
  

  

Abstract— Regular structural inspections to detect 

cracks in ancillary structures are necessary to prevent fatigue 

cracks from compromising a structure’s safety and durability. 

As the most common inspection, visual methods for ancillary 

structures are limited because they are time-consuming, costly, 

and require a great deal of experience. The inspection can 

benefit greatly from automation through implementation of 

deep learning. However, there is no comprehensive annotated 

dataset for deep learning to detect cracks in ancillary structures. 

In this work, a dataset containing 250 images were collected 

from previous studies and 30 images were collected of in-service 

ancillary structures. This dataset was annotated by labeling 

image tiles and bounding box for AlexNet, and Faster RCNN 

(FRCNN), respectively. Data augmentation, such as change in 

color and crack orientation, were performed to increase the size 

of training dataset to 1400 images. Moreover, an image of a 

fatigue crack was superimposed on images of intact and in-

service ancillary structures to increase the dataset size to 1500 

sub-images. The image labeler mode was trained in fully trained, 

transfer learning, and classifier modes. Additionally, bounding 

box annotation was used to label fatigue crack as an object in 

200 images with cracks. Next, FRCNN as an object detection 

algorithm was used to determine the location of cracks in 

ancillary structures. FRCNN and AlexNet with transfer learning 

can be used to determine the location of cracks in ancillary 

structures with an accuracy rate higher than 90% and 93%.  

Keyword: fatigue crack, ancillary structure, deep learning, faster 

RCNN, data augmentation, structural condition assessment. 

I. INTRODUCTION 

Different types of tall and large steel structures such as 
ancillary structures, signal mast arm connections are subjected 
to frequent cyclic loads in service, which makes them 
susceptible to fatigue cracking on the structure. Therefore, 
inspection and  monitoring structures to control  fatigue crack 
initiation and growth play a significant role in maintaining 
steel structural safety [1]. In some studies[1-3], manned visual 
inspection is used to detect fatigue cracks in ancillary 
structures. Several researchers have been investigating on deep 
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learning to detect the location, growth, and initiation of 
fatigue. Raw images or motion videos were used to create a 
dataset for fatigue crack and deep learning [3]. For motion 
videos, the crack is recognized based on the form of the fatigue 
crack formation. Fatigue cracks are propagated in the steel 
structure by cyclic loads. Therefore, video motion can be used 
to predict the patch and tip of fatigue cracks. The other method 
to detect fatigue crack is image based, i.e. the picture with 
cracks are used to detect the fatigue cracks [3]. Dong et al. used 
the pixel level crack segmentation approach to detect fatigue 
crack(s) in images of large-scale n steel structures [4]. The 
result showed the accuracy rate of suggested approach 
achieved an Intersection over Union (IOU) higher than 65% to 
detect fatigue cracks. They generated a big dataset for fatigue 
cracks of steel structures with using laboratory images [4]. 
Quqa et al [5], generated a novel technique to detect fatigue 
crack by using digital images, CNNs and image processing 
approaches. The dataset of this study contained images of 
high-resolution digital cameras from the welding joints of a 
long-span steel bridge [5]. Pixels representing the cracks, 
together with the crack’s width and length, were used for 
training and validating the model. The result indicated that the  
model had a high accuracy rate, about 80% to determine the 
location and size of cracks [5]. Mohamed et al. used artificial 
intelligence and images with cracks from steel structures to 
detect fatigue cracks in steel structures. The authors of this 
study mentioned that the number of images in training and 
evaluation datasets was insufficient to demonstrate network 
performance [6].  Visual inspection is the most common 
approach to monitor fatigue cracks in ancillary structures [7-
8]. However, the result of previous studies about steel 
structures and vision inspection shows crack detection is 
sometimes inaccurate because it is based solely on the 
inspector’s precision [9-10]. Training a sufficient number of 
inspectors to detect and monitor fatigue cracks occurring at 
different places on the structure is time consuming and costly 
[9]. Applying vision inspection for ancillary structures and 
monitoring them in terms of the start and propagation of the 
crack(s) could be challenging for tall ancillary structures. 
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Therefore, implementation of deep learning models for 
autonomous defect detection has the potential to improve the 
practice of manned visual inspections for ancillary structures. 
The previous scientific research for deep learning and fatigue 
crack is based on raw images as a train dataset. However, there 
is a limited published dataset on fatigue cracks and steel 
structures [6]. Moreover, there is no comprehensive annotated 
dataset for deep learning to detect fatigue cracks in ancillary 
structures as a type of the structure. Deep learning models can 
be used to label the images with crack or alternatively to find 
a region of interest containing fatigue cracks in visual images. 
In this study, AlexNet and Faster RCNN (FRCNN) as deep 
learning models have been used to detect fatigue cracks in 
ancillary steel structures for the first time. The annotated 
dataset for ancillary structures was developed based on 
previous studies and images were taken of in-service 
structures. Data augmentation and random under sampling 
approach have been employed to create a balanced and 
generalized training dataset, respectively. Finally, the dataset 
has been annotated based on labeling and bounding box 
approaches for training set of AlexNet and FRCNN, 
respectively. 

