
A Robotic System of Systems for Human-Robot Collaboration in
Search and Rescue Operations

Teng Hooi Chan1, James Kusuma Dewa Halim1, Kian Wee Tan1, Emmanuel Tang1, Wei Jun Ang1,
Jin Yuan Tan1, Samuel Cheong2, Hoan-Nghia Ho2, Benson Kuan4, Muhammad Shalihan3, Ran Liu3,

Gim Song Soh2, Chau Yuen3, U-Xuan Tan3, Lionel Heng4, Shaohui Foong1

Abstract— The progress in robot autonomy has opened up
opportunities for various applications, notably in autonomous
navigation and mapping missions with mobile platforms. This
motivates us to exploit such technologies to develop a human-
robot collaboration system. Such a system improves task
efficiencies and ensures the safety of human counterparts in
search and rescue operations and site surveillance missions.
In this paper, we present a robotic system of systems as
a strategy for human-robot teaming missions in unexplored
and unstructured environments. The system comprises a sin-
gle human operator and multiple custom-built aerial robots
equipped with various sensors for localization, mapping, and
object detection. It enables the human operator to set operation
modes and assign tasks to the robots individually or as a group
via a human-robot interaction device, allowing the human
operator to focus on critical mission objectives and decision-
making. In each operation mode, the robot(s) navigates the
environment autonomously while avoiding obstacles for a given
set of waypoints. Additionally, a formation planning policy
has been developed for group navigation and relative poses
between the human operator and robots are estimated using
UWB ranging and odometry measurements to improve the
human operator’s IMU positioning accuracy. The robots are
fitted with RGB-D cameras for object detection and real-time
image streaming to the operator. Results from the deployment
of the system in indoor settings are presented to demonstrate
the feasibility of a human-robot collaboration system in an
unknown environment.

I. INTRODUCTION

Recent advancements in robot autonomy technology have
led to a proliferation of opportunities for its application,
rapidly expanding the potential for these systems in various
fields. One such application is the human-robot collaboration
system for urban search and rescue (USAR) and site surveil-
lance operations. These systems can perform tasks such as
exploring hazardous environments, mapping and surveying
disaster sites, detecting survivors, and transmitting real-time
information back to human operators. By leveraging the
strengths of both humans and robots, they can significantly
improve the efficiency and effectiveness of search and rescue

This project was supported by the DSO National Laboratories, Singapore
and Temasek Labs SUTD, Singapore.

1Aerial Innovation Research Lab, Singapore University of Technology
and Design, Singapore.

2Robotics Innovation Lab, Singapore University of Technology and
Design, Singapore.

3EPD Pillar, Singapore University of Technology and Design, Singapore.
4Robotics Autonomy Lab, Robotics Division, DSO National Laborato-

ries, Singapore.

Fig. 1: A robotic system of systems that features a rescuer (the
human operator) and three aerial robots that would enable better
situational awareness and prompt access to casualty (mannequin)
in a USAR scenario.

(SAR) operations as well as reduce the risk to human
operators.

The goal of this project is to develop a human-robot team-
ing system capable of navigating through unexplored and
unstructured indoor environments in close proximity under
global navigation satellite system (GNSS)-denied conditions
and detect objects of interest. The system consists of a
single human operator and three aerial robots or unmanned
aerial vehicles (UAVs) as shown in Fig. 1. The human
operator focuses on high-level mission goals and critical
decision-making while the UAVs must each be able to
demonstrate a high level of autonomy to navigate challenging
environments. Such autonomy includes the ability to self-
localize, environment mapping, and obstacle avoidance. The
UAVs extend the reach of the human operator into different
areas of a site to provide real-time visual information and
better situational awareness. Further adding to this challenge,
the UAVs are also required to navigate through narrow
passages in indoor environments in close proximity. Through
collaborative interaction, the subsystems complement each
other and work toward the achievement of a common goal.

The scope of this project includes the development and use
of both hardware and software solutions. The human operator
is equipped with a custom-built Human-Robot Interaction
(HRI) system that includes a pointing device enabling mul-
tiple operation modes selection and task allocation to single

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 878

or multiple robots. The aerial robots are custom-built coaxial
quadcopters equipped with multi-modal sensors for self-
localization, mapping, and object detection. Apart from using
our developed solutions, we utilized existing ones for some
of the UAVs’ autonomous functions such as localization and
object detection.

