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Abstract— Feedforward control of hydraulic systems is a
huge benefit to their performance and has been a research
topic for many years focusing on the differential equations of
the pump in order to implement pressure control or flow control
laws. Considering a servo-hydraulic system which is acutated
by an operator, it is inevitable to firstly calculate the required
flow to obtain a desired system behavior. A good measure for
a suitable pump flow regarding a given input signal by an
operator is the resulting pressure drop across the actuated
valve. In this paper an adaptive feedforward controller is
developed using a gaussian process and a recursive least squares
algorithm to calculate the needed flow more accurately resulting
in a desired pressure drop repeatedly. The results are then
implemented to the hydraulic system and the tracking behavior
of the real system is evaluated. This is done using setpoint
changes of the operator input. The measurement results for the
dynamic actuation of a cylinder are shown and a comparison
between the gaussian process and the recursive least squares
algorithm is made. With the adaptive feedforward controller the
pressure drop can be set more precisely allowing an efficient
operation of the overall hydraulic system.

I. INTRODUCTION

Automation in hydraulic applications increases a lot con-
sidering automated movement of mobile working machines
as seen in [2], [9], but also within their underlying hydraulic
system. The change of hydromechanical controllers, which
were state of the art for many years, to electrohydraulical
controllers holds huge potential but due to the very fast
dynamic of hydraulic systems it comes along with many
challenges. The electrohydraulical actuation of servo valves
considering e. g. the joystick input of an operator is subject
to static friction problems [10] causing hysteresis effects
and a change in the overall dynamic of the system since
the transfer behavior of the electrical actuation is notable
slower than the hydromechanical controller for the valve lifts.
The hydraulic axial piston pump is the most used in mobile
working machines and therefore is part of many publications
reaching from solely modeling and dynamical examination to
their feedforward and feedback control. Efficiently supplying
hydraulic energy consisting of the hydraulic volume flow
and the hydraulic pressure is the foundation of efficiently
operating the entire hydraulic system of mobile working
machines. Typical hydraulic systems can be subdivided into
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positive and negative flow control with both having their
advantages and disadvantages. Reaching load-independent
movements, negative flow control is to be used, where the
active load pressure pLS is available as a feedback and the
volume flow of the hydraulic pump is controlled to obtain
a system pressure pHP having a constant offset to pLS. This
offset ∆p = pHP − pLS is necessary to overcome hydraulic
friction and is the design parameter for the velocities of the
actuated cylinders. In the state of the art, a hydromechanical
pressure compensator valve being preloaded with the offset
∆p is used to control the flow of the hydraulic pump,
which is feasible because the high pressure dynamics yield
a high bandwith within the hydromechanical controller. This
pressure drop is a very important design parameter in the
negatively controlled hydraulic systems since it determines
the dynamic of the surpassed hydromechanical controller.
For modern electrohydraulical actuated pumps, the desired
pressure drop ∆p can be set by using knowledge of the
system and the common orifice equation to calculate and set
the necessary volume flow. With the modern electrohydraulic
controller the volume flow can be chosen arbitrarily without
interfering with the dynamic behavior of the actuated piston
which is beneficial since it is the main design parameter
considering energy efficiency. As already mentioned, with
the electrohydraulical controller knowledge of the current
orifice must be known to set the desired volume flow.
Unfortunately this orifice cross-section in the overall view
of the hydraulic system is not available and the parameters
are also varying over states of the hydraulic system as for
example the viscosity of the hydraulic oil, being dependent
on the temperature as well as the type of oil used, and
therefore must be adapted during the operation of the hy-
draulic system. As it has been shown in many publications
(e. g. [6], [8]), to accurately control the volume flow of an
axial hydraulic piston pump a feedforward controller delivers
the best performance. Also many publications are available
for the control of the directional valves and controlling the
pressure drop by acuating this valve as in [15] or [14].
Valve identification for directional valves has been performed
offline within an experimental setup for example by Tørdal
et al. [11] focusing on its dynamics. Other works as Valdiero
et al. focus on the identification of the deadzone of the
hydraulic valve [12]. Therefore the work of this contribution
provides exact setpoints for an existing feedforward con-
troller as seen in [6], calculated using a gaussian process
as well as a recursive least squares algorithm. At first
the governing system equations will be described and the
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Fig. 1. Sketch of a negatively controlled hydraulic system with user input
u to the pump controller and the pressure control valve (PCV) setting the
pressure pPilot. In the center 4/3 valve with 4 inlets and 3 positions with
valve lift s, which is set by the pilot pressure and the spring, allowing
volume flow QPump to pass to the cylinder with cylinder position x and the
pressure pCyl is seen. Additionally, the feedback of pHP and pLS is shown.

calculation of data points will be shown, afterwards the
two algorithms will be proposed. This paper concludes with
showing measurement results using the adaptive feedforward
controller and a comparison between the algorithms and the
performance of the final feedforward controller.

