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Abstract— Exoskeletons have the potential to enhance 
human performance, with the design of effective human-
machine interaction (HMI) playing a crucial role in 
improving operability. However, the quest for optimal 
human-machine control remains an open field for further 
investigation. The key to success lies in establishing a 
flexible mode of communication between humans and 
machines, employing diverse methods and adjustments of 
parameters. Tailoring optimization to each individual user 
is pivotal for achieving significant advancements. This 
study presents a novel approach to human-in-the-loop 
optimization that leverages the correlation between brain 
activity and metabolic cost. This approach not only aims to 
reduce the energy expenditure of users during walking but 
also seeks to optimize gait patterns for healthy individuals 
across various walking environments. Our findings reveal 
that the μ and γ frequency bands display notable event-
related synchronization (ERS) and event-related 
desynchronization (ERD) phenomena during walking. 
Notably, the γ band power is positively correlated with 
changes in inclined terrain. Pearson correlation indicates 
a stronger correlation between γ band power and 
metabolic cost than in other bands. This study thus built a 
regression model that links brainwave patterns to 
metabolic rates, enabling the prediction of current 
metabolic costs based on brain activity. This relationship 
could facilitate the realization of human-in-the-loop 
optimization, enhancing the walking economy. 

I. INTRODUCTION  

Exoskeletons hold the potential to assist in overcoming 
human limitations and even enhancing human capabilities 
[1][2][3]. Despite significant advancements in exoskeleton 
technology for assistance or enhancement, a deeper 
understanding of the physiological signals generated by users 
under control is crucial [4]. Many developments are often 
based on knowledge from the fields of biomechanics or 
mathematical control [3][5], resulting in open-loop control 
states that simplify the importance of HMI. However, these 
assistive devices not only need to adapt to individual user 
intentions for effective assistance or enhancement but also 
must self-adapt to differences in various individuals and usage 
environments to provide optimal assistance across diverse 
scenarios. Most importantly, the assistive hardware itself 
should minimize interference with normal human activities, 
allowing users to retain their autonomy [1][2]. Constructing 
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control strategies based on the concept of a human-machine 
loop can significantly enhance the efficiency of exoskeleton 
assistance. This allows existing exoskeletons to overcome 
individual and environmental differences in users and provides 
real-time coordination and controller optimization based on 
the user's state before and after assistance, thus improving 
human activity performance [1][2][6]. This loop enables the 
controller to utilize physiological signals from users during 
activity as feedback. It continuously adjusts the assistance 
mode, altering stride length and frequency, and enables users 
to perceive the effects of different assistance modes [1]. This 
continuous adaptive adjustment of the controller during user 
activity through the human-machine loop not only enables 
customized assistance for different individuals but also 
enhances flexibility in adapting to environmental conditions 
[1][2], unlocking the full potential of exoskeletons and 
assistive devices. 

The metabolic cost serves as an extensively employed and 
intuitive criterion in gait-assisted exoskeleton development 
studies for assessing effectiveness [1][2][7]. Nevertheless, 
given the human body's ability to utilize brain electrical 
activity signals to achieve walking and other activities, 
establishing a correlation between metabolic costs and brain 
electrical activity becomes crucial [8][9]. Therefore, if a 
correlation between metabolic cost and brain activity can be 
identified, the realization of the human-machine loop can 
become more feasible. If such a correlation is identified, it 
could enable the prediction of metabolic conditions through 
EEG (Electroencephalogram), optimizing the implementation 
of human-machine circuit. This advancement holds the 
potential to make the control of exoskeletons and assistive 
devices more natural in the future. In the field of rehabilitation 
medicine, many studies have demonstrated the significant 
contributions of brain-machine interfaces to motor 
rehabilitation [8][9][10]. Through practical movement or 
motor imagery experiments, researchers measure EEG in the 
motor cortex of participants, which captures the intention 
behind movements [8][9][10]. This information can be utilized 
to control periodic movements such as gait cycles. Previous 
studies have conducted experiments measuring EEG during 
walking cycles, using event-related spectral perturbation 
(ERSP) in the μ, β, and γ frequency bands to identify different 
phases of walking, including the stance and swing phases [11]. 