The experiments were conducted in an indoor search
and rescue scenario with common indoor architectures that
include a narrow passage, obstacles, rooms, and a casualty
(mannequin). This scenario tests the feasibility of the various
systems that enable indoor group navigation in close prox-
imity, task allocation for the UAVs, and casualty detection.

II. RELATED WORK

Driven by advancements in robot autonomy technology,
various private and government organizations have been
seeking solutions for human-robot teaming applications.
These initiatives have sparked significant interest among the
robotics community, academia, and industry alike, to develop
innovative solutions to support such operations.

The European Commission-funded SHERPA [1] and
ICARUS [2] projects aim to develop heterogeneous robotic
systems to complement their human counterparts for SAR
missions in complex and harsh open environments, such
as alpine areas and shipwreck zones. The projects featured
multiple UAVs and unmanned ground robots (UGVs) for
land missions and additionally unmanned surface vehicles
for coastal operations. These systems ensure optimal human-
robot collaboration in SAR missions for disaster victims in
wide, open environments.

In 2017, the US Defense Advanced Research Projects
Agency (DARPA) organized the Subterranean (SubT) Chal-
lenge to spur innovations in human-robot exploration in
complex underground environments. These environments in-
clude tunnel systems, cave networks, and urban underground
spaces, which pose tremendous challenges for first respon-
ders. The top two contestants of the challenge, CERBERUS
[3] and CSIRO Data61 [4], each provided a system of
systems that comprises of UGVs, including quadrupeds,
small and large size UAVs, and a remote human supervisor.
Their systems displayed exceptional autonomous exploration
capabilities while being monitored by the supervisor at the
base station.

Our system differs from the aforementioned work in that it
is developed for human-robot collaboration in close proxim-
ity in indoor settings with active, high-level task assignments
from the human operator to the UAVs.

III. SYSTEM DESCRIPTION

This section describes the subsystems including their
hardware and respective functions.

A. Human-Robot Interaction System

The HRI system aims to be lightweight, simple, and
intuitive for guiding and commanding the UAVs [5]. The
operator can use it to command the UAVs to perform
three modes of operations: ”Follow Me”, ”Go There”, and

”Casualty Detection” (see Section IV). The system comprises
a pointing device held by the operator and a touchscreen user
interface (UI) worn on the wrist.

Fig. 2: The pointing device prototype.
1) The Pointing Device
The pointing device shown in Fig. 2 comprises a Head-

up Display (HUD) for targeting and providing the operator
with visual feedback, a hand-grip console, and an electronics
box to house the device circuitry. The hand-grip console has
a push-button for selecting individual UAVs to command,
a rocker switch for adjusting the endpoint distance, and
another push-button for sending command confirmations to
the UAVs. The device has an integrated Bluetooth transmitter
that relays data to a portable single-board computer.

(a) UAV ID selection mode (b) Quantity ID selection mode
Fig. 3: The reticles of the HUD display range-finding information
(bottom left quadrant), user-selected endpoint distance (top left
quadrant), and the feedback from the respective UAV selection
mode (top right quadrant).

a) Selecting UAVs through the pointing device
The operator may select UAVs through the button console

of the pointing device in two ways as shown in Fig. 3.
Firstly, the operator may select the number corresponding to
the UAV’s numerical identification (i.e. UAV1, UAV2, and
UAV3, see Fig. 3a). Secondly, the user can select the number
of UAVs to command. In this second way, a specific function
selects the UAV(s) closest to the operator based on proximity
(see Fig. 3b).

b) Assigning waypoints for ”Go There” mode
To assign waypoints for the UAVs to navigate to, the

operator first selects the UAVs to command, either by ID

879

or quantity. Then, the operator aims to use the HUD sight
and adjusts the desired distance to the endpoint using the
rocker switch on the hand-grip console. Finally, the operator
presses the button to confirm the endpoint. The endpoint data
is then relayed to the operator’s portable computer, which
then transmits it to the selected UAVs.

c) Commanding UAVs to ”Follow Me”
The “Follow Me” mode starts with the operator selecting

the UAVs. The operator then releases the button on the hand-
grip console for one second. This action is interpreted by
the pointing device as a switch to ”Follow Me” mode and
triggers the device to relay the command for the selected
UAVs to follow the operator.