II.  METHOD 

Fatigue cracks are a rare occurrence in ancillary steel 
structures [9-10]. To ensure the longevity of these types of 
structures, engineers are often required to look into their 
causes and carry out suitable repairs and remedial measures. 
Various approaches based on machine vision have been used 
to help inspectors identify fatigue cracks in steel structures. 
Among them, edge detector algorithms and deep learning are 
more common to detect fatigue crack, which will be discussed 
in this section.  

A. Image processing using edge detection.  

Canny, an edge detection algorithm, was used to detect 
cracks on ancillary structures in this study. Canny works based 
on the gradients of neighboring pixels to find “edge” or “edge-
shaped” objects, i.e. crack, in images. Crack detection often 
includes gray-scale conversion and extracting morphological 
features of the crack in the image. Ultimately, the exact 
location has a difference in terms of gray or morphological 
features compared to the sound part (pixel without crack) [13]. 

B. Deep learning  

Deep learning was generated based on the CNNs 
architecture, which was introduced by Fukushima (Fukushima 
1980) for the first time, and improved by LeCun et al. (1998), 
which is wildly used as the most common version of CNN 
today [14]. The pixels from all images in both datasets (sound 
or crack) were transformed to a set of features to operate a 
series of mathematical processes for crack detection based on 
the deep learning approach. Several layers have been 
employed to generate a network based on feature selection and 
predict cracks in the images [15]. A complex nonlinear 
function was developed based on merging several layers, 

which can be used to predict image labeling.  AlexNet and 
FRCNN as two deep learning networks were used to detect 
cracks in this study. In deep learning, convolution layers and 
pooling layers were used to detect edge, crack, object feature 
extraction, and texture in images in both algorithms [15]. 

C. AlexNet 

Alex Krizhevsky in 2012 proposed the first version of 
AlexNet as a convolutional neural network (CNN), which has 
been widely used for object detection, including structural 
defect detections [16]. Three networks were employed to 
generate deep learning on the training dataset. The first 
network is to fully train the network from scratch on the 
training dataset. In this network, all the weights are assigned 
with random numbers and different ways [17]. It is possible to 
use previously trained models using ‘‘domain adaptation” in 
the deep learning literature [17-18]. One can use a previously 
trained DCNN on the ImageNet dataset as a classifier for new 
images. This type of domain adaptation is referred to as 
classifier (CL mode). In the CL mode, only the last fully 
connected layer (last layer in Fig. 2) needs to be altered to 
match with the target labels in the dataset. Another studied 
domain adoption method is to partially retrain a pre-trained 
network and modify the layers according to a new dataset. This 
approach is called fine-tuning or transfer learning (TL mode). 
In the TL mode, the network must be re-trained, since both 
classifier and weights should be generated regarding to the 
new dataset. The AlexNet DCNN architecture was illustrated 
in Table I and Fig. 1.  