Combining other physiological signals in the control loop 
should enhance the effectiveness of control assistance and 
contribute to the overall robustness of the human-machine 
framework [1][2][8]. However, contamination of EEG by 
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various sources, such as electromyography (EMG), eye 
movements, and artifacts, often makes it challenging to 
directly control different phases of the gait cycle using EEG 
alone [6][9][10]. More importantly, while research in the fields 
of human-in-the-loop optimization and EEG has advanced 
[12], the correlation between metabolic cost and EEG remains 
unclear. 

This study focuses on the relationship between EEG and 
metabolic cost, aiming to develop an adaptive control 
framework for human-in-the-loop optimization. We validate 
differences in signal patterns within exercise-related frequency 
bands during walks on varying slopes. Additionally, we 
explore correlations between EEG and metabolic cost to 
construct a regression model, which enables the prediction of 
current metabolic costs based on brain activity. 

II. METHOD 

As depicted in Fig. 1, the study introduced a human-in-
the-loop optimization architecture where environmental 
slopes and human physiological signals, such as respiratory 
data and EEG, were utilized as inputs during movement. This 
study integrated brain activity, metabolic cost, and ground 
slope within an optimization loop through correlation and 
statistical analyses of EEG signals with metabolic cost. This 
analysis identified EEG indicators, including channel and 
frequency band characteristics, that were closely associated 
with metabolic costs. Further applications could extend this 
approach to enhance assistive devices and exoskeleton 
systems, thereby improving their effectiveness in supporting 
physical activity and optimizing human performance and 
adaptability. 

A. Experimental Design and Data Collection  
This study recruited three healthy participants with no 

history of neurological conditions, walking impairments, or 
lower limb skeletal abnormalities. The experiment involved 
having participants engage in a walking task on a treadmill 
(7.4AT-03, HORIZON, JOHNSON) at a fixed speed of 1.5 
m/s for 28 minutes to extract physiological signals under 
various conditions. Each condition walking experiment lasted 

for 7 minutes. The overall experimental procedure is 
illustrated in Figure 2 The experiment has received approval 
from the Research Ethics Committee of Jen-Ai Hospital, 
Taichung City, Taiwan, with IRB number 111-55. 

First, participants were instructed to stand with closed eyes 
for the first standing phase. This initial phase aimed to 
minimize the impact of resting and inactive tasks on EEG data, 
which was subsequently used as the baseline EEG signal for 
analysis. After 7 minutes, the standing phase concluded, and 
participants began the walking task. To simulate real ground 
environments and observe significant changes in physiological 
data during prolonged and high-demand tasks, the experiment 
introduced variable walking conditions by adjusting the 
treadmill incline (0%, 5%, 10%). No rest intervals were 
scheduled between each variation, and keeping with the 
incline increased progressively throughout the experiment. 

The collection of physiological data included EEG: a 
measurement system with 32 channels wet EEG electrodes 
(24-bit, St. EEG TM 32 channels, Artise Biomedical Co., Ltd.); 
surface EMG (sEMG) system (24-bit, St. EEGTM Gemini 8 
channels, Artise Biomedical Co., Ltd.); heart rate 
measurement system (Polar H10, JOHNSON); and an oxygen 
consumption assessment system (O2 Paramagnetic, Quark 
CPET, COSMED). Reflective markers were attached to the 
participants to enable real-time tracking of joint movements 
during exercise. Experimental recordings were conducted 
using a high-speed camera (120 fps, NiNOX), paired with 
standard color temperature 5600K LED lights (Forza 60B, 
NANLITE). 2D motion capture software (MR310 
myoVIDEO, Noraxon) was employed to chronicle the 
participants' kinematic data in real-time, assessing changes in 
various kinematic parameters such as limb posture, joint 
angles, and gait metrics before and after the experiment.  