The ”Casualty Detection” mode is handled by the UI.

Fig. 4: The wrist-worn device setup.

2) The Wrist-worn Device
The wrist-worn touchscreen device provides the operator

with a first- and third-person view of the UAVs for mission
control and situation awareness. It works in conjunction with
the pointing device to enable the operator to seamlessly carry
out the missions and monitor their progress. The device
includes a touch screen UI and a LattePanda Alpha edge
computer (human detection edge device) as shown in Fig. 4.

Fig. 5: GUI of the wrist-worn device.

a) The graphical user interface (GUI)
The GUI for the wrist-worn device was developed using

the Robot Operating System’s (ROS) rqt package [6] as
shown in Fig. 5. The left button panel provides an alternative
to the pointing device and allows the operator to select one
or more UAVs, which are color-coded to match the selection
buttons. UAV1, UAV2, and UAV3 are color-coded in red,
blue, and green respectively.

The right panel of the GUI comprises button switches
for different operation modes, including ”Follow Me”, ”Go
There”, ”Sweep”, and ”Stop”. ”Sweep” mode is equivalent
to ”Casualty Detection” mode. The operator selects an opera-
tion mode and the mission command along with the selected
UAV IDs sent to the UAV Mode Manager to either execute
the command or halt the UAVs on position.

The bottom panel comprises three tabs: “Control”, “Tar-
gets”, and “Live Image” which can be selected to access
different functionalities. Under the “Control” tab, the display
area shows the poses of the UAVs, operators, and detected
targets. The combined point clouds acquired by the three
UAVs’ lidars in the global frame are also displayed in the top
view to provide a layout of the surrounding environment to
the operator. The position and orientation of the operator are
shown in real-time with a red arrowhead. Detected targets
are represented as small dots, with the color of the dot
representing the respective UAV that detected the casualty.

Fig. 6: ”Targets” tab displaying images of targets.

Under the “Targets” tab, all detected targets in the images
are enclosed with red bounding boxes, as shown in Fig. 6.
The operator can select a casualty to issue a related command
for a selected UAV by simply tapping on the respective
image.

Under the ”Live Image” tab, the live video feed from a
selected UAV is displayed, allowing the operator to view
the scene from the UAV’s perspective. This functionality
effectively improves the operator’s situational awareness by
providing access to the view of obstructed areas.

b) Operation mode via the GUI
The general workflow to execute an operation mode

through the GUI consists of two steps: (1) selecting a specific
or multiple UAVs, and (2) activating the operation mode.
Both ”Follow Me” and ”Go There” modes are straightfor-
ward and require no additional steps after being triggered.
For ”Casualty Detection,” the operator must first select the
UAVs and then press the ”Sweep” button. This sends a
command to the selected UAVs to scan their surroundings,
detect, and display the location of the targets in the GUI.
If successful, the operator can view images of the detected
targets under the ”Targets” tab.

3) System Architecture
Fig. 7 shows the HRI system. It begins with input from

the user via the pointing device and the touchscreen UI. Both

880

generate a standardized custom ROS message that comprises:
• A “UAV Selection Mode” integer (i.e. ’0’ for selection

by ID and ’1’ for selection by quantity).
• A “UAV ID” list of integers containing the IDs of the

selected UAVs, if selection by ID is chosen.
• A “UAV Quantity” integer to indicate the number of

UAVs selected, if selection by quantity is chosen.
• A “HRI Mode” integer to indicate the mode of control

over the UAVs.

User Input from
Pointing Device and
Wrist-worn Device

Input Messages:
- UAV Selection Mode
- UAV Selection ID
- UAV Quantity
- HRI Mode

HRI
Consolidator

Node

UAV Mode
Manager

Output Messages:
- UAV State
- UAV Positions
- UAV Yaw

Fig. 7: The HRI system architecture.

This information is received by the HRI Consolidator
Node, which consolidates the input from the pointing and
wrist-worn devices respectively. The node then sends an out-
put message to the UAV Mode Manager with the following
information:

• A “UAV State” list of integers indicating the command
states that UAVs are in.

• A “UAV Positions” array containing the positions of
the UAVs, corresponding to its command state (e.g. If
in ”Go There” mode”, the corresponding position in the
array will be the endpoint position).

