
  

 

Abstract— Continuous mixing and conveying technology for 
solid–liquid mixtures is required in the manufacturing process 
of foods and medicines. To achieve this, we develop a peristaltic 
mixing conveyor that simulates the function of the human 
intestines. This device can mix and convey food and medicinal 
contents by inflating a rubber tube using air pressure. Currently, 
we are working on a system of content condition estimation 
using measurement data from the pressure and flow rate sensors 
installed in the device. However, these measurement methods 
use air supplied to the device as the measurement target, and the 
compressibility of air limits the conditions of contents that can 
be estimated. So, the generalizability of the estimation is low. In 
this study, a thin pressure-sensitive sensor is installed that can 
measure the mechanical responses of device contents due to 
mixing by the device. We also construct a multisensing system 
that combines conventional pressure/flow rate and pressing 
force measurements. Sensor data acquired when solid–liquid 
mixtures are fed into the device are applied to machine learning 
to distinguish the mixing ratios of the mixtures. Results show 
that the accuracy of mixing ratio discrimination is improved 
from 96.7% to 98.9% when pressure and flow rate data are 
combined with pressing force data. The results thus confirm the 
improved accuracy of content identification when pressure/flow 
rate and pressing force measurements are combined. 

I. INTRODUCTION 

Mixing and conveying technology for solid–liquid mixtures 
is required in a variety of fields, from familiar products such as 
food and medicine to the production of solid rocket fuel. 
Currently, separate devices are used for mixing and conveying, 
resulting in a batch process for the entire operation. This 
results in increased labor and other costs. In addition, the 
rotating mixer used for mixing generates large frictional and 
shear forces. These forces generate heat and shock, which can 
destroy the structure and organization of a mixture. Therefore, 
the driving conditions of the device are limited. 

To solve these problems, we previously developed a 
peristaltic mixing conveyor that mimics the function of the 
human intestines [1]. The conveyor uses pneumatic artificial 
muscles for continuous mixing and conveying at a low shear 
force. This device can mix and convey powders or liquids by 
expanding an installed rubber tube with compressed air. To 
date, this device has succeeded in conveying powders [2] and 
highly viscous fluids and solid–liquid mixtures [3] and 
producing solid rocket fuel [4]. The human intestines function 
by an autonomous nervous system, which assesses bolus 
conditions from its mechanical/chemical stimuli sensed by the 
enteric nervous system and autonomous decentralized 
switching between segmental movements for mixing boluses 
and peristaltic movements for transporting mixtures. The 
mixing and conveying of contents such as solid–liquid 
mixtures and other fluids by this device change their 
mechanical properties such as their viscosity. Therefore, it is 

 
 

expected that efficient continuous mixing and conveying can 
be realized by sensing mechanical stimulation of the device 
contents like intestines in living organisms and that generates a 
driving pattern for the device based on the obtained content 
information. In the prior study, we applied sensing and 
autonomous decentralized control of the content mixture state 
by simulating the enteric nervous system [5]. We then 
constructed a sensing system to measure the pressure and flow 
rate of the air used to drive the device [6]. We also employed 
machine learning to estimate the mixing degree of powder and 
liquid [7]. Although a previous study [8] successfully 
estimated the mixing degree of solid rocket propellant packed 
in bags, the conditions of the contents by which the mixing 
degree was estimated by machine learning were limited. 
Estimation is particularly difficult when the order in which the 
contents are fed to the device or the arrangement of contents in 
the device is altered, and the current method has low 
generalizability in estimating the mixing degree. 