 

 
Figure 2. Experimental Procedure and Task Stages. 

Figure 1. Proposed Human-in-the-Loop Optimization Architecture. 
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B. Data processing 
This study analyzed the EEG at different stages of the 

experiment to understand the neural activities in various brain 
regions and the neuro-correlations during different gait phases. 
This analysis was conducted following the EEG processing 
procedure proposed by Ko et al [8]. Initially, a preprocessing 
pipeline was applied to the measured EEG to eliminate most 
of the noise. The preprocessing steps in this experiment 
included bandpass filter (1~50Hz) and artifact removal, 
followed by a re-referencing to the average of the entire brain 
[6][8][12]. Subsequently, independent component analysis 
(ICA) [7][9][12] using the MATLAB® EEGLAB toolbox 
[8][10][11] was employed to eliminate non-brain signal 
sources and isolate the component variations primarily 
observed in the targeted brain regions. ICA retained only the 
components originating primarily from the brain for further 
examination. Additionally, the EEG may be interfered with by 
muscle artifacts and movement-related signals during walking, 
artifact subspace reconstruction (ASR) [8][10][12] was thus 
applied for signal reconstruction and denoising. 

This study conducted time-frequency analysis on EEG 
signals to understand the dynamic changes in brain activity 
during different phases of the gait cycle, including stance and 
swing phases. This analysis aimed to observe the induced 
potentials and disturbances in brain regions under varying 
slope conditions. The ERSP was utilized as a feature to 
observe changes, focusing on frequency bands like δ wave 
(0.5~4 Hz), θ wave (4~8 Hz), α wave (8~14 Hz), μ wave (8~12 
Hz), β wave (14~30 Hz), and γ wave (30~50 Hz). Waves such 
as α, μ, and γ waves are highly correlated with lower limb 
movements, allowing for the identification of ERD and ERS 
coupling with the gait cycle [7][8][11]. 

This experiment focuses on observing changes in brain 
regions during lower limb movements. Based on Brodmann 
areas [9] and the brain structure, the lower limb motor area is 
primarily distributed in the posterior part of the precentral 
gyrus and around the central sulcus in the frontal and parietal 
lobes. Following the international 10-20 system, the main 
observation targeted the changes in ERSP at five electrodes 
adjacent to this region: FCz, CPz, Cz, C3, and C4. Considering 
the cortical control of the brain in an opposing and inverted 
manner between left and right, as well as front and back, the 
averages of left and right (C3, C4) and front and back (FCz, 
CPz) were separately calculated. Subsequently, the averages 
for each direction were combined with the mid-central 
electrode Cz to observe the ERSP values under different 
experimental slopes, by changes in the gait cycle. In addition, 
a comparison was made using the power spectral density in 
different frequency bands and their differences. The sEMG 
data in this experiment undergoes a series of standard signal 
preprocessing steps, including a fourth-order Butterworth 
bandpass filter with a range of 20-460 Hz, and full-wave 
rectification of the data [7]. Simultaneously, to extract the 
timing of the walking cycle for physiological signal 
assessment, sEMG was used to segment each gait cycle. 
 

C. Metabolic Cost Estimation 
An oxygen gas analyzer captures participants' respiratory 

volumes of carbon dioxide and oxygen for precise 
measurements during the experiment, enabling the calculation 
of the biological metabolic cost. The oxygen consumption rate 

(�̇�!" , L/s), carbon dioxide production rate (�̇�#!" , L/s), and 
nitrogen intake (N, g) are collected during walking trials using 
the oxygen uptake assessment system. Furthermore, the 
biological metabolic rate (-ΔH, kJ/s) was estimated through 
Brockway's standard formula (refer to Eq. (1)) [13]. The net 
metabolic rate for walking energy demand was calculated by 
taking the difference between the total metabolic rate and the 
metabolic rate during eyes-closed standing. 