Table I parameters in model 

Parameter Input  

Layer 

Convolution Layer Channel 

Normalization 

Values 1 5 5 
Parameter Max Pooling  Convolution  Fully Connected  

Values 

(Layer) 
3 4*3 3 

Parameter Dropout Layer Mini Batch Size Max Epochs 
Values 2 10 30 

 
Fig. 1. AlexNet architecture.  

D. Faster FRCNN   

FRCNN is a deep convolutional network, was considered 
as a member of the family of deep learning models to detect 
objects in images, as opposed to labeling images what 
contained that object (Fig. 2). FRCNN was employed to 
produce a set of bounding boxes as output, where each 
bounding box contains an object and the category [19]. In this 
study, the crack in the images was in the region (box), the 
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FRCNN model was generated, and cracks in the images were 
predicted.  

 
Fig. 2. Region with CNN features  

E. Dataset for AlexNet  

In this work, a dataset containing 250 images collected 
from previous [4] studies and 30 images collected of in-service 
ancillary structures were used. The dataset has been made of 
all the available images in previous research and all images 
taken from in field structure for making the data set. This has 
resulted in a complete dataset for investigating cracks in all 
parts of the structure. This dataset was divided into two 
annotated sets based on the type of detection done by the deep 
convolutional neural networks (DCNN). The annotated dataset 
of AlexNet contained 200 images with fatigue cracks and 250 
sub-images without fatigue cracks, both 256 by 256 pixels. 
Data augmentation, such as a change in color, brightness, and 
crack orientation, was performed to increase the training size 
to 1400 sub-images. Moreover, realistic fatigue crack images 
were superimposed on images of intact and in-service ancillary 
structures to increase the dataset size to 1500 sub-images. A 
random under sampling approach and data augmentation was 
used to increase crack subsets. 

III. DATA AUGMENTATION  

A. Color   

The ancillary structures are often painted with silver or 
blue anticorrosion paint in addition to the red color in this 
study. To create a generalized training dataset, the color of 
some images has been altered to silver and blue. Moreover, 
corrosion is a common phenomenon in the steel structures. 
The color of some images was changed by applying the color 
of the images taken from the corroded plate or galvanized steel 
plate to create a more generalized dataset for ancillary 
structure. To do this, the color of the steel surfaces was 
changed (color augmentation) to target color (color of silver 
plate or corroded plate) by applying the approach established 
in Reference [14].  To do this, the color of galvanized steel 
plates with and without corrosion were considered as a target 
object (Fig. 3b and Fig. 3e). The images from in-field 
structures were considered as an input object (Fig. 3a and Fig. 
3d).  By applying the method in Reference [22], the color of 
raw images was changed to the color of images in the target 
dataset (Fig. 3b and Fig. 3e) to increase the size of the train set. 

Fig. 5 shows the input, target images, and color transform 
algorithm’s result (Fig. 3c and Fig. 3f).  

 

 
Fig.3. Data augmentation a) raw images, b) raw image with 

corrosion c) fused image, d) raw images, e) galvanized steel, 

f) fused images  

B. Superimposed crack 

Finding structures without cracks (sound image) was not 
challenging, however, taking images from structures with 
cracks can be challenging since this type of structure is 
repaired quickly to prevent structural collapse hazards. A 
limited number of images of ancillary structures with and 
without fatigue cracks was provided by the North Dakota 
Department of Transportation (Fig. 4a) and previous studies 
(Fig. 4d, and Fig. 4g) were fused on images of sound ancillary 
structures (Fig. 4b, Fig. 4e, Fig. 4h). We used Photoshop [14] 
and transfer color algorithm [15] to fuse images with and 
without crack using a multi-data augmentation approach. To 
generate realistic images of ancillary structures with fatigue 
cracks as seen in Fig. 4c, Fig. 4f, and Fig. 4i; The fused images 
were generated to increase the effectiveness of both deep 
learning algorithms by introducing more images to the training 
dataset [4] By implementation of augmentation, the size of 
dataset was increased to 1500 sub-images.  

