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Abstract— This paper presents a comprehensive modeling
technique for optimization of solid-state LiDAR sensor deploy-
ment. In particular, a performance measure is developed with
physical parameters of flashing LiDAR sensors to describe the
pose difference of the LiDAR sensor and target object. An area
coverage optimization is then addressed with deployment of
LiDAR sensor network (LSN) to demonstrate the effectiveness
of the proposed model and the performance measure. An
experiment is conducted to verify the proposed resolution
criteria of the flash LiDAR sensor and simulations are carried
out for validating the developed coverage model for LSN
deployment.

I. INTRODUCTION

LiDAR, an active remote-sensing system, is used in au-
tonomous driving due to its low processing power require-
ments, enabling faster object detection, localization, and
tracking. There is a diverse range of LiDAR sensors available
in the market, which can be classified into two main cate-
gories based on their design and technology [1]: mechanical
[2] and solid-state LiDAR [3], such as flash LiDAR. This
paper focuses on flash LiDAR, which is widely used in
various application due to the advantages like simplicity,
efficiency, speed, and lower cost [4]. Its improved field of
view (FOV) makes it suitable for environmental monitoring
and exploration. Accurate sensor detection and data collec-
tion are crucial for achieving maximum coverage in area
coverage tasks. Therefore, our study focuses on optimizing
the sensor coverage model to collect more information and
create a comprehensive representation of a geographic region
or surface. Coverage modeling helps optimize sensor deploy-
ment based on environment, objectives, and constraints. Ray
tracing is a common approach for mechanical LiDAR sensor
coverage [5]. A model for 3D intersection area coverage uses
integer programming [6]. Due to flash LiDAR’s similarity to
cameras, a camera-based model is used in [7]. A coverage
model for mechanical LiDAR with rotating prisms is pro-
posed in [8], incorporating a geometric model and sensor
scanning properties. Inexpensive LiDAR sensor networks can
provide high-performance sensing accuracy and precision
for applications such as autonomous vehicles and robotics.
However, limited research exists on LSN deployment op-
timization [8]. [9] explores roadside sensor placement op-
timization, proposing an occlusion degree model (ODM)
for the 3D environment. A semi-automated framework for
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optimizing roadside LiDAR sensor deployment is proposed
in [10], focusing on minimizing sensor count. Despite flash
LSNs’ potential, no research has been done on modeling
their coverage or optimizing their deployment. This paper
presents an approach for solid-state LiDAR sensor modeling
and flash LSN deployment for area coverage tasks. The key
contributions of this paper are as follows:

• A geometry model representing the effective sensing
region of flash LiDAR, incorporating its physical prop-
erties, such as emitter and receiver units, and their
relative configuration as concise geometry constraints.

• A performance measure to evaluate differences between
LiDAR sensors and object configurations, enabling cov-
erage model construction for flash LiDAR sensors and
generic sensor network deployment for area coverage
tasks [8, 11].

The paper is structured as follows: Section II explains the
flash LiDAR operating principle; Section III presents the per-
formance measure and coverage model development; Section
IV covers LiDAR sensor network deployment optimization;
Section V discusses simulation and experiments, and Section
VI concludes.

II. OPERATING PRINCIPLE OF FLASH LIDAR
Flash LiDAR sensors consist of two main components: an

emitter and a receiver [12]. The performance principles of
the flash LiDAR are outlined as follows:

A. Field of View (FOV)

The FOV of the flash LiDAR sensor is determined by
the intersection of the FOVs of both the emitter and the
receiver. The emitter’s field of view (FOV) is determined by
the divergence angles of the laser beam, θl,e, θl,a ∈

[
0, π

2

)
(Fig. 1), and the dimension of the detector and receiving lens
specify the receiver FOV which is constructed from elevation
θd,e and azimuth θd,a angles (Fig. 2).

B. Resolution

The spatial resolution of the solid-state LiDAR can be
divided into two main categories: axial (range or depth)
resolution and lateral (cross-range) resolution.

