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Abstract—Ground reaction force (GRF) is a potentially
useful control input for powered lower limb prostheses but
accurate GRF measurement in real-time is challenging.
The objective of this work is to evaluate the ability to
estimate GRF from a minimal set of kinematic inputs (knee
and ankle angle and angular velocities) during walking.
Three artificial neural networks (ANNs) are evaluated
for this purpose: nonlinear autoregression with exogenous
input (NARX), delayed discrete recurrent neural network
(DDRNN), and a self-organizing map with feedforward
neural network (SOM-FFNN). Specifically, our work fo-
cuses on investigating the impact of ANN architecture and
training/learning algorithms on the predication accuracy of
GRF. First, ANN performance in open loop GRF estimation
is investigated using treadmill walking data in a healthy
participant at speeds from 0.79 to 1.9 m/s. Next, the effect
of ANN estimated GRF is evaluated in a simulation of
closed-loop powered prosthesis control with three levels of
measurement noise. The results show that all ANNs are
able to estimate GRF in open-loop with relatively low RMS,
although SOM-FFNN performed the best with an average
RMS of 4.85 N across all gait speeds. SOM-FFNN also
showed the most robust performance in estimating GRF
for trajectory tracking in closed-loop control, providing
impetus for its further investigation in control of powered
prostheses.

Index Terms—Ground reaction force, self-organized map,
neural network, recurrent network, estimation.

I. INTRODUCTION

There are at least 1.6 million people living in the
U.S. with an amputation, of which more than 50% are
of a lower extremity and this number is expected to
more than double by the year 2050 [1]. Thus, there
has been considerable effort to develop more effective
lower limb prostheses to restore walking function in
these individuals. In particular, recent advances have
focused on developing powered prostheses with more
robust feedback control to enable use in a variety of
walking tasks and environments [2], [3].
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Ground reaction force (GRF) is the force exerted by
the ground on a body in contact with it. GRF has long
been an essential component for gait analysis because it
implicitly includes physiological information and motion
intent [4]. For example, GRF was reported as a potential
tool for the early diagnosis and monitoring of Parkinson’s
disease [5], [6] and as a determinant of gait function in
individuals with amyotrophic lateral sclerosis (ALS) [7],
Huntington’s disease [8], and stroke [9].

GRF is also attractive as a control input for pow-
ered prostheses to adapt joint stiffness and damping
to mimic natural walking across a variety of terrains
[10], [11]. Measuring GRF in real-time presents multiple
challenges. First, human walking (and GRF) can vary
widely depending on the individual’s weight, walking
speed, and surface conditions; thus a high bandwidth
measurement system with multiple sensors is required,
which can increase system complexity [12]. Next, rela-
tively small changes in GRF can indicate large changes in
gait biomechanics, which necessitates high-precision and
high-resolution equipment. Finally, measurement sys-
tems must process and output the data quickly for real-
time applications such as prosthesis control or biofeed-
back. Given the complexity required to accurately mea-
sure GRF directly, interest in GRF estimation has in-
creased [13]. If a GRF estimator can provide a reasonable
approximation, it may be more efficiently implemented in
time-critical applications such as real-time control. GRF
estimation accuracy is crucial to ensure user safety and
achieve optimal prosthesis performance across a variety
of tasks. Therefore, GRF estimation algorithms should
be designed for high accuracy and robustness to sources
of error, such as sensor noise, measurement drift, and
model uncertainties.