 

Fig.4. Data augmentation, a) the raw sub-images with a crack, 

b) raw sub-images without crack, c) a superimposed crack at 

the junction, d) extracted raw sub-image from Reference [4], 

e) raw sub-images without crack, f) superimposed crack, g) 

extracted raw sub-image from Reference [4], h) raw sub-

images without, i) a superimposed crack at structure’s arm. 
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C. Rotation 

The rotation approach has been used to increase the size of 
crack dataset since it has shown to be as a successful data 
augmentation approach in previous research [8]. The approach 
was used to increase training size. Fig. 5a shows the raw 
images, in Fig. 5b and Fig. 5c, the images are rotated uniformly 
at 45° and 135° angles. 

 
Fig. 5. Data augmentation, a) raw image, b) rotated by 

45, c) rotated by 90.  

D. Random under sampling 

A balanced dataset is essential for developing a machine 
learning network that can detect defects in a test set [15]. In 
the training dataset, the ratio of cracked to not cracked images 
was 0.02 after splitting the images and creating sub images. 
Several studies have shown that deep learning algorithms are 
unable to predict accurately due to severe imbalances in 
classification in the training dataset [15,16]. Instead of using 
all images, under sampling involves randomly selecting 
examples from the majority class of the training dataset instead 
of using all images, which has been commonly used in 
previous studies [23-25]. The following three balanced data 
sets shown in Table II were created with using random under 
sampling strategy and data augmentation for AlexNet.  

DEVELOPED CNNS   

In this study, three models were developed for fatigue crack 

datasets by using AlexNet, AlexNet (TL), and AlexNet (CL) 

algorithms. For each model, trainset 1, trainset 2, and trainset 

3 were used as training datasets. Therefore, nine networks 

were developed to classify fatigue crack in this study.  

Trainset -1: A total number of 100 original images were used 

for making the network. The images were split into 120 sub 

images. After splitting the images, totally, 5700 images were 

produced. The images taken from the surface of the structure 

include the edges of the structure, too. The made network was 

more robust since it could detect and differentiate cracks from 

the edges of the structures by placing these images (images 

taken from structure’s edges) in the dataset without cracks. 

For balancing the dataset, the under-sampling approach was 

used to decrease the size of images without cracking. To do 

this, form 5700 sub-images, 162 without cracks were 

randomly selected. Table II shows the training dataset which 

has been created after using the under-sampling approach. 

Trainset -2: Data augmentation approach was used to 

increase the size of images with crack. Table II shows the 

number of images with and without using the data 

augmentation and under sampling approaches in training 

datasets.  

Trainset -3: To make a generalized dataset, a total number of 

30 images taken from real structures with superimpose 

approach were added to the datasets.  
Table II Train dataset. 

A. Train dataset for FRCNN  

The dataset of FRCNN contained 75 images from ancillary 
structures and laboratory images. Therefore, data 
augmentation and superimposed approach was used to 
increase training size to 200 images.  Bounding box annotation 
was used to label fatigue crack as an object in 200 images with 
cracks.  

B. Test dataset for all deep learning approach  

All models were tested by using 74 sub-images with cracks 
and 74 sub-images without cracks. The images were taken 
from ancillary structures in the street, laboratory images from 
previous studies [4], and images taken from NDDOT for all 
networks.  

C. Evaluating a machine learning model 

To compare the real and predicted classifications, a set of 
performance metrics were used. True positive is a sub image 
or pixel with crack and true negative is sub image or pixel 
without crack.  True positives rate (TPR), false   negatives rate 
(FNR), false positives, and true negative rate (TNR), and 
Intersection over Union (IoU) are used to check deep learning 
performance. IoU is a more meaningful performance metric 
for fatigue crack detection using FRCNN while the rest of the 
metrics are more common for labeling images with cracks 
using AlexNet [10].  