II. SYSTEM DESCRIPTION AND CREATION OF TRAINING
DATA

A. System description of the negatively controlled hydraulic
system

Firstly, an introduction to the hydraulic system will be
given and an awareness for the importance of good valve
characteristics will be made. Here the dynamics of the hy-
draulic system will shortly be introduced and the dependency
of supply volume flow and the aforementioned resulting
pressure drop is explained.

In order to simplify the sketch of the hydraulic system,
Fig. 1 only shows the pressure and the volume flow for the
base chamber of the double-acting cylinder. It can be seen
in Fig. 1, following the actuation signal of an operator u to
a pressure control valve (PCV), the pilot pressure pPilot(u) is
set to move the valve against a spring. The counterforce of
the spring, with spring rate k, results in FSpring = k · s and
the resulting force of pPilot and an area APilot result overall in
the external forces acting on the valve lift s. Due to friction
of the plunger with mass mPlunger in the valve housing the
second order dynamic resulting of the governing differential

equation given in (1) can be assumed to be strongly damped
and the valve dynamic is assumed to be very fast.

s̈ =
1

mPlunger
· (pPilot ·APilot − k · s− FFriction(ṡ)) (1)

Therefore calculating the steady state s̈ = ṡ = 0 results in a
linear function

s(u) =
APilot

k
· pPilot(u). (2)

Since it was assumed that FFriction(ṡ) is only dependent on
ṡ, static friction is not considered and the aforementioned
hysteresis effects are not modeled. In the real system no
information regarding the hysteresis effect is available and
in addition to the here proposed feedforward control law, a
feedback control law or a feedback control law combined
with a disturbance observer needs to be designed to obtain
good tracking behavior despite the obvious model uncertain-
ties. The travel of s yields an orifice cross section AValve,
which lets the supply volume flow QPump pass to the actuated
cylinder. The flow through the orifice can be assumed as
turbulent flow [3] and with the contraction coefficient cv and
a desired pressure drop ∆pdes across the valve, the desired
supply volume flow QPump,des is obtained to

QPump,des = cv ·AValve(s) ·
√
∆pdes. (3)

As already made clear in the introduction the main issue is to
derive reliable orifice cross-sections over the operating range
of the valve. Here specifications by the manufacturer are
often available but do not comprise additionally encountering
reductions of the flow cross-section like the entrance to the
casing in which the valve is built-in or orifices to introduce
damping effects into the hydraulic channel. As it can be seen
in Fig. 1 the load pressure pLS and the pressure of the high
pressure line pHP are measured and the resulting pressure
drop across the valve ∆p = pHP − pLS can be calculated.
The dynamical equations

ṗHP =
E

V0,System
· (QPump −QCyl),

ṗCyl =
E

V0,Cyl
· (QCyl −ACyl · ẋ)

(4)

describe the pressure dynamics of the high pressure line ṗHP
and the pressure inside the base chamber of the cylinder
ṗCyl, using the bulk modulus E and the volume V0,i, with
i = {HP, Cyl}. It can be assumed that the dynamic of the
pressure feedback pLS is negligible and therefore pLS = pCyl
holds. Another issue is that the volume flow of the pump
QPump can not be measured but due to the availabilty of good
models of hydraulic axial piston pumps it can be estimated
using an accurate nonlinear pump model

ẋ = f(x, uPump),

x(0) = x0,
(5)

which has been presented in an earlier publication [6]. Here
x comprises the swash plate angle α which can be used

330



calculating the volume flow

QPump =
VPump (α)

2π
φ̇Pump, (6)

as seen additionally in [7], [3] with a known rotational
speed φ̇Pump of the pump. After an actuation of the operator
the given supply volume flow passes through the orifice
cross-section AValve and yields a pressure increase according
to (4). This pressure shows oscillations coming from the
oscillations of the cylinder speed ẋ, which will be seen later
in the measurement results. The pressure drop across the
valve follows the dynamic of the volume flows, because the
pressure dynamic is very fast since the time constant of the
differential equation reaches from 108 to 1010 and the time
constants of the dynamic of the cylinder are much lower.