Neural networks are particularly well-suited for esti-
mation tasks because they can learn complex, non-linear
relationships between inputs and outputs even when the
underlying relationships are not fully understood [13].
Thus, neural networks can be trained on a set of input-
output pairs and then make predictions for new inputs
not seen during training. Neural networks can also handle
large amounts of data and high-dimensional input spaces
and are able to learn from noisy or incomplete data,
which is often the case in real-world applications. These
characteristics make them well-suited for sensor-based
estimation tasks where the data is uncertain or unreliable.
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Artificial neural networks (ANNs) have been used to
estimate GRF from other signals, such as kinematics,
electromyography (EMG), or data from inertial measure-
ment units (IMUs) [14], [15], [16], [17]. Collectively,
these studies demonstrate the ability of ANNs to estimate
GRF from a variety of inputs, while also highlighting key
factors that affect ANN accuracy including the number
of sensors and their position on the body and the number
and type of ANN inputs. The training data and its
cross-correlation is another important factor for ANNs;
training data should be selected to include non-correlated
inputs. [18] estimated GRF during running based on
three inertial sensors on the shank and pelvis, which
produced correlated inputs. The ANN architecture was
developed to mitigate the data dependency problem by
independently training multiple ANNs. Learning style is
another important factor for ANNs. Supervised learning
is more straightforward than unsupervised learning but
unsupervised learning is more robust. [19] present a self-
organizing ANN for the recognition of human-object
interactions. They applied an ANN called grow-when-
required that showed ANN architecture and learning style
played a vital role in performance.

This study investigates a novel approach to GRF
estimation using ANN, with the ultimate goal of using
GRF for control of powered lower limb prostheses and
orthoses. This study includes three main contributions.
First, whereas previous studies have estimated GRF from
a large number of measurements [11], [15], we use a
set of easily obtained inputs, knee and ankle angular
displacement and velocity, which reduces computational
complexity. Second, we evaluate three ANN architectures
for GRF estimation from this reduced input set: nonlinear
autoregressive network with exogenous inputs (NARX),
discrete delayed recurrent neural network (DDRNN),
and a novel approach utilizing a feed foward neural
network with a self organizing map (SOM-FFNN). Third,
we evaluate performance of each ANN in a robotic
prosthesis simulation to assess performance in closed-
loop control.

II. METHODS

The data in this study come from the Louis Stokes
Cleveland Veteran Affairs Medical Center (VAMC). Mo-
tion data was captured from a single able-bodied subject,
after informed consent, with weight 78 kg and height 180
cm. A Vicon system with 16 cameras recorded lower
extremity joint angles at 100 Hz. GRF was recorded
using force plates under the treadmill at 100 Hz to
provide ground truth GRF data [20]. Data were recorded
at walking speeds of 0.75, 0.8, 1.25, 1.3, 1.44, 1.63, and
1.9 m/s. Each data set has at least 4200 samples per
trial, and each walking speed includes at least four trials.
Training was based on a single trial at 1.3 m/s, and the
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Fig. 1: NARX network architecture with n+1 delayed
inputs and d delayed outputs (z−1 is the unit time

delay).

rest of the data are used for testing and validation. The
ANN inputs are knee angle qK , knee angular velocity
q̇K , ankle angle qA, and ankle velocity q̇A.

Three ANN architectures were applied to estimate
GRF. NARX is well-suited to periodic signals such as hu-
man gait, to nonlinear relations between input and output,
and often exhibits good robustness to input noise [21].
DDRNN is a new recursive network that implements
associative memory and state space representation [22],
[23], [24]. SOM-FFNN is introduced in this paper for the
first time to estimate GRF. This novel approach infers
hidden features from the data with an SOM based on
gait speed, and then those features are input to an FFNN
to estimate GRF.

A. NARX Architecture

NARX is a recurrent dynamic network with feedback
connections enclosing several layers of the network. The
NARX model is based on the linear ARX model, which
is commonly used in time-series modeling. NARX esti-
mates a nonlinear regressive model of order n based on
measured data [25]. The general equation that represents
a NARX model is

y(k + 1) = f
(
y(k), . . . , y(k − d), q1(k), . . . ,

qi(k), . . . qi(k − n+ 1)
)

+ ε(k)
(1)

where n ∈ Z+ is the regression order, qi are the inputs,
yi are the outputs, f(·) is a nonlinear mapping, and ε(k)
is the modeling residual.

