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Using Physics-Based Model Priors with Application to Acrobot
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Abstract—Accurate dynamical models form a main driver
for high performance mechatronic applications. Conventional
modeling of mechatronic systems is often limited in its ability to
handle poorly understood phenomena and may not be adequate
in instances where the underlying dynamics are not fully known
nor fully captured by sensory data. To overcome these limitations,
we propose a physics-based data-driven state-space modeling ap-
proach. We phrase the problem as a probabilistic representation
learning problem. The hybrid model combines known physical
relations with parametrized functions, represented as neural
networks, to serve as substitutes for the previously unidentified
substructures. The identification problem is solved using the
Expectation-Maximization (EM) algorithm. In the Expectation
step, Bayesian smoothers are utilized to provide complete state
estimates from partial observations. In the M-step, the hybrid
model is fitted onto the smoothed data. Although the physics
based prior model comes at the loss of expressiveness, it serves
as a strong model prior. The use of a physical model prior
is beneficial both to improve the accuracy of the inference
during the E-step as well as to reduce the complexity of the
M-step. The proposed methodology is applied and validated for
the identification of friction in both joints of an acrobat, with
only measurements available in one joint. Numerical experiments
demonstrate the methods capability of identifying comprehensive
representations of the friction characteristics in both joints and
possessing accurate predictive abilities.

I. INTRODUCTION

Accurate modeling of mechatronic systems is crucial for
realizing their full potential and enabling advanced capabilities
such as precise motion control, predictive maintenance, and
informed decision-making. Conventional modeling of mecha-
tronic systems is based on an expert’s understanding of the
system dynamics, represented through physics-based models
[1]. These models provide a high degree of interpretability
and robustness, but they are limited in their ability to han-
dle poorly understood phenomena. On the other hand, when
large amounts of observational data are available, machine
learning techniques can be employed to infer the underlying
system dynamics [2], [3]. A wide variety of data-driven
system identification techniques have been developped, such
as Hammerstein-Wiener structures [4], nonlinear ARMAX
models [5] and Neural Network (NN) models [6]. These data-
driven methods can achieve high accuracy, but they often lack
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the interpretability of physics-based models due to their lack
of physical intuition.

At the intersection of these two fields, a persistent research
effort is aimed at integrating the advantages of both physics-
based and data-driven modeling methods, while mitigating
their shortcomings. A spectrum of modeling strategies exists,
which endeavors to find a balance between interpretability and
precision by leveraging both expert knowledge and observa-
tional data to generate a comprehensive representation of the
system dynamics. These modeling formalisms generally focus
on specific system classes, such as those described by Physics-
Informed Neural Networks (PINN) [7], Langrangian Neural
Networks (LNN) [8] and Neural Network Augmented Physics
(NNAP) [9], to name a few examples.

However, in numerous instances, the underlying dynamics
of a dynamical system are not fully known and can only
be partially observed. In these scenarios, traditional machine
learning techniques that merely construct an input-output map-
ping are inadequate, as the governing dynamics are not fully
captured in the observations. Generative models such as Hid-
den Markov Models (HMM) [10] provide a more appropriate
framework. The State-Space models (SSM) describing such an
HMM decompose the model into two components: a transition
model that captures the underlying latent dynamics of the
observed data and an emission model that maps the latent
variables to the observation domain, accounting for system
and measurement noise respectively. A key aspect of HMMs
is their computational flexibility, enabling the inversion of the
emission model into an inference model which allows to render
estimates of the latent variables given the observations [11].

In this study, we combine the benefits of the NNAP
modeling formalism and HMMs for nonlinear probabilistic
state-space model identification in mechatronic systems with
incomplete state observability. This problem is considered
as a special case of the generic variational representation
learning problem [11], [12]. We explore the potential of the
NNAP architecture as a physics-informed model prior for the
latent state transition model in conjunction with approximate
Bayesian inference algorithms. For simplicity, in this work we
impose the mild assumption that there is a known relation
between the observed variables and part of the state variables
occurring in the state-space model.

Overall, the contributions of this paper are: (i) the integration
of physics-based neural network models in the theoretical
Hidden Markov Model framework within the larger scope of

979



Fig. 1: Graphical representation of a Hidden Markov Model.

probabilistic representation learning. (ii) Assessment of the
performance of different approximate Bayesian inference algo-
rithms tailored to nonlinear models, specifically the Extended
Kalman Smoother (EKS) and the Particle Smoother (PS). (iii)
Analysis of the performance of our approach in terms of
interpretability and predictive capabilities w.r.t. to pure data-
driven approaches, with application on the acrobot.