1) Lateral resolutions: Detector lateral resolutions at
depth zr are defined by

Rh =
2zr tan

(
θd,a
2

)
w

, (1)

Rv =
2zr tan

(
θd,e
2

)
h

, (2)
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Fig. 1: Schematic diagram of the laser unit.

where Rh, Rv ∈ ℜ+ are the resolutions perpendicular to the
direction of the zd-axis along xd and yd, respectively. The
variables w and h represent the number of vertical and
horizontal pixels, respectively.

2) Depth resolution: Flash LiDAR’s depth resolution
along a single channel, (Rc ∈ ℜ+) depends on factors like
pulse width, object size, and receiver efficiency, but this study
focuses solely on pulse width’s impact for a controlled anal-
ysis with minimal interference. Depth resolution is defined
as:

Rc =
cTw

2
=

cτ

2
, (3)

where Tw ∈ ℜ+ is pulse width, c = 3× 108m/s is the speed
of light, and τ ∈ ℜ+ is the resolution of the timer for
recording pulses. That is to say, the shorter pulse width, the
higher depth resolution will be.

C. Detection Range

The LiDAR detection range is calculated from the speed of
light in the medium and round-trip travel time of an emitted
pulse.

1) Minimum Detection Range: The minimum detection
range of a LiDAR sensor depends on three factors: relative
configuration of emitter and receiver (zw), emitted pulse
width (ze), and detector saturation level (zb). It is calculated
by taking the maximum value of these factors,

zmin = max (zw, ze, zb) , (4)

where zw, ze, zb ∈ ℜ+.
2) Maximum Acceptable Range: Let Rd ∈ ℜ+ be the

application required resolution. The maximum acceptable
range along sensor’s z-axis (zmax) is obtained by taking the
minimum of the following values:

zmax = min (zn, zh, zv) , (5)

where zn is a nominal value specified by the sensor manu-
facturer and zh, zv ∈ ℜ+ are defined using 1 and 2 as[

zh
zv

]
=

1

2
Rd

 cot
(

θd,a
2

)
1

1 cot
(

θd,e
2

) [
w
h

]
, (6)

III. COVERAGE MODEL OF FLASH LIDAR

A. Sensor Model

Frames Fw and Fs denote the world frame and the frame
attached to the sensor, respectively, as shown in Fig. 3. The

Fig. 2: Schematic diagram of the receiver unit FOV.

extrinsic parameters describe the sensor’s 3D position in
space and are defined by:

qw
s =

[
rs Φ

]T
, (7)

where rs =
[
xw
s yws zws

]T
is the position components

and Φ =
[
η ω γ

]T
is the orientation components

(Euler angles) with respect to Fw and obtained by rotation
about X , Y and Z axis by η, ω and γ, respectively. The flash
LiDAR can be modeled using the pinhole camera model due
to its similarity to a camera sensor [13]. Its intrinsic parame-
ters include focal length (f ), number of pixels (W,H), pulse
width (Tw), and pulse repetition frequency (PRF).

B. Environment Model

Any 3D model of the environment can be expressed to
an arbitrary degree of precision by triangular mesh-based
surfaces whose position and normal direction of the triangle
face can be encapsulated in a vector qw

t ∈ ℜ3 × [0, π] ×
[0, 2π], referred to as a ’task point’ (Fig. 3), as

qw
t =

[
rt φ

]T
, (8)

where rt =
[
xt yt zt

]T
and φ =

[
ρ σ

]
are the

position and its directional component, respectively, defined
in Fw. The superscript (.)w denotes the parameter defined
in the world frame (Fw). The task point can be expressed in
the sensor frame Fs, with the following relationship

qs
t = (Rw

s )
−1

(rt − rs) , (9)

where the superscript (.)s denotes the parameter defined in
the sensor frame and Rw

s is the sensor rotation matrix with
respect to Fw. The angle between normal direction of the
triangle face (nt) and the opposite direction of z-axis in the
sensor frame (Fs) (Fig. 3), is called (nominal) view angle
and obtained by

θt = cos−1 (−ns · nt) , (10)

where ns and nt are unit vectors, defined as follows:

ns = Rw
s J , (11)

where J =
[
0 0 1

]T
, and

nt =
[
sin (ρ) cos (σ) sin (ρ) sin (σ) cos (ρ)

]T (12)

where ρ and σ are shown in Fig. 3.
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Fig. 3: World and sensor coordinate systems description.