 . (1) 

D. Statistical Analysis 
This study employed IBM® SPSS Statistics 21 for 

conducting statistical analyses on the metabolic costs 
measured during the experiment, the power intensity of each 
frequency band, and the experimental slope. Initially, the 7-
minute experimental data for each slope were averaged every 
30 seconds. To examine if there were differences between the 
two continuous datasets for each frequency band power and 
metabolic cost, facilitating statistical analysis, paired t-test 
were conducted on the data. 

Also, to assess whether there were significant differences 
in the significance of each frequency band and power intensity 
and to identify the frequency band more relevant to power 
changes, this study performed a univariate two-way ANOVA. 
The Shapiro-Wilk (S-W) test was employed to verify whether 
the power and metabolic cost data for each frequency band 
adhered to normal distribution assumptions. The initial 
assumption of the S-W test is that the data conforms to a 
normal distribution. In such a scenario, Pearson correlation 
analysis was conducted (refer to Eq. (2)), where r is the 
correlation coefficient; �̅� and 𝑦& are the mean of variables; n is 
the total number of samples. 

 

 𝑟$%&'()* =
∑ (𝑥+ − �̅�)*
+,- (𝑦+ − 𝑦&)

-∑ (𝑥+ − �̅�)".∑ (𝑦+ − 𝑦&)"*
+,-

*
+,-

 (2) 

Multiple regression analysis was carried out on the data, 
with slope and frequency band power intensity serving as 
independent variables, to calculate the correlation coefficient 
and residual error. 

III. RESULTS 

A. Metabolic Cost Estimation 
During the experimental sessions, the respiratory data of 

participants were recorded using an oxygen gas analyzer. As 
the estimated values of human metabolic cost gradually 
approach a steady state during exercise, this experiment 
employed a first-order dynamic model for fitting metabolic 
costs and predicting their steady-state values. Physiological 
metabolic cost estimates for every 7 minutes under three 
different terrain conditions as illustrated in the lower image of 
Figure 3A, Figure 3B, and Figure 3C. Before the 
commencement of the experiment, the energy expenditure of 
participants in a resting state was measured. This study 
assessed the task load imposed on participants in different 
environments by actively comparing the metabolic costs 
during walking with the metabolic costs during rest while 
taking into account the differences. In the experiment, 
different slopes are distinguished by various colors. The 

2 21.658 4.51 5.90O COH V V N-D = + - 
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horizontal axis represents the experimental duration, and the 
vertical axis represents the estimated metabolic cost calculated 
through the aforementioned equations (0% inclined: gray; 5% 
inclined: orange; 10% inclined: red). Each blue dashed line 
represents the trendline of the data. Through fitting with a first-
order oscillator, distinct green convergence lines are obtained 
for each slope experiment. Utilizing these convergence lines, 
steady-state estimates of metabolic cost consumption can be 
obtained within approximately three minutes of the 
experiment. It can be observed that in Figure 3, as the 
experiment progresses and the incline increases, the oscillation 
of metabolic cost values in Figure 3A is less pronounced 
compared to the other two participants. Additionally, the ERS 
signs in the γ and β bands are also less noticeable compared to 
the other two individuals. 

B. Neural Activity 
By examining the average ERSP in the primary motor area, 

as depicted in the upper images of Figure 3A, Figure 3B, and 
Figure 3C, we can emphasize the red box first, which 
represents the μ and α frequency bands. In the analysis results 
for all three participants, there was a clear presence of ERD 
phenomena in these bands. Additionally, in the γ frequency 
band, it can be observed in the purple box with significant 
ERS patterns during uphill terrain, especially in the range of 
42 to 48Hz, and between 36 to 40Hz, the ERS is more 
pronounced. By cumulatively comparing ERSP, variations in 
power intensity across individual frequency bands can be 
observed as participants navigate different inclinations during 
walking. The black dashed lines represent the separation of 
different slopes experiments. By analyzing the upper portion 
of Figure 3A, Figure 3B, and Figure 3C, it can be inferred that 
under more challenging terrain conditions, meaning greater 
physical exertion, the motor cortex exhibits more intense 
activity. This is evident from the significant changes in ERS 
corresponding to the slope variations. Furthermore, in Figure 
4, the average ERSP for γ and μ frequency bands under 
different incline conditions from Figure 3 is presented. The 
results reveal a significant increase in cortical potential 
changes in the γ band, with 1.87 times and 2.19 times 
elevation during 5% and 10% incline walking compared to 
level walking. This effect is more pronounced when 
compared to the μ frequency band. The band power during the 
active state was subtracted by that during the rest state, and 
the result was normalized by dividing it by the band power 
during the rest state, considering the rest state as the baseline. 
From Figure 5, it was evident that there was an overall 
increase in the average power across different frequency 
bands. 