B. UAV System Hardware
The UAV platforms must have motors that can produce

a substantial amount of thrust to support the weight of the
various sensors and the onboard computer. They must also
have adequate endurance for the mission and sufficient power
for propulsion, computing, and sensing systems.

Fig. 8: UAV system platform.

We selected a 600mm by 600mm X8 coaxial configu-
ration as shown in Fig. 8 along with smaller tri-blade 8-
inch propellers. The additionally thrust from the additional

motors in coaxial form enables fast dynamic changes in body
velocities. The motors used were 8 T-Motor F100s, with
Pixhawk 2.1 Orange Flight Control Unit (FCU) and a ASUS
PN51 onboard computer. Equipped with a 279Wh battery,
the platform has an endurance of 15 minutes or 10 minutes
for aggressive off-board flight.

The UAV is also equipped with an Intel D435i RGB-D
camera, an Ouster OS-1 32 lidar, and a Nooploop LinkTrack
Ultra-Wide Band (UWB) transceiver for its sensor suite.

C. Communication Network

As part of the communication network system, two access
points were connected to a main router to provide a dedicated
network band for each of the UAVs to stream large amounts
of data. Connections to other computers were established
via Local Area Network (LAN) to the router. This setup
streamlined testing and debugging by avoiding bandwidth
and latency issues caused by round-robin scheduling. Force
time sync based on precision time protocol (PTP) was
established.

Human
Trajectory
Planning

Mode Manager

Formation Planner

Fig. 9: The communication system architecture.

1) System Architecture
The scripts on the human operator and the UAVs commu-

nicate through TCPROS on ROS Melodic. When the human
operator sends a command to the drone, this command
is interpreted by the UAV’s mode manager which polls
the formation planner for the UAV’s setpoint. The mode
manager then sends this command to the trajectory planner or
bypasses the formation planner when not required as shown
in Fig. 9.

IV. MODE OF OPERATIONS

The modes of operation were established for better human-
robot collaboration. The human operator can set operation
modes and assign tasks to the UAV individually or as a group
through the use of an HRI device. We describe the three
operation modes as follows:

A. Follow Me

Under the ”Follow Me” mode, the UAV follows the human
behind at an adjustable distance. For a group of UAVs, the
UAVs will follow a line or a triangle formation based on
the formation planning policy while following the human
operator.

B. Go There

Under the ”Go There” mode, the UAV(s) will navigate
to a waypoint as designated by the pointing device (in the
formation of multiple UAVs) while optimizing trajectories
and avoiding obstacles.

881

C. Casualty Detection
Under the ”Casualty Detection” mode, the UAV will

perform a sweeping maneuver to scan for objects of interest
(casualty) with its camera, stream the images back and alert
the human operator.

V. TECHNOLOGIES FOR SEARCH AND RESCUE
OPERATIONS

A. Autonomous UAV Solutions
1) Localization and Mapping
The self-localization and mapping of the UAV were

achieved through open source lidar-based simultaneous lo-
calization and mapping (SLAM) solution [7]. The robustness
and accuracy of the lidar SLAM enable the real-time oper-
ation and high-fidelity map for path planning. An efficient
version of the probabilistic occupancy map like the one in [8]
was developed using array indexing data structure instead of
octrees. The probabilistic nature of the map enables realistic
modeling of the environment using noisy sensor data.

2) Formation Planning
The formation planning approach presented in this paper

references the approach of [9]. The formation planning
approach requires the UAVs to be kept in sync with one
another. If a certain message is required to be communicated
between the UAVs, the UAVs will continue publishing that
message until every UAV in the team has indicated that they
have received the message. In addition, if there are UAVs
detected to be joining or leaving the team during the process,
all of the UAVs will restart from the first step of the process.

There are 3 main steps in the formation planning approach
which are summarized by the pipeline in Fig.10. The first
step is to generate a convex hull, C that is common to
all UAVs and is globally free of O. To generate C, each
UAV exchanges its positions, pi with each other. Once
every UAV in the team has communicated their pi to each
other, a common reference start point can be determined
independently by the UAVs. Using the approach in [10], each
UAV can generate its own convex hull, ci by expanding the
line segment between by the reference start point and goal
position. As each UAV may have observed different parts of
the environment, each UAV’s ci is expected to be different.
To obtain the common convex hull, C the UAVs exchange
and intersect their individual ci.