C. Geometric Model

This section presents a method to construct the geometric
model of a LiDAR sensor’s sensing region (D) in 3D space.
The sensing region can be regular or irregular, depending
on the relative configuration of the emitter and receiver [1].
The visibility region is shaped like a pyramid based on the
receiver’s field of view. The region is bounded by an implicit
surface function, denoted by D1 ⊂ ℜ3 and shown in Fig. 4a,
given by

F1(xd, yd, zd) = max

(
xd

2

tan2 (θd,a/2)
,

yd
2

tan2 (θd,e/2)

)
−zd

2,

(13)
The intersection of multiple convex regions is a convex

region, implying that DE , the intersection of D1, D2, and
D3 in ℜ3, is also convex. Moreover, DE is radially convex
with respect to any point Oc ∈ DE due to its convexity [14,
15].

F2(xl, yl, zl) =
xl

2

tan2 (θl,a/2)
+

yl
2

tan2 (θl,e/2)
− zl

2 . (14)

Considering the LiDAR detection range, we have

zmin ≤ zd ≤ zmax (15)

Thus, the implicit equation of a planes pass through zd =
zmin and zd = zmax are defined as

F3 = zd − zmin, (16)

F4 = zd − zmax, (17)

Let D3 ⊂ ℜ3 denote the region between these two planes.
Therefore, the effective sensing region (DE) of the flash
LiDAR (Fig. 5) is determined by

DE =

3⋂
i=1

Di . (18)

The intersection of convex regions D1, D2, and D3 in ℜ3

is convex, so DE is also convex. DE is radially convex with
respect to any point Oc ∈ DE [14].

(a) F1. (b) F2. (c) F3, F4.

Fig. 4: Geometric modeling of effective sensing region.

D. Performance Measure

The parametric equation of the ray starting at the origin
Oc toward the given point pt ∈ ℜ3 (Fig. 5) is given by

P(l) = Oc + lv , (19)

where the unit vector v is defined as

v =

{ pt−Oc

∥pt−Oc∥ for pt ∈ ℜ3 − {Oc}
0 for pt = Oc

, (20)

where ∥·∥ denotes the Euclidean norm and l ∈ ℜ+ is the
distance along the ray from origin Oc. The set DE ⊆ R3 can
be described as a radially convex entity with respect to the
origin Oc, and its sensing region ∂DE ⊆ R2 is bounded by
a surface (Fig. 5). Based on these constraints, the following
proposition can be deduced:

Let F (X) = 0 for X ∈ ℜ3 be the system of equations
representing the implicit function of the region boundary
(∂DE) defined in Fs and let M denote the set of all solutions
to F (P(α)) = 0 for α ⩾ 0. Then, the intersection point P(li)
of the ray P(l) and the boundary ∂DE is determined by

P(li) = Oc + liv, (21)

where li ≤ lt is the distance along the ray between point
Oc and pt as depicted in Fig.5. Thus, given the intersection
point of the ray P(l) with the origin at Oc and the boundary
∂DE , the radial projection H : ∂DE → S2(R) is defined by

H (pt) = pt
R

∥P(li)∥
; ∀pt ∈ D,P(li) ∈ ∂D, (22)

where S2(R) is the sphere of radius R in 3-dimensional
space. Therefore, having the sensor’s sensing region trans-
formed into a closed ball (B3), the proximity of a task point
(qs

t ) with respect to the center of S2(R) is defined by

Γ(qs
t ) =

∥H (ps
t )∥

R
. (23)

Thus, an equivalent form in the Euclidean space (original
domain) is defined as

Γ(qs
t ) =

∥r (l)∥
∥r (li)∥

. (24)

The degree of alignment between a qs
t and the sensor frame

can be determined by defining a non-negative function Ψ :
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Fig. 5: Overlooking schematic of bi-static configuration of the receiver and emitter and mapping DE to the B3.