Workstation 

A desktop computer was used to create all deep learning 

models. It has a 64-bit operating system, 24 GB memory, 

Intel® CoreTM i7 CPU, and 15.8 GPU. MATLAB 2021 and 

python were used to create networks.  

IV. RESULTS 

A. Canny  

Fig. 6a and Fig. 6c shows two raw images with fatigue 
cracks of ancillary structures. Then, Canny was used to detect 
fatigue cracks. Canny failed to find a crack for image one.  For 
image two, Fig 6.c shows the edge detection approach 
accurately identified cracks in the ancillary structure; however, 
the algorithm generated residual noise in the final output 
especially near the edge of the structure. Moreover, the result 
of binary images after applying Canny algorithm shows that 
images taken from ancillary structures contained multiple 

 
Crack Uncrack  Approach name  

Train dataset 1  162 162 Under sampling   

Train dataset 2 668 668 Augmentation  

Train dataset 3 791 791 Augmentation and fusion 
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edges with crack (Refer to Fig. 6d and Fig. 6b). Therefore, the 
edge detection algorithm cannot help inspectors to detect 
cracks from the structure’s edge in the ancillary structures.  

 
Fig.6. Edge detection algorithm output, a) Image from 

fatigue crack, b) edge detection algorithm output b) Raw 

images, b) edge detection algorithm output.  

B. AlexNet  

 Fig. 7 depicts the loss for training and validation for 
AlexNet (TL). The validation criterion was reached for 
trainset1, trainset2, and trainset3 after 1500, 3000, and 3500 
iterations, respectively.  The loss values for all models were 
near zero based on the graphs. To avoid overfitting, the 
validation graph should be close to the training graph. The 
result of this study showed that increasing the number of 
images in the training dataset reduces the distance between 
two graphs (validation loss and training loss). For all crack 
datasets, the distance was also reduced by using AlexNet 
(TL) rather than AlexNet or AlexNet(CL) as well.  

 
Fig.7. Training and validation loss for AlexNet (TL)  

 The validation accuracies for all models were also 
extracted after training all models. AlexNet's validation 
accuracy was 74.19%, 85%, and 87% for trainsets 1, 2, and 3, 
respectively. The validation accuracy of AlexNet (TL) for 
trainsets 1, 2, and 3 was 93%, 94%, and 95%, respectively. The 
validation accuracy of AlexNet(CL) for trainset 1, trainset 2, 
and trainset 3 was 92%, 95%, and 94%, respectively. For all 
datasets, AlexNet (TL) had the highest accuracy rate and the 
lowest loss values. It is expected  that the accuracy rate of deep 
learning models to increase as the size of the training dataset 
is increased using data augmentation. In total, three networks 
were trained on three data sets where the table II  presents the 
number of images in trainset (cracked and un-cracked), and the 
method applied for creating each dataset. Also, three deep 
learning models were utilized for crack estimation. As Table 
III depicts, the accuracy of all three approaches exceeded 85% 
by increasing the size of the dataset, which shows using data 
augmentation was effective to improve the model’s 
performance. Moreover, the accuracy of AlexNet (TL) and 
AlexNet were higher than 87% by increasing size of training 
dataset. However, the AlexNet (CL) network had TNR higher 
than 99%, which was the best model to detect sub images 
without crack among all models in this study, while AlexNet 
produced only 81%, and 83% for train set 2 and 3, 