The second step will be to generate a set of virtual
formation positions, V = {V1 . . .Vn} within C, for the team
to be assigned to. The UAVs can conform to the different
formation template that has been defined. For this paper, the
3 UAVs can switch between an equilateral triangle formation
and a line formation. The translation t, size s, and orientation
q, i.e z = [t, s, q] of a formation template f will be optimized
according to the constrained optimization formulation below:

z∗f = argmin
z

Jf (z)

s.t. V ⊂ C

s ≥ (2 ∗ UAV radius)
(desired formation dist.)

(1)

Each of the Vi is constrained to be within the global
obstacle-free region, C and the minimum size of the forma-
tion ensures that the UAVs are at least 2 times their radius
apart from each other. The following equation below defines
the cost function Jf (z):

Jf (z) = wt||t− g||2 +ws||s− s̄||2 +wq||q− q̄||2 + cf (2)

In the cost function, wt, ws and wq are the design weights.
The cost function aims to penalize the weighted deviation
to the goal g, desired size s̄, and desired orientation q̄. A
predefined cost value for each template formation is given
by cf to quantify the preference of a template formation over
another.

Lastly, each UAV will compute its assigned Vi. The
objective of the assignments is to minimize the sum of the
squared traveling distance to the formation positions. This
is achieved by using the Hungarian algorithm [11] to find
the permutation matrix, X ∈ Rn×n, that minimizes the
following equation:

min
X

∑
1≤i≤n

∑
1≤j≤n

xij ||pi − Vj ||2 (3)

It is expected that every UAV will compute the same assign-
ments, X due to the deterministic nature of the Hungarian
algorithm. The UAVs will then publish their assignments as
an additional safeguard to confirm that there are no conflicts
before moving towards their assigned Vi.

Fig. 10: Pipeline of the overall process. The 3 main steps are
differentiated by the color in the order green, yellow, and red.

3) Trajectory Optimization

Occupancy mappping

Controller

System’s state
estimation

Initial solution/trajectory
generated to the maximum

horizon using A*

User requirements
e.g. desired velocity

Follow me/Go there setpoints
from formation planner

Continuous trajectory
optimization using min. cost

function with linear constraints

Current UAV Position

Positions of other UAVs
and human operator

Desired
parameters

Occupancy map

Occupancy map, setpoints

Waypoints on the trajectory based on the
replanning period. If replanning period is 0.1s,
then go to 0.1s on the optimized trajectory.

4 segments generated consisting of 5
waypoints with even time allocated to
each segment.

Fig. 11: Trajectory Optimization Flow Chart

Fig.11 depicts the trajectory planning and optimization
process used in the system. A systematic algorithm, real-
time multi-robot trajectory replanning using linear spatial
separations (RLSS) [12] was heavily referenced, modified,
and adapted to meet the demands of the project missions.

882

RLSS was selected because it does not pass specific motion
primitives to the controller, enabling it to work with different
controllers and leaving the generation of the primitives to the
controllers themselves. The agents independently perceive
the location of other UAVs in their vicinity and do not require
any form of trajectory knowledge transfer from the other
UAVs over the network.

In RLSS, a desired setpoint from the formation planner is
issued along with a dynamic/static occupancy grid. An initial
solution will then be established using A* discrete search
which is run with the cost function computed from Euclidean
distances between nodes. The solution is subsequently bro-
ken down into several segments (position and duration) as
an initial solution for trajectory optimization.

Bezier curves are then generated to make up a B-Spline
path for the entire trajectory using quadratic optimization
where the cost function consists of the energy usage required
from the UAV and the deviation from the initial solution.
These curves are generated with the same constraints using
linear spatial separation techniques derived from support
vector machines as per the algorithm in [12]. The curves
are protected from obstacles and preserve desired constraint
requirements by a cocoon of control points generated from
the optimization process. At the end of the optimization
process, the trajectory is reviewed to ensure it meets the
kinematic constraints and time set in the initial conditions.
If not, an extension may be granted, or other means of
constraint relaxation may be introduced to account for noise
in dynamic environments and sensor inaccuracies.

