to user expe-
vant for a user-friendly experi- | rience can be put in the JSON object
ence and not saved in the ontology objects
End Users should be tasked | Data Scientists can decide to only ask
with modeling the real world for real-world knowledge from End
Users and define advanced knowledge
themselves in the json_to_onto function
(For both, JSON is used, but no mech-
anism makes use of this fact at the
moment)

Can be realized with inheritance

End Users and ML Systems
contribute similar knowledge
types

There are different representa-
tions for the same knowledge
Knowledge can be reused in
several places

Ontology objects can be connected to
many other objects

Another aspect to optimize is how exactly the ontology layer
works. Currently, open questions include how to maximize
the ontology classes’ modular combinability and how best
to implement the binding of the handlers to the ontology
classes. To better understand the ontology-based approach and
find adequate implementations, we suggest trying out different
designs in further prototypes.

VII. SUMMARY

Our aim was to achieve higher levels of autonomy in
synthetic data generation. To this end, we have presented a
concept that allows automatic generation of synthetic data
via an API and enables domain experts to influence the
generation process via form-based user interfaces. Based on
this concept, we have developed a prototypical implementation.
To demonstrate its applicability, we have successfully used this
prototype to generate synthetic data for an example experiment.
From this successful usage of our prototype, we conclude that
our ideas work and achieve the targeted goals, although further
experiments are needed to assess our concept’s full potential
for autonomous production. One further observation of our
prototype is that it is built on top of an existing tool for
generating synthetic data. This leads us to the conclusion that
synthetic data generation can be structured in exchangeable
layers to maximize reusability of implemented functionalities.

To support further progress in the field of knowledge-
based and autonomous synthetic data generation, we
have published the entire source code of our prototype
online: https://github.com/davidd7/knowledge-based-synthetic-
data-generation. We invite other researchers to use our proto-
type to generate synthetic data for their projects or to try out
adaptations of our approach.
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