[0, π] → [0,∞) as

Ψ(φ) =
tan (θt/2)

tan (θa/2)
, (25)

where θa ∈ [0, π] is the application dependent acceptable
view angle defined by end-user. Thus, a performance mea-
sure can be defined by considering both the position and
orientation of the task point with respect to the sensor as

ds (q
w
s ,q

s
t ) =

∥∥∥[ Γ Ψ ∆(Γ + Ψ)
]T∥∥∥

F
, (26)

where ds : ℜ3×[0, π]×[0, 2π] → ℜ+ is a monotonic function
[1], ∥·∥F is the Frobenius norm, and ∆ is defined as

∆ = ⌊max(Γ,Ψ)⌋+ , (27)

where ⌊A⌋+ denotes the largest integer smaller than A.

E. Single Sensor Coverage

According to Theorem 3.2 in [1], a task point is covered
if it falls inside or on the boundary of the sensor’s sensing
region DE or the mapped region B3 and satisfies the view
angle criterion (θt ≤ θa). The coverage model for a LiDAR
sensor with respect to a single task point is defined as

C(qw
s ,q

s
t ) = e−µds(q

w
s ,qs

t ), (28)

where µ ∈ ℜ+ is the decaying rate constant which reflects
physical characteristics of the space.

F. Sensor Network Coverage

Let T be a set of task points representing the 3D environ-
ment model and Q(t) =

{
qw
s,1(t),q

w
s,2(t), ...,q

w
s,n(t)

}
be

the configuration of n sensors at time t, the overall coverage
performance function of the sensor network is given by

H(Q) =

∫
T
max
i∈sn

{
Ci

(
qw
s,i,q

s
t

)}
ϕ (qs

t ) dT , (29)

where sn = {1, ..., n} is the list of deployed sensors and
ϕ (qs

t ) ∈ [0,1] is the relevance function which is a measure
of relative importance of task points qs

t [3].

IV. OPTIMIZED SENSOR NETWORK DEPLOYMENT

Proposed framework for optimized sensor network de-
ployment includes gradient-based optimization and modified
Voronoi partitioning.

A. Environment partitioning

We propose a novel non-Euclidean Voronoi partitioning
based on an advanced performance measure as detailed
below:

Vi =
{
qs
t ∈ T|ds

(
qw
s,i,q

s
t

)
≤ ds

(
qw
s,j ,q

s
t

)
,∀j ̸= i, j ∈ sn

}
(30)

where Vi is the Voronoi partition associated with i-th sensor.
Thus, (29) can be rewritten as

H(Q) =
∑
i∈sn

∫
qs
t∈Vi

Ci

(
qw
s,i,q

s
t

)
ϕ (qs

t ) dq
s
t . (31)

B. Control Law

Optimizing sensor network coverage for area tasks can be
achieved by maximizing the performance function H using a
gradient-based optimization approach and first-order system
dynamics for the control law.

q̇w
s,i(t) = ui(t) , (32)

for i ∈ sn and

ui(t) =
[
wi τi

]T
=

[
Kx

∂H
∂rs,i(t)

Kφ
∂H

∂Φi(t)

]T
, (33)

where wi and τi are the sensor’s linear and angular velocity,
respectively. The control law guides the sensors towards the
gradient direction using constant step sizes Kx and Kφ,
subject to maximum speed constraints on the linear and
angular speed, denoted as wi,max and τi,max respectively.
The constrained control law can be expressed as:

uc
i =

[
wc

i τ c
i

]T
, (34)

where

wc
i =

{
wi ∥wi∥ ⩽ wi,max

wi,max
wi

∥wi∥ otherwise
, (35)
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TABLE I: LiDAR V U8 specifications for experiments.