respectively. The AlexNet (TL) network had the highest 
TPR=90%, among all the studied approaches, which was the 
best algorithm to detect sub images with cracking. The most 
tangible increment had been seen in TPR, TNR, and ACC rate 
among all models because of using data augmentation and 
adding data from structures in the field (Trainset 3 and Trainset 
1). Accuracy rates had improved by 16%, 3%, and 6%, for 
AlexNet , AlexNet (TL) , and AlexNet(CL) respectively after 
using data augmentation. By adding images from real 
structures and data augmentation, this improvement was 
increased by 25%, 10%, and 7%, respectively. Moreover, The 
TPR value was improved by 82%, 16%, and 17% for AlexNet, 
AlexNet (TL), and AlexNet(CL) respectively after using data 
augmentation. This improvement was 72%, 12%, and 20% 
with using data augmentation and real images with crack from 
ancillary structures. Models trained on the trainset -3 were 
more accurate in labeling crack images.  

Table III Metric parameters. 

C. FRCNN result  

The FRCNN algorithm was also applied to detect cracks in 
this study. In the test dataset, the coordinate of a bonding box 
containing a fatigue crack in the images were predicted using 
FRCNN. A test dataset of 30 new images was used to verify 
the model's performance. Fig. 8 shows the performance of 
FRCNN by using the bonding box in the crack test dataset. 
IOU, TPR and TNR were used to determine the performance 
of FRCNN for crack detection and were summarized in Table 
III. The purpose of using four deep learning algorithms was to 
find the best approach to determine the location of the crack. 
Fig. 8 shows the FRCNN output. In all images, the green boxes 
were ground trough, while the red boxes were considered a 
predicted location of the cracks. According to the result, 
FRCNN was an efficient approach to determine the exact 
location of crack in the specified location of structures with 
TNR=90% and TPR=90%. However; AlexNet could be used 
to predict the cracked sub image’s label without identifying the 
specified location of crack in the sub images. A TPR of 87% 
and a TNR of 93% were obtained with AlexNet(TL) as one of 
the best labeling approaches.  

 
Fig.8. FRCNN result for identifying location of crack. 

 Train set (1) Train set (3) 

Metric 

parameter 
TPR TNR ACC TPR TNR ACC 

AlexNet 50% 80% 72% 86% 90% 90% 

AlexNet (TL) 77% 80% 79% 87% 93% 87% 

AlexNet (CL) 69% 89% 83% 83% 99% 89% 

 Train set (2)    

Metric 

parameter 
TPR TNR ACC    

AlexNet 91% 72% 84%    

AlexNet (TL) 90% 71% 82%    

AlexNet (CL) 81% 99% 88%    
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Table IV FRCNN result 

The result indicated that the proposed model can efficiently 
provide a higher level of metric parameters in detecting cracks 
by using AlexNet (TL). These models can predict the location 
of cracks in different places of structures with a general dataset 
which was obtained from data augmentation and 
superimposed approach. Moreover, the AlexNet’s 
performance as a deep learning technique in different training 
dataset were compared with each other to obtain the highest 
accuracy rate, TPR and TNR. Data augmentation helped the 
research team to reach maximum number of images and 
improved AlexNet training accuracy consistently. FRCNN, 
however, is capable of detecting cracks within special parts of 
structures with good performance with fewer images. 
Moreover, raw images were split into sub images for creating 
datasets like those in previous studies [9]. The FRCNN 
algorithm, however, uses raw images since it detects objects in 
special parts of ancillary structure.    

V. CONCLUSION  

Deep CNN for labeling images with fatigue cracks and 
FRCNN for detection of fatigue cracks in images were used on 
this data under different modes of training. The result of this 
research showed: 

- The developed methodology in this investigation increased 
the number of crack images by 50%.  

- The results show that the AlexNet (TL) is capable of crack 
estimation indicated high accuracy in the structure’s crack 
detection because the values of TPR, TNR and ACC are 
higher than 87% for AlexNet (TL) with data augmentation.  

- The results showed that FRCNN could accurately detect 
the pixels that contain cracks in ancillary structures with 
IoU higher than 85%.  
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 TPR TNR Average IOU 

FRCNN  90% 90% 86 % 
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