B. Creation of training data

Since the hydraulic system is understood now, this knowl-
edge is used to create training data for the actual character-
istic of the cross-section of the valve. The entire process will
be explained and supported by exemplary figures of training
data.

After an actuation of the valve by the operator input u,
the electrohydraulical controller calculates a desired volume
flow QPump,des as seen in (3). As an initial guess for the
cross-section of the valve its characteristic given by the
manufacturer is used, which is seen in Fig. 2. Here, the
time dependence must be introduced, where k is the current
value. With a known dynamic of the pump, a real ∆preal(k),
potentially differing from the desired ∆pdes(k) which is
required to calculate the desired supply volume flow as in (3),
is measured. Using these measurements and the model based
volume flow QPump(k) a real cross-section of the valve Ã(k)
can be calculated using the known orifice equation (3) solved
for A to

Ã(k) =
QPump(k)

cv ·
√
∆preal(k)

. (7)

Together with the available operator input u(k), the calcu-
lated Ã(k) creates a training tupel. In this case a dSpace
MicroAutoBox II is used as a electronic control unit and
analog digital converter with a sample frequency of 50Hz,
so training data is quickly gathered. The created trainings
tupel are filtered regarding their plausability. The outlier
detection is done via a distance-based approach, where a
point is judged based on the distance to its neighbors. The
assumption is that, the training data has a normal distribution
around the true valve characteristic. Therefore outliers are far
apart from their neighbors and have a very sparse neighbor-
hood [4]. The distance-based approach is done only in one
dimension along the cross-section for every value of u ∈ Z.
Here, a radius ε and a percentage π is defined. Further, a
point p is considered an outlier if at most π percent of all
outher points have a distance to p less than ε.

An exemplary training set is shown in Fig. 2. Here in
gray the initial trainig data is shown and in yellow the
filtered tupels. The black curve still shows the original
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Fig. 2. Exemplary training data shown for the orifice. Every marker stands
for one time step k. The accumulation of values in the vicinty of |u| = 17%
origines from the prestress of the valve despite no given valve travel s.

valve characteristic given by the manufacturer. It can be
seen, that the estimated tupels have lower values for the
cross-section than the characteristic provided. This can be
explained by the fact, that all additional orifices and flow
resistances are lumped into the training data. This is a wanted
effect and the prediction for QPump,des(k) is expected to meet
with the desired pressure drop ∆pdes(k). The filtering works
respectively well, but still has some potential. In the result
section it will be seen, that the gaussian process has less
problems with training data with large variances since it
is a classification method on its own. The recursive least
squares algorithm in contrast benefits largely from a good
filtering method since it is very sensitive to outliers due to
the quadratic penalty values during the optimization.

III. DESIGN OF THE IDENTIFICATION ROUTINES

Since the training data is now available, the two online
identification routines are presented and the setting parame-
ters are explained. First, the gaussian process is introduced
and afterwards the recursive least squares algorithm is ex-
plained.

A. Gaussian process

Gaussian processes (GP), being part of the nonparametric
supervised machine learning techniques, are used for re-
gression and classification. A huge benefit is the prediction
based on known training data and an information on the
resulting uncertainty [13]. Given a random variable f(u), a
mean µ(u) = E[f(u)] and a variance σ2 can be calculated.
Comparing random variables f(u) and f(u′) the assumption
is made that they have a higher correlation, if u and u′ are
closer. Thies yields the definition of a gaussian process

f(u) ∼ GP(µ(u), l(u, u′)), (8)

with the function for the covariance as given in [5]

l(u, u′) = E[(f(u)− µ(u))(f(u′)− µ(u′))]. (9)

There exist various kernel functions coinciding with the
covariance function l(u, u′) and for this work the squared
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exponential kernel as seen in [1] is used and can be written
as

l(u, u′) = φ2
1 exp

(
−∥u− u′∥2

2 · φ2
2

)
. (10)

Here φ1 and φ2 are the so called hyperparameters and are
used to control the learning process. The squared exponential
kernel is used since its output are function with a smooth
course, which is reasonable considering the construction of
the valve. As it can be seen in Fig. 2, the calculated cross-
sections Ã(k) are assumed to have an additive noise with
normal distribution εi = N (0, σ2

k). Introducing the model
fGP as a result of the gaussian process, a training tupel has
the relation

Ã(k) = fGP(u(k)) + εi. (11)

Using the entire training data Ã and u and the covariance
matrix

L(u,u) =

l(u(k), u(k)) . . . l(u(k), u(n))
...