The entire optimization sequence is done in real-time
and iteratively updated at the computing frequency of ROS.
This ensures that information is synchronized with the rate
at which sensing information and control commands are
given. Finally, after a solution in the form of a trajectory
is produced, the setpoint with the timestamp equal to the
optimization’s update rate is referenced from the trajectory
solution and fed to the position controller of the UAV.

4) Flight Controller
The UAV runs on a PX4 flight architecture [13] running

on the Pixhawk 2.1 Orange for autonomous flights. The
flight control scheme onboard that is used is the multi-copter
position controller that takes in desired Cartesian setpoints
via MAVROS which bridges the communications between
the flight controller and the onboard processor that is running
ROS and other algorithms. To protect the human operator
during experiments, safety pilots were engaged to stand by
and take over controls. Safety limits, tuning of gains, and
checks on acceleration and position were also implemented
along with mechanical propeller guards to minimize damage
to the UAV in the event of erroneous actions from the
autonomy stack during experiments.

B. UWB Localization Solution

In this section, we propose a centralized UWB-ranging
SLAM which considers all UWB-ranging and odometry
measurements in history to optimize the poses of multiple
UAVs and a human for trajectory estimation similar to [14].

The approach is different from the conventional particle
filtering-based approach [15], which relies heavily on the
previous estimation for the prediction of the current pose.
The use of UWB for positioning is popular due to its
low cost, low power consumption, and small size [16].
The odometry of the UAVs was obtained through the lidar
SLAM as mentioned before, while the human odometry was
estimated through the VN-100 Inertial Measurement Unit
(IMU) attached to the foot of the human.

We refer to the UAVs and humans as agents for simplicity.
Formally, the goal is to estimate the path of agents k up to
time T. We use x to denote the pose of the agent in SE(3),
which includes the 3D position and the 3D orientation. The
odometry of each agent provides the relative movement of an
agent. We aim to estimate the trajectory of all agents given
the odometry and UWB ranging measurements collected by
all agents. This approach is referred to as the UWB-ranging
SLAM. We use graph-based SLAM for implementation,
which represents the pose of the agent as a node. The
measurements are decoded as constraints in the graph. The
graph-based SLAM aims to find the best configuration of
the poses to minimize the error of all constraints through
maximum likelihood estimation:

argmin
x

K∑
k=1

K∑
m̸=k

e(x1
k,x

1
m,∆x1

k,m)TΩ1
k,me(x1

k,x
1
m,∆x1

k,m)︸ ︷︷ ︸
Assume known initial positions at t = 1

+

T∑
t=2

K∑
k=1

K∑
m̸=k

e(xt
k,x

t
m, d(xt

k,x
t
m))TΩt

k,me(xt
k,x

t
m, d(xt

k,x
t
m))︸ ︷︷ ︸

Peer-to-peer UWB constraints

+

T∑
t=2

K∑
k=1

e(xt−1
k ,xt

k,∆xt
k)

TΩt
ke(x

t−1
k ,xt

k,∆xt
k)︸ ︷︷ ︸

Odometry-based constraints

,

(4)

where K is the number of agents moving in the environment.
e(·) denotes the error function, which is computed based
on the given poses and the constraints inferred from the
observations (i.e., odometry and UWB ranging). The former
is represented as the sequential odometry measurements. The
latter is represented as the UWB ranging-based constraints.
Constraints are additionally parameterized with a certain
degree of uncertainty, which is denoted as the information
matrix Ω. We apply a Huber robust kernel function (with
a bandwidth of 1.0) to deal with noisy UWB-ranging mea-
surements. In addition, we assume the initial positions of
all agents are known. Therefore, we add a fixed constraint
between the first nodes of all agents (see the first term in the
above equation).

C. Casualty Detection

The casualty detection capability is realized by fusing
a depth image of the scene with casualty detection results
performed on the corresponding RGB image. The casualty
detection on RGB images is achieved by running inferences
on a pre-trained YOLOv3-tiny [17] CNN model. Both the
depth and the RGB image are acquired by an RGB-D camera.

883

The expected output from the process is the 3D coordi-
nates of detected targets in the camera frame. These local
coordinates are then transformed into the global frame for
the UAVs’ controller for further actions.

The first step of the process is to detect targets on the RGB
image by utilizing the YOLOv3-tiny model. This lightweight
version is used because it is light enough to run on an edge
device while detection results are relatively accurate for our
purpose.