II. PROBLEM FORMULATION

We consider the problem of identifying a substructure of
a probabilistic nonlinear state-space model under incomplete
observability. This problem has enjoyed considerable attention
in the system identification community, however mainly in
a deterministic setting or assuming measurement noise but
no system noise. We generalize the scope of the problem to
general nonlinear and stochastic systems in discrete time.

Given N data sequences D = {201, ul.;-}_,, each consist-
ing of T'+1 samples, with input data u; € R™* and output data
z¢ € R™=, we are interested in learning a representation of the
following measurement likelihood [11]. Under the assumption
of independently and identically distributed (i.i.d) experiments
the probability decomposes into the product of the probability
of the N individual experiments.

N
p({Zg:T}fyzl‘{ug:T}gzl) = H p(zg.r|ugr) (1)
n=1

In the setting where the observed variables do not allow to
reconstruct the full state, it is common to assume a sequential
latent space z; € R"=. Representing the time-series data
as Hidden Markov Models allows to elegantly combine the
observed variables z; and u; with the latent variables x;. We
refer to Fig. 1 for a graphical representation.

A HMM is completely characterised by the conditional
probabilities associated to the graph vertices and the root node.
For HMM:s the conditional dependencies are also known as the
Markov properties. Clearly this formulation coincides with a
probabilistic version of a standard discrete time state-space
model or a PSSM.

xo ~ p(xo)
xp ~ P(@e]|Te—1, Up—1) 2
zt ~ p(ztlxtaut)

The conditional structure of the HMM allows to decompose
(1) as follows

p@(ZO:T|uO:T) = /pﬁ(zlzT;xO:Th/fO:T)de:T (3)

where

p(z1.7, To:7|wo:T)

T
= p(zo) HP(ZtL’Ct, u) Hp(xt|fct—1, up—1)
t=0

t=1

“

The goal in this work is thus to determine representations for
the probabilities p(x¢|xs—1,us—1) and p(z¢|ze, us) presented
with the data D. In practice this can be achieved by pa-
rameterizing the probabilities and determining a Maximum A
Posteriori estimate optimizing the likelihood of the data

N
Oy = mgxxﬁa({z(’iT}ﬁ:l) = max Z log po (2g.r|ug.r)

n=1
)
We propose to use the following parameterization where the
random variables w; and v; serve as the sources of process and
observation noise, respectively.

p(@elzi—1,u—1) = fo(Ti—1,u-1) +wy, we ~N(0,Q)
p(ze|ze, we) = go(Te, wg) + ve, v ~ N(0,R)
(6)

Ideally, the latent space coincides with the physical state
of the system. In general however the latent space can be
identified up to a similarity transform from observations
alone, i.e. any invertible transformation 7 such that (; =
T (T (G-1) = fr(G-1) and z = g(T(¢) = g7(C)
results in an equivalent solution. Therefore, without including
prior knowledge, we cannot identify the latent space uniquely
nor make it coincide with any physically interpretable space.

In this work specifically, we examine the situation where
a SSM has been partially identified but is still affected by
multiple unidentified nonlinear phenomena. Furthermore, we
consider scenarios where it is impossible to observe the com-
plete system’s state x, resulting in an incomplete observation
represented by z, i.e. dim [z] < dim [z]. However, we assume
that the function g is known and invertible such that from
z we can construct £ with £ C x the observable state and
that & together with the physics based model prior contains
sufficient information to identify the unknown substructures
and as such to reconstruct the complete state x = {Z, 2}, with
x the unobservable states.

To address this, we propose a data-driven system iden-
tification method for identifying the unknown phenomena
complementing the physical model. The transition model fy
will be parametrized by substituting neural networks for the
unidentified terms in the prior physics model. Our motivation
is to solve (1) more efficiently and gain additional insights in
the dynamical behaviour of the system.

III. METHODOLOGY

A. NNAP Architecture

The Neural Network Augmented Physics architecture is
a modeling formalism for constructing dynamical models
capable of predicting the next state, x;y1, given the current
state, x4, and input, u;, of a systems with nonlinear dynamics.
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The model is particularly useful for systems that can be gov-
erned by Ordinary Differential Equations (ODE) of the form
f (¢, ut, ye ), where the unknown static relation y; = h(xy, ug)
is not analytically expressible nor directly measurable. Within
the NNAP framework these unknown phenomena are approx-
imated by a neural network hy that is parametrized by 6
denoting its weights and biases.