. . .
...

l(u(n), u(k)) . . . l(u(n), u(n))

 , (12)

where n is the amount of training data, it can be written

Ã ∼ N (0,L(u, u) + σ2I), (13)

while assuming a zero-mean distribution. The bold notation
is used to mark matrices, the underline marks vectorial
variables, and I is the identity. The choice of the hyper-
parameters is very important and is illustrated considering
the kernel length φ1: If it is chosen too small the gaussian
process leads to overfitting, whereas if it is chosen too big,
the gaussian process leads to underfitting of the trainig data.
A good choice for the training data can be found iteratively
and a good combination of φ1 and φ2 will be shown in the
results section.

B. Recursive least squares algorithm

The recursive least squares algorithm is used to esti-
mate linear parameters combined with ansatzfunctions. The
ansatzfunctions are combined in the matrix U and the
parametervector is described with Θ. The equation

Ã = U ·Θ (14)

therefore describes the linear system of equations. The
squared penalty of the optimization algorithm then is defined
as

min
Θ

f (Θ) = min
Θ

∥Ã−U ·Θ∥2. (15)

At time k the solution of the parameter vector Θ(k) can be
given by

Θ(k) =
(
UT(k) ·U(k)

)−1 ·U(k) · Ã(k), (16)

using the pseudoinverse of the non regular matrix U(k).
Moving to the time k + 1 the matrix U(k + 1) and the
vector y(k + 1) can be given to

A(k + 1) =

[
A(k)

A(k + 1)

]
,

U(k + 1) =

[
U(k)

UT(k + 1)

]
.

(17)

U(k + 1) must be transposed when combined with the
matrix U(k + 1) since it is a vector and U(k) is a matrix.
Combining (16) and (17) and introducing the update matrix
P−1 = UT(k) ·U(k) the update of Θ(k + 1) can be given
to

Θ(k + 1) = Θ(k)

+ γ(k) ·
(
Ã(k + 1)− UT(k + 1) ·Θ(k)

)
,

(18)

with

γ(k) =
P (k) · U(k + 1)

1 + UT(k + 1) · P (k) · U(k + 1)
. (19)

The update of P (k + 1) can then be calculated recursively
to

P (k + 1) = P (k)− γ(k) · UT(k + 1) · P (k). (20)

Comparing the course of the valve characteristic in Fig. ??,
it can be assumed that a polynom of fourth order is suitable
to estimate the valve characteristic. When considering the
proportional valve opening this can be modeled as a cylinder
moving inside a tube increasing the orifice area. This process
has an opening area with increasing gradient, then a linear
phase, and an area where it’s nearly completely opened
which results in an area with decreasing gradient. The above
mentioned vectors then build the optimization, according
to (14),

Ã(0)

Ã(1)
...

Ã(n)

 =


u(0)4 u(0)3 u(0)2 u(0) 1
u(1)4 u(1)3 u(1)2 u(1) 1

...
...

...
...

...
u(n)4 u(n)3 u(n)2 u(n) 1

 ·


Θ4

Θ3

Θ2

Θ1

Θ0

 .

(21)

IV. RESULTS

Now the identification results and the resulting actua-
tion of the cylinder via the operator input u is examined.
Particular attention is payed to the resulting pressure drop
∆p across the valve. First, the identification results of the
gaussian process are shown, which also gives an additional
information about the uncertainty, namely the 2σ interval.
As it can be seen in the results of the gaussian process
a very smooth curve is found, which suits the mechanical
properties of the valve very well. The 2σ confidence interval
is relatively large, but the results are very promising. As
hyperparameter φ1 = 320 and φ2 = 50 have been chosen.
This has been done without a hyperparameteroptimization,
but with a iterative manual approach to validate the gaussian
process on the training data. The predictive behavior of the
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Fig. 3. Identification results off the gaussian process showing additionally
the training data, the valve characteristic given by the manufacturer and the
2σ confidence interval.

gaussian process finds better results without filtering and with
fewer data points. In our scenario in contrast the availabilty
of data is not a big issue and the gaussian process needs
more computational power than the recursive least squares
algorithm. The gaussian process has however some benefits.
Often the values at specific sampling points have a low
variance, since they often occur during the operation of the
machine. The gaussian process has the power to trust these
values more, wheras the recursive least squares algorithm
has limited options to manually adapt the weight of single
identifcation tupels.