However, during analysis, all experimental values were 
normalized to the baseline values under the rest period. The 
emphasis was on the trend of power, and the positive or 
negative values also indicate whether the power during 
activity is greater or smaller compared to the rest period. 
Therefore, focusing on Figure 5, it was noticeable that both 
the δ and γ frequency bands exhibit larger values compared to 
the rest period, and their variations show a significant trend. 
During the 10% inclined experiment, especially in C3 and C4, 
the power was approximately 2 times that of the rest period. 
Moreover, in the other three channels, the δ and γ band power 

also shifted from negative to positive, showing a relative 
increase in power in these bands with the inclined slope 
compared to the rest period. The remaining four frequency 
bands also show increased power with the change in slope, 
though the trend of variation is relatively minor, and their 
values are still lower than those in the rest period. The α and 
μ bands, being in proximity, yield relatively similar results. 

To observe the gait cycle, we intuitively examine the motor 
area of C3 and C4 to observe the correspondence between the 
left and right hemispheres. Figure 6 depicts the averaged 
results of ERSP, the left graph showing C3 corresponds to the 
right leg and the right graph C4 corresponds to the left leg, 
indicating the average ERSP for the two channels during a 
walking cycle for three subjects. The horizontal axis 
represents the gait cycle, which uses the ground contact of the 
contralateral foot as the starting and ending points of the gait. 

 
Figure 3. ERSP (Upper) and Metabolic Cost (Lower) of three 
participants (A), (B), and (C). 
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Figure 4. The average ERSP in the γ and μ frequency bands 
during different incline conditions. 

 
Figure 5. The power variations for each frequency band 
across channels in the motor cortex. 

 
Figure 6. Averaged ERSP of C3 and C4 in walking cycle. 

The ERSP values are normalized by comparison with the 
baseline of the rest period, calculated as the difference divided 
by the baseline. The result shows strong ERS and ERD can be 
observed in the μ frequency band within the yellow box and γ 
frequency band within the red box. Focus on observing the 
stance phase from 0% to 30% of the gait cycle, as indicated 
by the green box in Figure 6. With an incline increase, a more 

significant ERD is observed in the γ band, especially notable 
in the C4 channel of the right brain. Compared with walking 
on level walking (0%), the task of walking uphill causes ERD 
in the contralateral motor area. This means that the change in 
slope causes the brain to react to process it. As the incline 
increases, ERD during the early to mid-stance phase becomes 
more pronounced. 