By utilizing this NNAP architecture as a physics-informed
model prior, the unknown ODE substructure can be identified
while the structure of the model remains fixed. The resulting
model is interpretable and allows for the unique identification
of unknown phenomena. The substitution of the unidentified
terms represented by hg in the prior ODE model results in the
following general expression

&y = [, ug, ho(qr)) = folwe, wy) @)

where ¢; = ¢(x,u;) denotes the input feature vector, with ¢
some arbitrary preprocessing function.

Numerical integration techniques can be employed to solve
this derivative function over the sampling time of the measure-
ment sequence, resulting in a discrete-time state-space model

Tir1 = fo(we, ur) (8)
B. Expectation-Maximization algorithm

It is widely acknowledged that the optimization of the ob-
jective in equation (5) is a challenging task, provided that x is
unobserved and the distribution pg(x¢|xs—1,us—1) is unknown
prior to the estimation of the parameter 6. To circumvent this,
we approximate Ly by its minimum variance estimate Qg g~
given the observed data and an assumption * on the true value
of the parameter 6.

Qg6+ = Eg+ [log pa(20.7, To.r|uo.7)|20:7]

= /IOgPG(ZO:T,JUO:T|U0:T)P9*(on:T\uo:T,Zo:T)d%:T
©))

This gives rise to an iterative procedure where Qg g, is eval-
uated for 6 and optimized for 8 yielding the next iterate 6 1.
This procedure is known as the Expectation-Maximization
algorithm, see Algorithm 1.

The function Qg ¢« can be further decomposed by substitu-
tion of (4) into three separate terms each targeting one of the
components of the HMM (2).

Qoo+ = Q) g~ + Q) g + Q) 5. (10)
where

Qg,a*:/10gp9($0)p9*($0|UO:T7ZO:T)diUO

T—1
ane*zz//logpe(xH-l|xt7ut)p6*(l't+17xt|UO:T,ZO;T)dl’zdxt+1
t=0

T
Qg,e*:Z/IOgPG(Zt|$t7ut)p9*(ﬂft|u0:T,ZosT)dIt
t=0
(11)

Evaluation of the different terms requires evaluation of
the posterior expectation. Thus if we want to use the exact
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Algorithm 1: Expectation-Maximization Algorithm

1: Set k = 0, initialize 6,

2: repeat

3: E-step: calculate Q(6,60y)

4 M-step: 611 = arg maxg Q(6, 0%)

5. until convergence: Q(0x,0k—1) — Q(Ok—1,0k—2) — 0

solution we should be able to evaluate the posterior distri-
bution p(xg.7|ug.T, 20.7), Which is intractable for nonlinear
probabilistic state-space models.

C. Approximating the Posterior distribution

The computation of Qg ¢~ primarily depends on the evalu-
ation of the posterior probability p(xo.r|uo.r, z0.7). Here we
demonstrate how the computational flexibility of the HMM
architecture can be exploited to compute this distribution,
which is known as the smoothing distribution.

In the theory of HMMs, the probability of state z; given
the sequence of observations zg.; is referred to as the filtering
distribution. This distribution can be calculated through a
recursive process.

p(xt+l|20:t+17U0:t+l)
(12)
0<p(2t+1|36t+1)/p($t+1|$t,ut)p($t|zo:t,Uo:t)dfvt

The smoothing distribution can be evaluated in a backward
recursive manner, once the filtering distribution is available

p(xt|ZO:T7 UO:T)
(13)
X p(ze|we) [ p(wig1|@e, ue)p(xe|20:7, w0 )dy

These are typically approximated as it quickly becomes
intractable to evaluate exactly for nonlinear systems. In the
present work we consider two popular choices. We put forth
the Extended Rauch-Tung-Striebel (RTS) Smoother and the
Particle Smoother (PS) as respectively a gradient and popula-
tion based approximation of the exact Bayesian Smoother in
order to calculate this posterior distribution.