The next step in the process is to compute the coordinates
of targets in the camera frame by combining the depth image
and the targets’ coordinates in the image frame.

Let (X, Y, Z) be the coordinates of a casualty in the
camera frame and (x, y) its coordinates in the image frame.
The coordinates (x, y) are known after running inferences
on YOLOv3-tiny. From the acquired depth image, X is also
known. So, we need to compute Y and Z to fully determine
the 3D coordinates of the casualty.

Fig. 12: Casualty’s position in camera frame

Based on the diagram in Fig. 12, we can derive Y
coordinate from following formula:

θ =
x0 − xc

W
∗HFOV

Y = X ∗ tan(θ)
(5)

in which x0 and xc are the x coordinates of the image center
and the bounding box’s center of the casualty in the image
frame respectively, W is the width of the image, HFOV is
the horizontal field of view of the camera.

The Z coordinate can be computed in the same way.

VI. EXPERIMENT

The experiments were carried out in a controlled indoor
setting, using portable partitions to create an indoor environ-
ment that imitated typical indoor structures such as narrow
passages, obstacles, and rooms. The objective of the human-
robot team was to navigate through the scenario and find a
simulated casualty (a mannequin). As such testing the fea-
sibility of the different systems involved in close proximity
group navigation UAVs, task allocation, and casualty detec-
tion. The experiment layout diagram is shown in Fig. 13.
These experiments aim to validate the autonomy of the
UAVs to follow commands given by the human operator. The
network latency, CPU usage, and responsiveness to human
commands are also closely monitored in these experiments.

Fig. 13: Experiment layout

−8
−6
−4
−2

0
2
4
6
8

0 5 10 15 20
y

(m
)

x (m)

Human odom.
UAV1 odom.

UAV2 odom.
UAV3 odom.

(a) Trajectories with Odometry.

−8
−6
−4
−2

0
2
4
6
8

0 5 10 15 20

y
(m

)

x (m)

Human est.
UAV1 est.

UAV2 est.
UAV3 est.

(b) Trajectories with UWB Ranging SLAM.
Fig. 14: Comparison in trajectory between Odometry and UWB
Ranging SLAM. (a) Odometry Trajectory Estimate; (b) UWB
Ranging SLAM Trajectory Estimate.

There are four main sequences in the experiment.

1) Initialization
• Initialize the UAVs at starting positions.
• Do a thorough system check to ensure everything is

operational and ready.
• UAVs proceed to take off and go into a triangle

formation.
2) Navigating through a corridor

• The human operator issues a ”Follow Me” command
and walks through the corridor.

• The 3 UAVs follow the human, keeping a two-meters
distance from behind.

• From the triangle formation, the 3 UAVs go into line
formation to navigate through the corridor.

3) Navigating to a specified set point

884

(a) Initial take-off of UAVs. (b) System navigating thru a corridor. (c) Casualty detection in action
Fig. 15: Experiment setup of indoor USAR scenario for human-robot collaboration system.

• The human operator issues a ”Go There” command
to two of the UAVs to go to the room on the left.

• The human operator issues another ”Go There” com-
mand to a single UAV to go to the room on the right.

4) Casualty detection
• The room on the right contains a simulated casualty.
• The UAV then performs a ”Casualty detection” se-

quence, takes a picture, and sends it back to the
human operator for viewing on his GUI.

The trajectories of the agents were recorded. Addition-
ally, Fig.14b highlights the improvement of human pose
estimation by UWB Ranging SLAM as compared to pure
odometry shown in Fig.14a which is deteriorated due to the
accumulated drift in the IMU attached to the human. This
can be seen by examining the human trajectory, the human
does not enter the room on the right in reality.

The experiment validates the feasibility of our robotic
system of systems in an indoor environment. The UAVs
successfully navigated through barriers and a corridor, went
to a room, and finally detected the casualty. Both in formation
and single UAV mode as shown in Fig.15.

VII. CONCLUSIONS

In this paper, we have presented our robotic system of
systems as a practical solution for human-robot collaboration
in USAR operations. The system leverages high levels of
robot autonomy and formation planning for close proximity
navigation and casualty detection. It serves as a foundation
for future experimentation and the deployment of more
advanced algorithms to tackle complex challenges in SAR
scenarios. Although our research is focused on the indoor
SAR environment, it is important to note that the system has
wider applications in the SAR and surveillance domains.