In this study, a thin pressure-sensitive sensor that can 
measure the pressing force between the rubber tube of the 
device and the device contents is introduced to improve 
generalizability in estimating the content mixing degree in the 
peristaltic mixing conveyor. This sensor can sense the tactility 
of the contents, which changes in the process of mixing that. 
By combining pressure/flow rate measurement with pressing 
force measurement, the pressing force measurement 
complements estimation under content conditions that are 
difficult to estimate previously. In this way, we aim to improve 
the generalizability of the estimation using the multisensing 
method. We conducted an experiment by placing bagged 
solid–liquid mixtures in the device. The measured values of 
pressure, flow rate, and pressing force were input into a 
machine learning model to distinguish the mixing ratios, and 
the effect of multi-mediatization by the introduction of 
pressing force measurement is studied. 

The remainder of this paper is organized as follows. Section 
2 summarizes the peristaltic mixing conveyor and content 
sensing system. Section 3 describes the experiments for 
acquiring sensor data used in mixing ratio classification. 
Section 4 describes mixing ratio discrimination by machine 
learning, and Section 5 provides a summary and future 
prospects. 

The contributions of this paper are showed as follows. 
     The mixing ratio of solid-liquid mixtures packed in bags  

was successfully identified using machine learning based  
on data obtained from pressure/flow rate sensors and thin 
pressure sensitive sensors installed on a peristaltic 
mixing conveyor. 
 

  Multisensing of pressure/flow rate and pressing force 
measurements was suggested to be effective for content 
state estimation during mixing when the difference of 
deformation behavior of the rubber tube was difficult to 
observe. 
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Fig. 1  (a) Overall view, (b) The single unit appearance, and 
  (c) sectional view of Peristaltic Continuous Mixing Conveyor 
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Fig. 2  Driving of the single unit 

 

II. PERISTALTIC MIXING CONVEYOR AND SENSING SYSTEM 

A. Device Overview 
This section describes the structure of the peristaltic mixing 

conveyor. Fig. 1 presents an overall view of the device and the 
appearance and cross-sectional view of each unit. This device 
is a unit configuration, and each unit of which can be driven 
independently to imitate intestinal function. The intestines 
perform segmental operations in mixing food masses and 
digestive juices and performs peristalsis to convey the 
mixtures. These movements can be reproduced by the device 
by designating the unit in which air pressure is applied. Each 
unit consists of an axial fiber-reinforced pneumatic artificial 
muscle (hereinafter “artificial muscle”), a rubber tube, and 
flange. Fig. 2 shows the way the device is driven. The inside of 
the tube is closed by the application of air in the chamber space 
between the rubber tube and artificial muscle. Simultaneously, 
the artificial muscle expands radially and contracts axially to 
facilitate the occlusion of the canal and the mixing and 
conveying of the contents. Each unit is equipped with pressure 
and flow rate sensors to measure the chamber pressure and 
supply and exhaust flow rates, respectively. The volume and 
viscosity of the contents can be detected from these sensor 
values [6], and applied machine learning can estimate the 
mixing degree of the contents [7]. 

B. Challenges related to Pressure and Flow Rate 
Measurement and the Proposal of Multi-Sensing Method 

Pressure and flow rate measurements of the contents of 
peristaltic mixing conveyors have generalizability problems 
when the mixing degree is estimated. Based on pressure and 
flow rate values, these measurement methods detect 
differences in the volume and flowability of the residual  
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(b) 
Fig. 3  Thin Pressure sensitive sensor  

                (a) Overall view  (b) Sensing area 
 
contents in the rubber tube as mixing progresses. However, 
these changes due to mixing may be small depending on the 
fed amount and order of mixed materials, making it difficult to 
detect the mixing degree. Therefore, pressure and flow rate 
measurements alone limit the content conditions under which 
the mixing process can be assessed, and the generalizability of 
the mixing degree estimation is low. 

In this study, we construct a multisensing environment that 
combines pressure/ flow rate with another sensor information. 
Specifically, we develop a sensing system that has high 
estimation generalizability, which is accomplished by 
supplementing the estimation of mixing degree under the 
content conditions (previously difficult to determine) with 
another sensor information. In a previous study, a triaxial 
acceleration sensor [9] was introduced to measure the 
deformation behavior of the rubber tube in the device when air 
was applied to the device. However, due to the significant 
effects of noise, discriminating the contents from the measured 
values proved difficult. 