Finally, averaging the metabolic cost data in the time 
domain and the power of each frequency band over 30-second 
intervals. The experimental data for each slope were then 
plotted on a two-dimensional map in Figure 7. The origin 
represents the start of each slope experiment, while triangles 
indicate the end of the respective slope experiments. In Figure 
7, all frequency bands exhibit a positive correlation between 
metabolic cost and power intensity. Notably, the δ band 
shows an almost fourfold increase in power during the 10% 
inclined experiment compared to the rest period, resembling 
an exponential growth pattern. The γ band also demonstrates 
a twice increase during the 5% and 10% inclined experiments. 
Furthermore, in the θ and β bands, both metabolic cost and 
band power increase towards the end, surpassing rest values. 
Particularly in the θ band during the 10% inclined experiment.  
The result was subjected to statistical analysis, which revealed 
the power in the δ and θ frequency bands (p < 0.01), as well 
as the metabolic cost data (p = 0.023). The power in the other 
four frequency bands adhered to a normal distribution, and 
Pearson correlation tests were used for the correlation 
analysis. However, at 0% and 5% incline, there is no 
significant change in the δ band, with noticeable variation 
observed only at a 10% incline. On the other hand, the 
relationship between γ band and metabolic cost shows a 
positive correlation with treadmill incline changes, exhibiting 
significant variations. With a Pearson correlation coefficient 
of 0.639, the γ band demonstrates a moderate and more 
significant correlation than other frequency bands. Most data 
falls within the 95% interval, highlighting the potential of the 
γ band as a predictor for metabolic cost. Using a 3-order 
polynomial regression, we derived Eq. (3) to predict 
metabolism based on brainwave states, where MEst. represents 
the estimated metabolic cost, and γ represents γ band power. 
Figure 8 illustrates the relationship between γ band power and 
metabolic cost. 

 
 𝑀.(/. = −0.1𝛾1 + 1.36𝛾" − 5.72𝛾 + 7.75 (3) 

IV. DISCUSSION 
In the results of Figure 3, this study had discovered 

similar findings with others [6][7][8]. During the experiment, 
significant ERD phenomena were observed in the μ or α 
frequency bands. However, our study additionally discovered 
that variations in slope lead to a more pronounced ERS 
phenomenon in the γ band. From Figure 3, it is also observed 
that during changes in walking slope conditions, the cortex of 
the brain's motor area can extract more significant 
information. In the future, this finding could be applied to 
HMI control, enabling the manipulation of machine 
adjustments to user gait and assistance intensity, ultimately 
enhancing human performance. Combining results from 
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Figure 3 and Figure 4 indicate the significance of γ band 
cortical potential changes in the primary motor area during 
incline, which points out the potential of γ band alterations as 
a key feature for future human-machine control applications. 

Integrating the findings presented in Figure 5, significant 
cortical variations, particularly at C3 and C4 in the primary 
motor area, are observed as terrain changes. Thus, C3, C4, and 
even Cz become key channels for effective control measures 
within the entire motor region in the human-machine loop. 
Moreover, the results for each gait cycle and each participant 
(Figure 6) to observe changes in C3 and C4, like others have 
been discovered [11]. representing the right and left foot, 
respectively. The results show similarities with Severens et al 
[11], indicating ERD and ERS during the stance and swing 
phases corresponding to heel contact (0% cycle) and toe-off 
(about 60% gait cycle).  In conclusion, Figure 7 and Figure 8 
present Eq. (3), suggesting that estimating metabolic cost is 
possible by monitoring significant changes in γ band power, 
particularly associated with incline. This implies potential 
applications in human-machine control based on ground 
condition-related features. Furthermore, consistent with 
Figure 3, notable variations in γ band ERSP indicate increased 
ERD with higher treadmill incline during different gait cycles. 

 
Figure 7. The relationship between the power of each 
frequency band and metabolic cost under different slopes. 
 

 
Figure 8. Regression model between γ band power and 
metabolic cost 

V. CONCLUSION AND FUTURE WORK 
The study reveals significant variations in channels C3, C4, 

and Cz within the primary motor area, especially in response 
to changes in terrain. Furthermore, the γ band shows more 
pronounced changes in metabolic cost and incline compared 
to other frequency bands. Notably, during the early stance 
phase of each gait cycle, a distinct ERD phenomenon is 
observed, influenced by the slope. Building upon these 
findings, this study establishes a regression model and 
relationship between the γ band and metabolic cost, enabling 
the prediction of metabolic cost and the detection of terrain 
conditions through EEG extraction. This suggests a promising 
assistive control method suitable for human-in-the-loop 
optimization. Combining this technology will enhance the 
efficiency of human-machine interaction. 
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