ACKNOWLEDGEMENT

The authors would like to thank Yeo Wee Hian Sean
and Milven Lim for their role as safety pilots and Suryono
Gunawan Ali for his role as a human operator during the
experiments. The authors would also like to thank A.A.A.C
Athukorala for his assistance with the project.

REFERENCES

[1] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart,
S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Do-
herty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and
N. Tomatis, “The SHERPA project: Smart collaboration between
humans and ground-aerial robots for improving rescuing activities
in alpine environments,” in 2012 IEEE International Symposium on
Safety, Security, and Rescue Robotics (SSRR), 2012, pp. 1–4.

[2] G. De Cubber, D. Doroftei, D. Serrano, K. Chintamani, R. Sabino, and
S. Ourevitch, “The EU-ICARUS project: Developing assistive robotic
tools for search and rescue operations,” in 2013 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), 2013,
pp. 1–4.

[3] M. Tranzatto, T. Miki, M. Dharmadhikari, L. Bernreiter, M. Kulkarni,
F. Mascarich, O. Andersson, S. Khattak, M. Hutter, R. Siegwart, and
K. Alexis, “CERBERUS in the DARPA Subterranean Challenge,”
Science Robotics, vol. 7, no. 66, p. eabp9742, 2022.

[4] N. Hudson, F. Talbot, M. Cox, J. Williams, T. Hines, A. Pitt, B. Wood,
D. Frousheger, K. Lo Surdo, T. Molnar, R. Steindl, M. Wildie,
I. Sa, N. Kottege, K. Stepanas, E. Hernandez, G. Catt, W. Docherty,
B. Tidd, and R. Arkin, “Heterogeneous Ground and Air Platforms,
Homogeneous Sensing: Team CSIRO Data61’s approach to the darpa
subterranean challenge,” Field Robotics, vol. 2, pp. 595–636, 03 2022.

[5] E. S. Redden and L. R. Elliott, “Robotic Control Systems for Dis-
mounted Soldiers,” in Human-Robot Interactions in Future Military
Operations, 2010.

[6] Stanford Artificial Intelligence Laboratory et al., “Robotic operating
system.” [Online]. Available: https://www.ros.org

[7] J. Zhang and S. Singh, “LOAM: Lidar odometry and mapping in real-
time.” in Robotics: Science and Systems, vol. 2, no. 9, 2014.

[8] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3d mapping framework
based on octrees,” Autonomous robots, vol. 34, pp. 189–206, 2013.

[9] J. Alonso-Mora, E. Montijano, T. Nägeli, O. Hilliges, M. Schwager,
and D. Rus, “Distributed multi-robot formation control in dynamic
environments,” Autonomous Robots, vol. 43, 06 2019.

[10] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J.
Taylor, and V. Kumar, “Planning dynamically feasible trajectories for
quadrotors using safe flight corridors in 3-d complex environments,”
IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1688–1695,
2017.

[11] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed
version of the hungarian method for multirobot assignment,” IEEE
Transactions on Robotics, vol. 33, no. 4, pp. 932–947, 2017.

[12] B. Şenbaşlar, W. Hönig, and N. Ayanian, “RLSS: Real-time Multi-
Robot Trajectory Replanning using Linear Spatial Separations,” arXiv
e-prints, p. arXiv:2103.07588, Mar. 2021.

[13] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 6235–6240.

[14] R. Liu, Z. Deng, Z. Cao, M. Shalihan, B. P. L. Lau, K. Chen,
K. Bhowmik, C. Yuen, and U.-X. Tan, “Distributed ranging slam for
multiple robots with ultra-wideband and odometry measurements,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 13 684–13 691.

[15] Z. Cao, R. Liu, C. Yuen, A. Athukorala, B. K. K. Ng, M. Mathanraj,
and U.-X. Tan, “Relative localization of mobile robots with multiple
ultra-wideband ranging measurements,” in 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2021, pp. 5857–5863.

[16] M. Shalihan, R. Liu, and C. Yuen, “Nlos ranging mitigation with neural
network model for uwb localization,” in 2022 IEEE 18th International
Conference on Automation Science and Engineering (CASE). IEEE,
2022, pp. 1370–1376.

[17] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv, 2018.

885