Parameters Variable Value
Pulse width Tω 20 ns
Azimuth angle θd,a 92◦ ± 4◦

Elevation angle θd,e 3◦ ± 0.6◦

Detector width w 8 channels
Detector height h 1 channel

Fig. 6: Horizontal resolution validation experiment setup.

τ c
i =

{
τi ∥τi∥ ≤ τi,max

τi,maxsgn(τi) otherwise
. (36)

The sensors’ trajectories, governed by the proposed control
laws, will converge to a local minimum of H (i.e., configu-
rations where ∂H

∂qs,iw is zero) with any initial configuration
and an appropriate constant step size [16]. The performance
function ds (qs, i

w,qs
t ) can be redefined as:

ds
(
qw
s,i,q

s
t

)
=

{
Υ1 for ∆ = 0
Υ2 for ∆ ̸= 0

, (37)

Thus, Vi can be divided into two disjoint sub-partitions, Vi =
V 1
i ∪ V 2

i such that

V 1
i =

{
qs
t ∈ T|ds

(
qw
s,i,q

s
t

)
= Υ1

}
, (38)

and
V 2
i =

{
qs
t ∈ T|ds

(
qw
s,i,q

s
t

)
= Υ2

}
. (39)

by considering sub-partitions of Vi, we have

∂H
∂qw

s,i

=

∫
V 1
i

∂

∂qw
s,i

(
e−µdΥ1

)
ϕ (qs

t ) dT

+

∫
V 2
i

∂

∂qw
s,i

(
e−µdΥ2

)
ϕ (qs

t ) dT . (40)

V. SIMULATION AND EXPERIMENTAL VERIFICATION

A. Experiments

We experimentally validated the Flash LiDAR resolution
criteria using a V U8−100◦×3◦ LiDAR sensor with 10 cm
distance accuracy. The sensor’s theoretical Eq.(1) horizontal
resolution is Rh,T = 0.34 m, while the measured horizontal
resolution from experiments is Rh,E = 0.36 m (Fig. 6). The
sensor’s vertical resolution is theoretically Rv = 0.072 m
Eq.(2) and experimentally measured as Rv,E = 0.065 m
(Fig. 7). The experiments used a 15× 20× 60 cm object.

Fig. 7: Experimental setup for vertical resolution validation.

Fig. 8: Experimental set up for depth resolution validation.

Depth Resolution Validation

Flash LiDAR’s 20 ns pulse width achieves a Rc = 3 m
depth resolution per channel (Eq. 3) and is experimentally
confirmed with a minimum detectable distance of 3.39 m
(Fig. 8). See Table II for results and errors.

B. Simulation

Simulation carried out for LSN deployment optimization
for area coverage task with n = 7 sensors, initial random
configuration, and a conical frustum sensing region geometry
(Fig. 9). Decaying rate for all sensors selected as µ = 0.01
and relevance function ϕ (qts) = 1. Gradient-based control
law with proportional constants Kx = 0.5 and Kϕ = 1.0e−
05 and step size of 0.1. Maximum linear and angular speeds
selected as 0.05 m/s and 0.005 rad/s, respectively. Sensors
were guided by the performance function’s gradient direction
and spread over the entire area after 90 seconds, as depicted
in Fig. 10. Fig. 11 illustrates the coverage performance
during optimization, showing a gradual increase in overlap
and H under the proposed control law, with stability reached
after 90 seconds and convergence to a critical point of H.