NARX time series modeling is well-known in the
system identification literature and is commonly imple-
mented with a neural network. The NARX architecture
used in this paper is illustrated in Fig. 1, where the inputs
to the network are the number of exogenous signals given
by i , the number of previous output samples given by
d, and the number of time samples of each of the i
exogenous signals given by n.

In our implementation, input-layer neurons were linear
and the hidden and output-layer neurons were tansig
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(tangent-sigmoid) functions [26]. NARX models are typ-
ically trained with the Levenberg-Marquardt algorithm,
but other studies recommend backpropagation through
time (BPTT) [27]. Both algorithms were investigated
here, with LM implented as in [28] and BPTT imple-
mented as in [26], [29], [30]. Data from walking at
1.3 m/s was used to train NARX using both BPTT and
LM. The data was partitioned to use 60% for training,
30% for local cross validation, and 10% for local-testing.
Data from the other walking speeds were used for testing.

NARX includes 25 input-layer neurons: 5 for each
input (knee angle, knee velocity, ankle angle, and ankle
velocity) and 5 for output feedback. That is, i = 4 and
n = d = 5 in Fig. 1. The hidden layer has 10 neurons
and the output layer has 1. The activation function for
the input and output layers are linear, and the activation
function for the hidden layer is tansig.

The training with LM (R=0.99) performed better than
BPTT (R=0.97) for NARX. Varying the delay parameter
d, which represents the number of previous outputs
used to estimate the next GRF, directly affected NARX
performance. GRF predictions were concave with respect
to parameter d, indicating the optimal value was d = 10.

B. DDRNN Architecture

DDRNN is a modification of NARX with the ability
to handle additional model complexity and nonlineari-
ties through recurrence [22], [23], [30]. DDRNN can
be represented in a flexible canonical state-space form
comprising a feedforward ANN N, a multi-delay element
D, a nonlinear mapping function Φ, and a unit delay
element z−1I (Fig. 2). Here, x ∈ Rn is the state
vector of the ANN, and ζ(·) is the input vector to
the nonlinear operator φ. The feedforward ANN, N, is
implicitly treated as a linear mapping.

The RNN architecture is appealing because analyzing
the RNN is more straightforward than NARX [22] and
DDRNN stability conditions, which provide learning
constraints, can be easily derived. The stability proof
of DDRNN has been previously published; exponential

Fig. 2: Discrete delayed recurrent neural network
architecture.

as well as asymptotic stability can be proven using
Lyapunov-Krasovkii stability theory [24], [31].

Φ(·) is chosen to be the tanh (hyperbolic-tangent)
function. N is initialized to a matrix with the identity
matrix as its leftmost component and zeros on its right
side. The input vector is qk, q̇k, qA, and q̇A and the
output y is the estimated GRF. BPTT was used to train
DDRNN with data at walking speed 1.3 m/s with the
same partitions as NARX. The remainder of the data are
used for testing. The training and validation outcomes
were R=0.96 and R=0.97 respectively for DDRNN.

C. Feed Forward Self Organized Map Architecture

SOM-FFNN combines the classification ability of an
SOM with a feedforward ANN. The SOM is comprised
of an r × r array of neurons with input vector q =
(q1, · · · , qn) and m outputs that are input to the FFNN
(Fig. 3). Here, the SOM classifies walking speed based
on knee and ankle angles and velocities before the FNN
estimates GRF. The SOM is an ANN trained with unsu-
pervised learning to map inputs from a high-dimensional
space to a low-dimensional space, or vice versa [32].
Combining FFNN with SOM as a preprocessing unit has
been used before in other applications, where a SOM was
used to extract features from a high dimensional space
and pass them to a k-NN neural network [33].