1) Extended Rauch-Tung-Striebel Smoother: The Extended
RTS smoother assumes the transition (f) and emission (g)
functions from (6) to be differentiable and the random vari-
ables w; and v; to be sources of Gaussian white noise with
covariance matrices Q; and R respectively. The RTS filter and
smoother perform approximate inference through linearization
of the nonlinear equations of the systems model

A, — Of (pe, ut)
, = b 7t
a,ut
Ag(put, ut)
5‘ut
where 11, is the expected state conditioned onto measurements
zo:t—1 and the Jacobian matrices A; and C; correspond to the
transition and observation matrix of linear state-space models,
respectively. The recursive schemes for calculating the filtered

(14)
C =



and smoothed distributions given these linearized functions are
then identical to those of the standard linear Kalman filter and
smoother. A detailed discussion is presented in [11].

2) Particle Smoother: The fundamental idea underlying
particle smoothers, more formally known as sequential impor-
tance sampling (SIR) methods, is to approximate the integrals
of (12) and (15) by a sum of sufficiently many (IN,,) uncorre-
lated samples 2%, i.e. the particles, such that

NP
p(@ilzor, uo.r) = Y wig.pd(ay — &) (15)
=1

with § the Dirac delta operator and Wi|o:T the weights denoting
the probability of the occurrence of particle £} at moment ¢

given the sequence of observations zg.p. An in depth descrip-
tion can be found in [11], [14].

IV. NUMERICAL VALIDATION ON ACROBOT

We verify the combined architecture described in the previ-
ous section on the Acrobot system.

1) System description: The Acrobot system is a double
pendulum composed of two links connected by joints. It is
an underactuated and highly nonlinear system, with only the
joint connecting the two links being actuated by a servomotor.

0.2

\

0.0

—0.2

—-10 =5 0 5 10
Angular Velocity [rad/s]|

Friction Torque [Nm|

(a) Schematic representation of (b) True friction characteristics
the acrobot. for the joint friction torques.

Fig. 2: The acrobot system.

The simulation environment used in this study is based
on OpenAl’'s Gym [15] implementation of the acrobot, as
described by Sutton [16], with modifications to be consistent
with an experimental lab setup of the acrobot. A schematic
representation is given in Fig. 2a. The modifications include
the integration of friction terms in the form of joint friction
torques 7¢(q, ¢) = {,, ¢, }, which were derived from friction
characteristics identified on the experimental lab setup. These
static friction characteristics are depicted in Fig. 2b. The
friction characteristics are represented as an angular velocity
to friction torque mapping and encompass friction effects,
such as Coulomb friction, viscous friction, and the Stribeck

TABLE I: The acrobot’s parameters.

Parameter mi mo A lo
Value 0.235 0.250 0.275 0.285
Unit [kg] kgl [m] (m]

effect. These friction terms are incorporated into the governing
equations, which can be represented as

M(q)g + ¢(q,q4) = Bt + 74(q,q)

where ¢ refers to the generalised coordinate vector, M(q) and
¢(q,q) denote the inertia matrix and the vector of Coriolis,
centrifugal and gravitational forces, respectively, T represents
the control input of the second joint and finally B denotes a
selection matrix. The parameter values used in the simulation
are summarized in Table I. Additionally, the action space
was altered to a continuous input space. The state vector
x={q,q} = {01,0,,0,,0,} defines the system.

We aim to validate our method by identifying the friction
characteristics 77 in (16) of the acrobot under partial observ-
ability. In this scenario, partial observability refers to the fact
that only the angle and angular velocity of the first joint are
measured, i.e T = {61, 91}, while the second link’s angle and
angular velocity are unobservable, i.e. z = {62, 02}

(16)

A. Results and discussion

The effectiveness of a hybrid model learned via the proposed
probabilistic modeling framework is validated and compared
to that of a purely data-driven model in terms of its learning
behavior, filtering and prediction performance. Additionally,
the physical interpretability of the learned hybrid model is
assessed. The data-driven model has no physics-informed prior,
i.e. a neural network represents the complete transition model
fo. Furthermore, the performance of the proposed framework
is compared using both the extended RTS smoother and the
particle smoother for the implementation of the models and the
EM training algorithm. We refer to the RTS implementation
and the PS implementation respectively. For this numerical
case study, the models are learned from a relatively limited
training data set consisting of N = 20 data sequences, each
with 7' = 500 time steps, sampled at 100Hz. We have 5
additional test sequences of identical length for the purpose
of validation. The starting position of the acrobot in each
sequence is randomly initiated from the upper half of the plane
and the system is subject to a sinusoidal control input u; with
different amplitude and period for each sequence.