With the introduction of a sensor that directly measures the 
mechanical response of the rubber tube in the device when it 
supplies a pressing force against the device contents, changes 
in the mechanical properties (such as viscosity and liquidity) of 
the contents during mixing can be directly measured. As a 
method for measuring contact force with objects, tactile 
sensors such as piezoresistive sensors can be used. They have 
been developed for tactile measurements in industrial robots 
and cooperative work robots [10]–[12]. Typically, they are 
sheets that can be applied to robotic skin and can be flexibly 
deformed to fit the object to which they are attached. In our 
case, to measure the pressing force in the mixing conveyor, a 
sensor that can be attached to the surface of the rubber tube is 
required. The thin pressure-sensitive sensor is flexible in sheet 
form and can be deformed to fit the rubber tube. It is thus 
suitable for mounting on our device. In addition, because this 
sensor is thin, conveying of the contents in the device are not 
obstructed even the sensor is installed on the rubber tube. 
Therefore, it can directly measure the contents without 
interfering with mixing and conveying. By the introduction of 
this sensor, we construct a multisensing environment that 
combines pressure and flow rate measurements that target the 
compressed air which is supplied in the chamber of the device 
and a pressing force measurement that does not use inclusions. 
The goal is to improve generalizability in content state 
estimation. 
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Fig. 4  Sensor mounting on the single unit of the device 
(a) Mounting concept   (b) Attached sensors 
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C. Installation of Thin Pressure Sensitive Sensor 
A thin pressure-sensitive sensor was mounted on a rubber 

tube in a device. This section describes the mounting method 
for the sensors and the pressing force measurement. Fig. 3(a) 
shows the thin pressure-sensitive sensor (Tekscan FlexiForce 
A201). When a load is applied to the sensing area, as shown in 
Fig. 3(b), the resistance value decreases due to the 
piezoresistive effect, and the contact pressure is measured. 
When compressed air is applied to the device, the rubber tube 
is occluded at three equally spaced locations in the 
circumferential direction. Three sensors are mounted on the 
surface of the rubber tube to establish a sensing area at each of 
the three blockage points (Fig. 4). When the device operates 
after being placed contents, as shown in Fig. 5, the sensing 
area makes contact with the contents as the rubber tube 
presses against them to measure the pressing reaction force. In 
this study, as an initial study of mixing state estimation by a 
multisensing system including pressing force measurement, a 
solid–liquid mixture packed in a plastic bag was fed into a 
device mounted with pressure-sensitive sensors, and the 
chamber pressure, supply and exhaust flow rates, and pressing 
force were measured. The measurements were then used as 
input variables for machine learning to discriminate the 
mixing ratios of the mixtures. The effect of the pressing force 
measurement on the accuracy identification of contents was 
then assessed.  

III. SOLID-LIQUID MIXTURE MEASUREMENT EXPERIMENT 

An experiment was conducted in which bagged solid–liquid 
mixtures were fed into a single unit of a device mounted with 
three thin pressure-sensitive sensors to measure the chamber 
pressure, supply/exhaust flow rates, and pressing force. 

A.  Experimental Method 
Fig. 6 shows the experimental environment, where the 

device was installed vertically for the experiment. Compressed 
air was used to drive the device and was supplied from an air 
compressor into the chamber through the supply-side solenoid 
valve (SMCVX210AGA) and was exhausted through the 
exhaust-side solenoid valve. The applied pressure of the 
compressed air was set to 60 kPa by a regulator. A pressure 
sensor (CKD PPX-R01PH-6M) to measure the chamber 
pressure and a flow rate sensor (SMC PFM750-C6-C) to 
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Fig. 6  Experimental environment 
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Fig. 7  Solid-Liquid mixtures 
(a) Bagged samples  (b) Insertion method into the device 

 
measure the supply and exhaust flow rates were installed on 
the pneumatic circuit. The opening/closing signal transmission 
of the solenoid valve and the acquisition of sensor data were 
performed using Micro Lab Box (dSPACE), and the sampling 
period was set to 0.05 s. In this experiment, the device was 
driven for 10 s per cycle (5 s each of supply and exhaust). The 
device drove ten cycles of driving for each solid–liquid 
mixture sample, which was considered as one experiment. 