The advantages of SOM are its competitive rather than
error-correction learning and its neighborhood function,
which maintains topological input characteristics. The
SOM structure is an array of r × r neurons arranged in
a two-dimensional lattice, termed the competitive neuron
layer, with a specific topology. Here, a square topology
is used and each neuron in the competitive layer has
weights wij ∈ Rn, where n is the number of inputs
and i, j ∈ [1, r]. When input vector q is presented
to the network, the lattice neurons compete and the
winning neuron index is denoted as index. Note that
index includes an (i, j) pair. windex indicates the neuron
weights that are most similar to the input vector q.

Fig. 3: SOM-FFNN estimator composed of
self-organizing map and feedforward ANN.
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(a) (b)

Fig. 4: The SOM for (a) 1.63 m/s and (b) 1.3 m/s. The
connection between neurons is visualized through color
coding, where a dark color indicates a strong relationship
and a light color represents a weak relationship.

The winning neuron is known as the best matching unit
(BMU). The BMU index is

index = arg min
i,j
‖q(k)− wij‖, i, j = 1, . . . , r (2)

The BMU neighborhood radius is initialized to include
the entire lattice and at each time step the neuron weights
in the neighborhood radius are updated to be closer to
the input vector:

wij(k + 1) = wij(k) + α(k)h(index, k)(q(k)− wij(k))
(3)

where 0 < α(k) < 1 is the learning rate and h(index, k)
is a weighting function that limits the BMU neigh-
borhood size. The weighting function used here is the
Gaussian function

h(index, k) = exp

(
−‖q(k)− windex(k)‖2

2σ2(k)

)
(4)

where σ(k) is the neighborhood radius, q(k) is the
current input, and windex(k) is the weight of the current
BMU. Each output represents a known category (for
example, walking speed). The algorithm updates the
neurons one at a time, then assigns each output to a
specific category corresponding to input q. The SOM
network is trained using learning vector quantization
(LVQ) [34] via the Matlab deep learning toolbox [35].

Here, the SOM network is composed of a 15×15 grid
with the input layer having four nodes, i.e., wij ∈ R4.
The SOM training data included one stride from each
walking speed. The rest of the data are used for testing
and validation. The SOM produces seven distinct outputs
for the seven different walking speeds, with an example
shown in Figure 4 at two walking speeds (1.3 and
1.63m/s). For each walking speed, the SOM displays a
set of substantial inter-neuron connections that classify
the input into specific categories. There is some overlap
between the groups, but the center of each group can be
located on the diagonal of the SOM. These outputs are
then fed into a FFNN.

For a fair comparison, the FFNN architecture was
selected to be similar to that of the DDRNN and NARX
including 11 input layer neurons (7 from the SOM, and 4
from the knee and ankle angles and velocities), 10 hidden
layer neurons, and 1 output neuron (GRF estimate). The
1.3 m/s walking data for training, local validation and
local testing the FFNN were partitioned the same as
the NARX and DDRNN. After training SOM-FFNN, the
correlation coefficient between actual and estimated GRF
results from local-testing was R=0.997.

D. Validation in Closed-loop Prosthesis Control

One goal of this research is to estimate GRF to reduce
uncertainty in prosthetic leg control. Thus, we compared
the GRF estimators in a closed-loop robotic prosthesis
simulation [10]. The robot emulates the vertical hip
displacement and angular thigh rotation of a transfemoral
amputee. A passivity-based controller developed in [36]
provides robust tracking for the hip and thigh joints and
robust impedance control for the prosthesis knee and
ankle joints. A treadmill provides a dynamic walking
surface. The reference data include 10 strides at walking
speed of 1 m/s. The vertical and horizontal GRF com-
ponents are calculated from the robot dynamics.

The control feedback signal includes vertical hip dis-
placement and velocity, thigh angle and velocity, knee
angle and velocity, ankle angle and velocity, and GRF
as estimated by the ANN. Control performance was
evaluated by measuring the deviation of the simulated
trajectories from the reference trajectories, and is quan-
tified by integral square error (ISE). Simulations were
conducted with no, low (SNR = 6 dB), and high (SNR
= 3.5 dB) noise.