1) Learning behavior and filtering performance: First, we
evaluate the application of the models in state estimation
algorithms, such as the extended Kalman filter (EKF) or
particle filter (PF). The EKF and PF distributions are com-
puted during the E-step of the EM algorithm and thus offer
valuable information on the training process of the RTS and
PS implementations of the modeling framework, as described

in Section III-C. o
The evolution of the filtered distribution for one of the

the test sequences at various stages in the training process
for the data-driven models are depicted in Fig. 3. The data-
driven models initiate with a random prior model. The filtered
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Fig. 3: Filtered distributions during training of the data-driven models.
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Fig. 4: Filtered distributions during training of the physics-informed models.

distribution of the RTS model quickly reflects the dynamics
of the observed variables Z = {61, 6}, but fails to learn any
dynamic relation for the unobserved variables x = {f5,02}
throughout the learning process. After 50 epochs of training
the RTS model does not longer improve, but is still unable to
provide more accurate estimates of the observed state variables
than the measurements themselves, indicating its failure to
learn a good dynamics model. The filtered distribution of the
PS model takes longer to converge for the observed variables,
but eventually produce more accurate estimates of measured
variables. The PS model also displays more dynamics for the
unobserved variables, but these can not be directly related
to the actual dynamics, due to non-uniqueness of the latent
variable space, as discussed in Section II.

The physics-informed models benefit from the physical prior
and already represent accurate complete state estimates at
the start of the training process, as can be seen in Fig. 4.
The neural network component should only learn the friction
characteristics instead of the entire dynamics, resulting in a

much more efficient training process. Both implementations
have converged after 20 epochs. The PS model is capable of
producing highly accurate complete state estimates x. The RTS
model produces accurate estimates of the observed variables,
but is not capable of reflecting the unobserved variables
perfectly.

2) Prediction performance: We briefly demonstrate the
multistep prediction performance of the converged models.
Fig. 5 illustrates the prediction accuracy of the data-driven
models. The RTS model displays poor prediction capabilities.
The PS model displays acceptable predictive performance of
the observed variables = for approximately 1s (100 samples),
but deviates from the true trajectory beyond that.

The predictions of the physics-inspired models are depicted
in Fig. 6. The physical backbone of these hybrid models result
in significantly more accurate predictions for both observed
and unobserved state variables. Again, the PS model outper-
forms the RTS model.
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Fig. 6: Predicted distributions of the physics-informed models.

3) Physical insights: In addition to providing accurate
predictions, the objective of the hybrid modeling approach is
to gain deeper insights into the poorly understood components
of the system dynamics. The modular design of the hybrid
model allows to isolate the data-driven component h from
the rest of the model, enabling a systematic analysis of the
learned dynamics. The learned friction characteristics during
different phases of the training process are shown in Fig. 7.

These results can be aligned with the intermediate filtered
distributions as depicted in Fig. 4. At the beginning of training
the models are only able to reconstruct a vague approximation
of the true friction characteristics, hence explaining the poor
filtered distributions. At the end of training, the PS model
has identified an accurate friction model, resulting in good
filtering and prediction performance, as discussed above. The
incapability of the RTS model in accurately capturing the
highly nonlinear dynamics of the acrobot system can be
attributed to the linearizations of the model utilized to obtain
the required filtered and smoothed distributions for the EM
training algorithm.

V. CONCLUSION

This paper presents a probabilistic system identification
framework aimed at characterizing the behavior of mechatronic
systems subject to unknown dynamics under partial observabil-
ity. The proposed approach employs a hybrid model consisting
of a partially identified state-space model and neural network
layers, where the neural network provides an estimation of the
unknown SSM substructures. The hybrid model is placed is
a physics-informed prior over the latent space of a Hidden
Markov Model. The variational inference framework allows
to decompose the problem of learning the dynamical model
of the underlying system dynamics from the mapping of this
latent space to the observed variables. The methodology is
validated on an acrobot system with unknown joint friction
characteristics, where only observations from a single joint
are available. The results demonstrate that the proposed ap-
proach is capable of accurately identifying the behavior of the
entire system, despite incomplete state observations, as well
as capturing the joint friction characteristics and the obtained
hybrid models outperform pure data-driven models in terms of
prediction accuracy.
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