In this experiment, mixtures of glass beads (particle sizes of 
425–600 µm, hereinafter “powder”) and aqueous sodium 
polyacrylate solution (17.2 Pa・s, hereinafter “liquid”) packed 
in low-density polyethylene bags (300 × 90 × 0.08 mm) were 
used as device contents. To perform clustering of the mixing 
ratio of the mixture using the acquired sensor data, five mixing 
ratio conditions were established with the mass ratios of 
powder-to-mixture set to 0, 25, 50, 75, and 100 wt%, 
respectively. To investigate the effects of the total mixture 
amounts on the discrimination accuracy, three total amount 
conditions of 90, 135, and 180 g were set, and the samples 
were prepared under each total amount condition at five 
mixing ratios (Fig. 7 (a)). The samples were placed in the 
rubber tube suspended from above the device (Fig. 7 (b)). 

B.  Acquired Experimental Data 
In this experiment, for each cycle of device operation, the 

chamber pressure was obtained from the pressure sensor, the 
flow rate values of air supply and exhaust from the flow rate 
sensors, and the pressing force values from three 
pressure-sensitive sensors. A 2nd-order Butterworth low-pass 
filter (cut-off frequency: 1 Hz) was applied to the measured 
pressing force data using MATLAB (ver. 2023a, MathWorks) 
to reduce noise. 

C. Experimental Result 
Fig. 8 shows the time-series data per cycle averaged over 18 

cycles for each of the five mixing ratio conditions based on the 
acquired data of chamber pressure, air supply and exhaust flow 
rates, and pressing force. For the total mass conditions, the 
upper graph is 90 g, the middle 135 g, and the lower 180 g. The  
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(a) Total mass of mixture : 90 g
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Fig. 8  The time-series data of averaged chamber pressure, flow rate, and pressing force for each total mass condition of mixtures. 

 
graphs show (from left to right) the chamber pressure, air 
supply and exhaust flow rates, and pressing force for each total 
mass condition. The pressing force is a time-series graph 
averaged from each of the three sensors (F1, F2, and F3) 
mounted on the device. Fig. 8 shows the difference in sensor 
values based on the mixing ratio at 2 s after the start of 
supplying air for the chamber pressure, 1 to 4 s after the start of 
supplying air and 3 s after the start of exhaust for the flow rate. 
In the graphs for pressing force, the difference in measurement 
values based on the mixing ratio was clearly observed at 6 s 
from the rise until the fall of the graph. 

Ⅳ.   MIXING RATIO DISCRIMINATION BY MACHINE LEARNING 

Next, the acquired sensor data were input into a machine 
learning model to perform multiclustering of the five mixing 
ratios. First, the mixing ratios of the mixture (0, 25, 50, 75, and 
100 wt%) were labeled for four types of sensor data (chamber 
pressure, supply flow rate, exhaust flow rate, and pressing 
force). Labeled data were used as the ground truth for machine 
learning. Feature values were extracted from time series data 
of each sensor and 11 datasets were created with different 
numbers and combinations of sensors. Each dataset was then 
fed into a classifier to compare discrimination accuracy. 
MATLAB was used for data processing. 