III. RESULTS

A. Validation Tests

The accuracy of each estimation method was judged
by its success in predicting GRF from unseen data during
a validation process. 10% of the 1.3 m/s data was used
for local validation after the training process, while all
other data was used for overall testing of GRF estimation.
Table I shows the RMS value between estimate and
actual GRF, as well as the validation results for each
estimation technique. SOM-FFNN showed the lowest
RMS error in GRF estimation across walking speeds
while NARX showed the highest RMS. An example
of the SOM-FFNN GRF estimate at 1.3 m/s for three
consecutive gait cycles is shown in Fig. 5.

TABLE I: Local and Overall ANN Validation Results

Validation NARX DDRNN SOM-FFNN
RLocal 0.91 0.95 0.996
ROverall 0.99 0.98 0.99
RMS (N) 12.81 9.57 4.85
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Fig. 5: SOM-FFNN estimate and actual ground reaction
force at 1.3 m/s walking speed.

Fig. 6: Validation of SOM-FFNN, NARX, and DDRNN
using all walking speed data.

B. Closed-Loop Control

As the aim of this study was to create a GRF estimator
to reduce uncertainty and increase accuracy of torque
calculation during closed loop control of lower limb
prostheses, we evaluated each ANN in a simulated con-
trol environment. In the no-noise environment, control
performance was similar for all estimation techniques
(Table II), with the exception of better knee tracking
performance for the NARX and better ankle tracking for
SOM-FFNN. As expected, tracking errors for knee and
ankle angle were worse than hip displacement and thigh
angle due to the impedance control deployed at those
joints, and their proximity to the application of GRF at
the prosthetic foot which introduces uncertainty. GRF
estimator-based control provided robust performance in
both low and high noise simulations (Table II). As above,
tracking performance was worse at the knee and ankle.

The difference between actual GRF from human mo-
tion data and ANN-estimated GRF is summarized in
Table III. The table shows that the ANNs can provide
accurate GRF estimates in a real-time simulation. SOM-
FFNN gives better results than the other two ANN
techniques. The performance of NARX is close to that

of SOM-FFNN in the noise-free scenario. The relatively
poor performance of DDRNN is likely due to its state-
space architecture, which increases sensitivity to mea-
surement noise in the closed-loop control environment.

IV. DISCUSSION

Three different ANNs were investigated for GRF esti-
mation with a minimal set of kinematic inputs available
in a transfemoral prosthesis (knee and ankle angle and
velocities). The GRF estimators were trained at walking
speed of 1.3 m/s and their open-loop estimation perfor-
mance was quantified at the remaining speeds from 0.79
to 1.9 m/s. The SOM-FFNN gave the best performance
(average R=0.99 and average RMS=4.85 N) compared
with DDRNN (R=0.98 and RMS=9.57 N) and NARX
(R=0.99 and RMS=12.81 N).

Closed-loop GRF estimation performance was tested
with a passivity-based simulated robotic prosthesis con-
troller. The SOM-FFNN estimator was superior in
closed-loop simulation. The NARX estimator performed
second best. Whereas all GRF estimation techniques
resulted in good tracking in the noise-free simulation,
SOM-FFNN was more robust in the low-noise and high-
noise scenarios.

In summary, nontraditional ANN estimator structures
such as SOM-FFNN can provide accurate GRF estima-
tion with a minimal number of kinematic inputs. The
trade-off between SOM-FFNN architecture size and es-
timation accuracy is currently under investigation. Future
work will focus on designing the SOM for use in a wider
range of activities such as jumping, running, and climb-
ing stairs, and then updating SOM-FFNN to include these
additional activities, first in simulation and ultimately
in a n experimental powered prosthesis. Ultimately, the
integration of SOM-FFNN with closed loop techniques
for trajectory tracking, such as impedance control, needs
more study, especially in noisy environments. SOM-
FFNN and other ANN GRF estimators may also be
useful in providing biofeedback and other applications
requiring real-time gait analysis.
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