
Collision Detection for Robot Arm Assisted with Digital Twin System

Kengo Tajiri1 and Takuya Iwamoto2

Abstract— In industrial and disaster recovery operations,
robot arms take over tasks in hazardous areas. Collision
detection methods are essential to prevent damage to the
surrounding environment and the robot arm itself. Traditional
approaches, such as environmental cameras and tactile sensors,
face limitations like installation challenges and high costs.
Model-based and data-driven strategies also struggle with
accuracy, hindered by external disturbances like friction and
the need for extensive data collection. Addressing these chal-
lenges, this paper introduces a digital twin-based approach for
more accurate collision detection. Digital twins, virtual replicas
of physical environments, enable cost-effective and safe data
collection. This research utilizes a physical simulator within the
digital twin to simulate the efforts of a real robot arm based
on the robot’s physical characteristics and motion trajectory,
enhancing detection accuracy by adjusting for modeling errors
and disturbances through linear regression. Experiments with
the xArm 7 robot arm, simulating collisions by applying
manual force, demonstrate the proposed method outperformed
conventional model-based and machine-learning methods.

I. INTRODUCTION

In industrial environments and disaster recovery sites,
robot arms are anticipated to perform tasks instead of humans
in areas where human entry is hazardous. However, when
the working environment is not fully understood, robots risk
unexpected collision with obstacles, leading to potential dam-
age or operational failure. To mitigate damage to the robot
itself and surrounding objects during a collision, collision
detection in robotic control is a crucial task, and various
studies have been conducted in this field [1].

The most basic collision detection methods are monitoring
the operational environment with cameras [2], [3] and equip-
ping robots with tactile sensors [4], [5]. However, installing
cameras in work environments inaccessible to humans is
difficult, and outfitting the entire robot with sensors to detect
collisions is costly. Other approaches involve model-based
methods that estimate external joint torques by inputting the
robot’s characteristics, such as mass, along with measured
voracity [6], energy [7], and momentum [8], [9] into mo-
tion equations. In model-based methods, isolating external
torques is difficult due to including forces generated by fric-
tion, modeling errors, etc. Additionally, data-driven methods
exist, where machine learning models are trained to detect
collisions based on the robot’s operational data. In machine
learning-based methods, supervised learning techniques are
proposed for classifying collision and non-collision data

1Kengo Tajiri is with NTT Network Service Systems Laboratories, NTT
Corporation, Tokyo 180-8585, Japan kengo.tajiri@ntt.com

2Takuya Iwamoto is with National Institutes for Quantum Science
and Technology, 801-1 Mukoyama, Naka, Ibaraki, 311-0193, Japan
iwamoto.takuya@qst.go.jp

[10], [11], and unsupervised learning techniques for training
collision detection models using only non-collision data [12],
[13]. However, both approaches require substantial data to
capture the motion characteristics of a robot arm accurately.

This paper proposes a method for robot collision detection
using digital twins, a concept increasingly being adopted for
the realization of Industry 4.0 [14], [15]. In digital twins,
a virtual environment that simulates real-world conditions is
created, and the data obtained therein can be used for various
tasks in actual environments. The advantage of collecting
data in a virtual environment is that it can be done at a lower
cost than in real settings, and it can gather data on operations
that are prohibited in systems already in operation. However,
to utilize data generated in a virtual environment for tasks
in real environments, the virtual environment must be made
as close to the real environment as possible.

In the task of robot collision detection discussed in this
paper, a physical simulator is defined within the digital twin’s
virtual environment to calculate the efforts of a robot arm
from the robot’s physical characteristics and intended motion
trajectory based on motion equations. While prior research
exists on collision detection by comparing estimated efforts
with actual efforts measured from a robot [16], [17], these
do not account for modeling errors or disturbances such as
joint friction, resulting in inaccurate simulations. Therefore,
to enhance the accuracy of the virtual robot’s simulation, the
efforts of the virtual and real robot during non-collision are
compared, and linear regression is performed. This approach
brings the virtual robot simulation closer to the actual behav-
ior of the real robot, thereby improving collision detection
accuracy.

In the experiments, a lightweight robot arm, xArm 7 [18]
was operated, and data was generated by manually applying
force at various points to simulate collision. Comparative
experiments were conducted with several model-based and
machine learning methods, demonstrating that the proposed
method surpasses these existing methods.