A. Input Variables for Machine Learning 
This section describes the feature value extraction of sensor 

data input to the machine learning model. The feature values 
per cycle were pressure value at 0.8 s after supply started for 
chamber pressure, integrated value for 5 s of the supply and 
exhaust sections in flow rate, and time integrated value of the 
measurement value for 10 s per cycle in pressing force. Each 
feature value was extracted over 18 cycles. For each total mass  

Table 1 Variables for each dataset 
(Pa : Chamber pressure, FRin : Supply flow rate, 

FRout : Exhaust flow rate, F : Pressing force) 
654321No.

Pa
+FRout

Pa
+FRin

FFRoutFRinPaData Set

223111Variables

1110987No.

F
+FRout

F
+FRin

F
+Pa

Pa+FRin
+FRout

FRin
+FRout

Data Set

44432Variables
 

 
condition (90, 135, and 180 g), 11 datasets were created: four 
datasets using each sensor data individually and seven datasets 
under different numbers and combinations of sensors. Table 1 
lists the datasets and numbers of input variables. 

B. Machine Learning Model 
The k-nearest neighbor algorithm (k-NN) was used as a 

machine learning model to discriminate the mixing ratios of  
mixtures. Thirty-three datasets were entered into the classifier, 
and the mixing ratios of the mixtures were discriminated. 

k-NN is a learning model that classifies unknown data by 
calculating the distance between known training data and 
unknown data plotted in vector space. It then extracts k 
training data in the neighborhood of the unknown data and the 
unknown data are classified by majority voting of the extracted 
data. k-NN is non-parametric learning model and can be 
applied universally to any data. Therefore, it is suitable for 
clustering with integrated different sensor data as this study. In 
this study, the amount of neighborhood data extracted was 1 (k 
= 1), and Euclidean distance was used for distance calculations. 
A five-fold cross validation was also conducted. 
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Table 2 Discrimination accuracy for each dataset using by k-NN. 
F