VI. CONCLUSION

This paper presents a coverage model and optimization
framework for sensor network deployment tailored to solid-
state LiDAR sensors. The flash LiDAR operating principle
is researched and resolution criteria are identified and tested
through experimental evaluations. A simulation validates the
efficacy of the proposed optimization approach for flash
LSNs in 3D space. Future work should investigate laser
emitter properties to improve the LiDAR coverage model’s
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TABLE II: Resolution validation results at zr = 1.37 m.

Parameters Theoretical [m] Experimental [m] Error [m]
Horizontal Resolution (Rh) 0.34 0.36 0.02
Vertical Resolution (Rv) 0.072 0.065 0.007
Depth Resolution (Rd) 3.0 3.39 0.39

Fig. 9: Random LiDAR network deployment.

Fig. 10: Optimized configuration for surface coverage.

Fig. 11: LSN optimization performance over time.

accuracy. Additionally, exploring the impact of environmen-
tal factors such as foggy conditions and glass reflectivity
can further improve the performance of cost-effective flash
LiDAR sensor networks in autonomous driving and virtual
testing applications.
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[5] A. Haider, M. Pigniczki, M. H. Köhler, M. Fink, M. Schardt, Y. Cichy,
T. Zeh, L. Haas, T. Poguntke, M. Jakobi et al., “Development of high-
fidelity automotive lidar sensor model with standardized interfaces,”
Sensors, vol. 22, no. 19, p. 7556, 2022.

[6] R. Vijay, J. Cherian, R. Riah, N. De Boer, and A. Choudhury, “Optimal
placement of roadside infrastructure sensors towards safer autonomous
vehicle deployments,” in 2021 IEEE International Intelligent Trans-
portation Systems Conference (ITSC). IEEE, 2021, pp. 2589–2595.

[7] M. Kettelgerdes and G. Elger, “Modeling methodology and in-field
measurement setup to develop empiric weather models for solid-state
lidar sensors,” IEEE Journal of Radio Frequency Identification, 2023.

[8] F. Farzadpour, P. Church, and X. Chen, “Modeling and optimizing
the coverage performance of the lidar sensor network,” in 2018
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics (AIM). IEEE, 2018, pp. 504–509.

[9] Y. Du, F. Wang, C. Zhao, Y. Zhu, and Y. Ji, “Quantifying the
performance and optimizing the placement of roadside sensors for
cooperative vehicle-infrastructure systems,” IET Intelligent Transport
Systems, vol. 16, no. 7, pp. 908–925, 2022.

[10] Y. Ma, Y. Zheng, S. Wang, Y. D. Wong, and S. M. Easa, “Point
cloud-based optimization of roadside lidar placement at constructed
highways,” Automation in Construction, vol. 144, p. 104629, 2022.

[11] X. Zhang, X. Chen, F. Farzadpour, and Y. Fang, “A visual distance
approach for multicamera deployment with coverage optimization,”
IEEE/ASME Transactions on Mechatronics, vol. 23, no. 3, pp. 1007–
1018, 2018.

[12] P. Meszmer, N. Mundada, M. Tavakolibasti, and B. Wunderle, “Ai
surrogate models for error analysis in optical systems,” in 2023 24th
International Conference on Thermal, Mechanical and Multi-Physics
Simulation and Experiments in Microelectronics and Microsystems
(EuroSimE). IEEE, 2023, pp. 1–9.

[13] C. Jang, C. Kim, K. Jo, and M. Sunwoo, “Design factor optimization of
3d flash lidar sensor based on geometrical model for automated vehicle
and advanced driver assistance system applications,” International
journal of automotive technology, vol. 18, pp. 147–156, 2017.

[14] Y. Nakamura, “Characterization of convexity of intersection of sets,”
arXiv preprint arXiv:1909.04983, 2019.

[15] H. Brezis, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces. Springer, 2010.

[16] K. Guruprasad and D. Ghose, “Heterogeneous locational optimisation
using a generalised voronoi partition,” International Journal of Con-
trol, vol. 86, no. 6, pp. 977–993, 2013.

1187