For the recursive least squares algorithm the performance
can be seen in Fig. 4. Due to the outlier detection and
the presence of many training tupel, the RLS performs also
very well. The RLS is a very simple algorithm in terms of
computational power and is very easy to implement online
for the adaptive feedforward control of the hydraulic axial
piston pump.

Since both algorithms come to the same result having the
same training data, the results for the adaptive feedforward
control of the pump will only be shown for the update of the
valve characteristic via the recursive least squares algorithm.

In Fig. 5 a comparison between the feedforward controller
based on the valve characteristic of the manufacturer is
compared to the adaptive feedforward control, which had
preceding to the validation multiple arbitrary movements to
collect training data and converge. As mentioned before,
regarding the sample frequency the collected trainig data
enables the algorithm to converge quickly. It can be seen,
that for the adaptive feedforward controller the desired ∆p of
18 bar is reached and set very well, whereas the non adaptive
feedforward controller supplys too much volume flow, which
then again results in a too high ∆p. This can be explained,
since the valve characteristic provided by the manufacturer
does not comprise additional flow reductions and therefore
the amount of supply volume flow is overestimated. As it can
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Fig. 4. Identification results off the recursive least squares algorithm
showing additionally the training data, the valve characteristic given by the
manufacturer.
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Fig. 5. Comparing the adaptive feedforward control without the adaption
algorithm shows that the ∆p is not met at desired pressure drop of ∆pdes =
18 bar.

be seen in Fig. 5 the operator input u is set to approximately
55% and in comparison with Fig. 3 or Fig. 4 the deviation
of the estimated valve characteristic and the manufacturers
valve chararcteristic is not as large as for example for an
operator input of 80%. The oscillations in Fig. 5 of ∆p origin
from the discrete number of pistons within the hydraulic
axial piston pump. The feedforward scheme uses the operator
input as seen in the upper picture of Fig. 4. The feedforward
controller then increases the supply volume flow which is
stowed since the valve has not opened fully yet. This results
in a pressure increase of pHP and after the valve is opened
(around 0.7 s) the volume results in an accelaration of the
cylinder which results in a pressure drop of pHP which can
also be seen in Fig. 4 and 6. The pressure drop of the
adaptive feedforward controller is higher, since the effects
of the still closed valve are very similar, but when the valve
is opened the adaptive feedforward controller in this case
has a lower supply volume flow. This in turn results in the
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Fig. 6. Due to the overestimation of the feedforward controller without
the adaption algorithm, the volume flow QPump is too high, resulting in a
too high pressure drop ∆p and therefore a higher piston speed.

correct pressure drop ∆p which can be seen when taking the
mean betwenn 1 s and 2 s.

The issue which is depicted in Fig. 6 is that for automation
of an mobile work machine using a hydraulic system a
predictable and reliable speed must be present. If the valve
characteristic is not representative and therefore the supplied
volume flow is not suitable in regarde to the valve lift s
the velocity can be set accurately. It can also be seen, that
the feedforward control law itself is identical and only the
desired supply volume flow QPump,des and hence the volume
flow QPump changes switching between the feedforward
controller with and without the adaption algorithm.

V. CONCLUSION AND FURTHER WORK

In this work two adaption algorithms have been showed
in detail to improve the performance of a negativley con-
trolled hydraulic system. The reliable supply and predictable
behavior of the hydraulic system is crucial for subsequently
implement control algorithms for automated piston control
as seen for example in excavators. The outdated mechanical
controller which has only the feedback loop makes it almost
impossible to control the piston velocity well; especially if
directional changes occur. With the contribution presented
herein in combination with modern feedforward techniques
for the hydraulic axial piston pump, the hydraulic system has
been brought to a performance level with which the position
control of the cylinder can be achieved with a much better
tracking behavior. The comparison of the gaussian process
with the recursive least squares algorithm does not yield huge
differences which can be led back to the available data which
has a very high quality. Regarding computational intensity
the recursive least squares algorithm is a lot quicker and
therefore was implemented on the real system to validate the
improved performance. The control of the hydraulic system
must be further improved and extended with a disturbance
observer to be able to react on errors for example during the
heat-up phase of the hydraulic oil. A feedback controller at
this point is very cumbersome since the sample frequency of

50Hz together with the dynamic of the pump delivers a very
low bandwidth compared to the highly dynamic pressure
equations.
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