+FRout
F

+FRin
F

+Pa
Pa+FRin
+FRout

FRin
+FRout

Pa
+FRout

Pa
+FRin

FFRoutFRinPaData Set

100%94.4%100%72.2%94.4%66.7%61.1%100%50.0%44.4%38.9%0 wt%

94.4%94.4%94.4%77.8%100%38.9%83.3%77.8%33.3%72.2%38.9%25 wt%

100%83.3%88.9%83.3%83.3%66.7%61.1%88.9%61.1%61.1%27.8%50 wt%

94.4%83.3%94.4%100%100%100%72.2%88.9%100%55.6%66.7%75 wt%

100%100%100%100%94.4%100%100%77.8%100%100%100%100 wt%

97.8%98.9%95.6%96.7%95.6%74.4%75.6%90%70%66.7%54.4%Total

(a) Total mass of mixture : 90 g

F
+FRout

F
+FRin

F
+Pa

Pa+FRin
+FRout

FRin
+FRout

Pa
+FRout

Pa
+FRin

FFRoutFRinPaData Set

100%94.4%83.3%100%100%100%100.0%83.3%100%100%22.2%0 wt%

94.4%66.7%66.7%100%100%100%83.3%44.4%100%72.2%44.4%25 wt%

100%72.2%77.8%100%100%94.4%77.8%66.7%72.2%88.9%55.6%50 wt%

94.4%77.8%66.7%100%100%94.4%66.7%72.2%77.8%83.3%38.9%75 wt%

100%100%100%100%100%100%100%83.3%100%100%100%100 wt%

83.3%82.2%78.9%100%100%97.8%92.2%63.3%90%88.9%46.7%Total

(b) Total mass of mixture : 135 g

(b) Total mass of mixture : 180 g

F
+FRout

F
+FRin

F
+Pa

Pa+FRin
+FRout

FRin
+FRout

Pa
+FRout

Pa
+FRin

FFRoutFRinPaData Set

100%100%100%100%100%72.2%100%94.4%33.3%100%66.7%0 wt%

94.4%94.4%83.3%94.4%94.4%50.0%72.2%94.4%61.1%72.2%38.9%25 wt%

100%100%100%100%94.4%38.9%88.9%100%61.1%88.9%55.6%50 wt%

94.4%88.9%88.9%100%100%88.9%94.4%66.7%83.3%83.3%72.2%75 wt%

100%94.4%100%100%100%100%100%88.9%100%100%100%100 wt%

96.7%96.7%94.4%98.9%97.8%81.1%92.2%87.8%64.4%88.9%66.7%Total

Over 75 % Under 50 % Maximum Accuracy
 

C. Discrimination Result 
Table 2 shows the discrimination accuracies of all datasets 
under each total mass condition. The second through sixth 
rows of this table show the discrimination rates for each 
mixing ratio condition, and the seventh row shows the 
discrimination accuracies for all mixing ratios. The dataset 
with the highest overall discrimination accuracy under each 
total mass condition is shown in red. In the datasets in which 
each of the four sensors was used alone (Pa, FRin, FRout, and 
F), conditions with of less than 50% and more than 75% 
identification accuracy are given in blue and yellow, 
respectively.  

When the total mass was 90 g and only pressure and flow 
rate data were used, the correct response rate was lower for 
mixtures with low powder content (0, 25, and 50 wt%) than 
with high powder content (75 and 100 wt%). However, when 
only the pressing force data were used, all mixing ratios could 
be discriminated with an accuracy of more than 75%. The 
combination of pressing force and flow rates resulted in a 
maximum discrimination rate of 98.9%. 

When the total masses were 135 g and 180 g, the pressure 
data discriminated with high accuracy when the content was 
only powder (100 wt%), whereas the other mixture ratios were 
discriminated at a maximum of only 72.2%. In the flow rate 
data, the mixtures with less powder components were 
identified accurately, and the overall accuracy was 
approximately 90%. When pressing force data were used 
alone, the correct response rate was less than 70% for some 
mixing ratios, and the overall accuracy was lower than that 
when the total mass was 90 g. The maximum accuracy for a 
total mass of 135 g was 100% when using the dataset 
combined pressure and exhaust flow rates. The maximum 
accuracy for a total mass of 180g was 98.9% when using the 
dataset combined chamber pressure, supply, and exhaust flow 
rates. Therefore, when the total masses were 135 g and 180 g,  
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Fig. 9  The time-series data of chamber pressure. Total masses of 

mixtures are (a) 135 g and (b) 180 g, respectively. 
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Fig. 10  The state of the device when total masses of mixtures are 

135 g and 180 g. 
 
only the pressure and flow rate data could be used to identify 
the mixing ratio with sufficiently high accuracy without 
including the pressing force measurements. 

Based on the previous, the combination of pressure and 
flow rates alone could not accurately discriminate some of the 
mixing ratios of solid–liquid mixtures when the amount of the 
mixture was small, and the discrimination rate was improved 
by combining the pressure and flow rates with the pressing 
force measurement. However, when the total mass of the 
mixture was increased, highly accurate identification was 
possible only by measuring the pressure and flow rates. 
Accordingly, the introduction of the pressing force 
measurement could be confirmed as improving the 
identification accuracy when the total mass of the mixture was 
small. 

D. Discussion 

(a) Effects on pressure/flow rate measurement due to 
differences in the total mass of the mixture 

Table 2 shows that discrimination by pressure and flow rate 
data yielded a low accuracy for mixtures with a low powder 
ratio when the mixture mass was 90 g. This was because the 
mixture with low powder content had high liquidity. Highly 
fluid objects were forced out of the device when the lubber 
tube was closed. Therefore, when a mixture with a low 
powder ratio was put into the device, nearly all the contents 
were forced out, where the differences in the deformation 
behaviors of the rubber tube due to different mixing ratios 
were not readily apparent. 

When the total masses were 135 g and 180 g, pressure data 
discriminated only powders with high accuracy (100 wt%), 
but the discrimination rate for other mixing ratios containing 
liquids was only approximately 70% at maximum. This was 
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because the increased total mass of the mixture increased the 
liquid mass in the mixture, and the stiffness of the contents 
decreased. Compared to when the content was only powder, 
the mixture containing liquid exhibited greater cushioning, 
and the rubber tube expanded more slowly. Consequently, the 
pressure value increased slowly from 0.1 to 0.5 s after supply 
of compressed air started regardless of the mixing ratio, as 
shown as Fig. 9. Therefore, we observed no clear difference in 
the pressure values after 0.8 s from air supply start in the 
mixing ratios except for that of 100 wt%. However, the flow 
rate data accurately identified mixtures with low powder 
content at a discrimination rate of approximately 90% with all 
mixing ratios. This was because when the amount of mixture 
was increased, the highly fluid mixture was not totally 
expelled after being forced by the rubber tube, and some 
remained in the device (Fig. 10). Differences in the properties 
of the residues such as fluidity and viscosity according to the 
mixing ratio affected the ease at which the contents were 
forced by the rubber tube, and it was hard to observe 
differences in the flow rate of air in the chamber. 

(b) Effects on pressing force measurement due to differences 
in the total mass of the mixture 

When the total mass was 90 g, discrimination using 
pressing force data resulted in a classification accuracy of 
greater than 75% for all mixing ratios. This was because the 
mixture adhered to the inside of the bag at the blockage point 
when the rubber tube was closed. The number of grains of 
powder contained in the adhered mixture differed depending 
on the mixing ratios, and the difference in the number of 
grains was reflected in the pressing force values.  

When the total masses were 135 g and 180 g, the 
discrimination rate was less than that for a mass of 90 g for 
some mixing ratios. This was because the liquid mass in the 
mixture increased with the total mass, and the effects of the 
fluidity and cushioning properties of the liquid were more 
easily reflected in the pressing force values. These effects 
made it difficult to observe the difference in pressing force 
depending on the mixing ratios.  

(c) Effects of introducing the pressing force measurement 

In this experiment, when the total mass of the mixture was 
low, conditions were present that made it difficult to classify 
the mixing ratios with high accuracy when only measuring the 
pressure and flow rate. This was due to the effects of the 
flowability of the contents. However, the pressing force 
measurement could capture differences in the mechanical 
properties of the mixture depending on the mixing ratio from 
the small amount of adhered mixture to the bag. Still, as the 
total mass increased, the mixing ratio could be discriminated 
with high accuracy from the difference in flow rate with the 
deformation of the rubber tube. By contrast, the 
discrimination by pressing force measurement decreased the 
accuracy due to the effects of the flowability and cushioning 
of the liquid. Therefore, when the volume of the contents was 
low or when the contents were highly fluid under conditions 
in which differences in the deformation of the rubber tube 
were difficult to detect, the multisensing method of 
pressure/flow rate and pressing force measurement was 
effective in content state estimation. 

Ⅴ.  CONCLUSION 
In this study, thin pressure-sensitive sensors were mounted 

on a rubber tube of the peristaltic mixing conveyor to improve 
the generalizability of content state estimation. Bagged 

solid–liquid mixtures were placed in the device under 
different mixing ratios and total content masses, and the 
sensor values of chamber pressure, supply/exhaust flow rates, 
and pressing force were obtained during device operation. The 
acquired sensor data were applied to machine learning to 
discriminate the mixing ratios of mixtures. Results showed 
that the identification accuracy was improved by the 
multimodal sensing system that combines pressure/flow rate 
and pressing force measurement under a low total mixture 
mass. 

In a future work, we will mount thin pressure-sensitive 
sensors on multiple units of the device and attempt to detect 
the mixing process of solid–liquid mixtures using the 
multisensing method developed in this study. Simultaneously, 
we will experiment under different conditions such as the 
amount of mixture and input sequence of liquid and powder to 
verify the generalization performance of the multisensing 
system on mixing process detection. 
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