II. RELATED WORKS

Several related studies, including those cited in Section
I, are discussed in detail. Among model-based methods,
the energy observer-based collision detection [7] estimates
power related to external joint torque from measured kinetic
energy. However, the method does not directly estimate
external torque. The velocity observer-based collision de-
tection [6] estimates external torque from measured joint
velocities, requiring the computation of the inverse matrix of
the moment of inertia. To circumvent calculating the second
derivative of joint positions and the inverse matrix of inertia,

2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
July 15-19, 2024. Boston, MA, USA

979-8-3503-9154-1/24/$31.00 ©2024 IEEE 524

methods were proposed that estimate external torque from
momentum measured by a Momentum Observer (MOB)
[8], [9]. These methods, due to model simplifications, often
overlook the effects of friction and noise, which can lead to
decreased accuracy when using estimated values for collision
detection.

Several machine learning-based methods are introduced
next. Heo et al. [10] proposed Collision Net, constructed with
a 1D CNN, which takes joint positions, joint velocities, and
reference torque as inputs to output whether a collision has
occurred. Zhang et al. [11] created features from statistical
processing of measured motor torque, such as mean and
variance, and selected features to input into machine learning
models, evaluating collision detection with four supervised
machine learning models, including kNN and FNN.

Nakamura et al. [12] proposed a method using the mea-
surements from a force-torque sensor as inputs to an unsuper-
vised machine learning model, One Class SVM (OCSVM),
for collision detection. Park et al. [13] evaluated collision
detection using OCSVM and AutoEncoder (AE) as unsuper-
vised machine learning models, without using force-torque
sensors but rather motor current as inputs. Lim et al. [19]
proposed a method combining model-based and machine
learning-based approaches for collision detection, training
a Long Short Term Memory (LSTM) model for estimating
external torque from joint positions and joint velocities
data collected when no collision occurs, and comparing the
estimated external torques with those calculated from MOB
during actual robot operation. Supervised methods require
training with various collision points and intensities. Hence,
this paper proposes an unsupervised method and compares
it with existing unsupervised ones.

Finally, prior research on anomaly detection using digital
twins is discussed. In smart manufacturing, Xu et al. [20]
proposed a method to train anomaly detection models using
data from a virtual space modeling the physical space and
then performing transfer learning with a small amount of
real data for anomaly detection in the physical space. Xu et
al. [21] proposed a method in Cyber-Physical Systems using
an LSTM-based Generative Adversarial Networks (GAN) to
create virtual data closely resembling those from real envi-
ronments, employing the GAN’s discriminator for anomaly
detection. Our study assumes a reasonably accurate model
can be derived from the motion equations for robot motion,
and simple linear regression is used to correct and bring the
virtual environment’s robot closer to the real environment’s
robot.

III. EXPERIMENTAL SETUP AND PROPOSED METHOD

We used a lightweight robot arm and VR robot simulator
for dataset collection. The xArm 7 is a manipulator having
7 DoF, as shown in Fig. 1. As a VR robot simulator, we
used VR4robots [22]. ROS2 [23] environment on the Linux
PC controlled the real robot and VR simulator. We collected
collision and no-collision data with a real robot (Section III-
B) and no-collision data with a VR robot simulator (Section
III-C).

Fig. 1. xArm 7 manipulator having 7 DoF. Silver parts of the robot are
rotational joints.

A. Data collection target

xArm 7 does not have joint torque sensors on its joints.
We collected "efforts" τττeff instead of real motor torque τττF .
xArm API provides torque estimation function from motor
current, and we used these values as τττeff.

The dynamics of a robot can be described as

MMM(qqq)q̈qq+CCC(qqq, q̇qq)q̇qq+ggg(qqq) =−τττF + τττm + τττext, (1)

where:
• qqq joint positions in the generalized coordinates
• MMM inertia matrix
• CCC Coriolis matrix
• ggg gravity torque vector
• τττF frictional torque in joints
• τττm motor torque
• τττext external joint torque
Effort τττeff is equal to the sum of torque terms as follows,

τττeff =−τττF + τττm + τττext. (2)

Joint position, velocity, and effort were defined as ROS2
messages, and this message was recorded by a recording
function implemented on ROS2 known as rosbag2 (Fig. 2).
We collected data under the conditions described in Table I.
Here, qqq, q̇qq, q̈qq, τττF, τττm, τττext, and τττeff are physical quantities
that depend on time t and should be written as qqq(t), etc.
precisely. However, they will usually be written simply as qqq,
etc., and only when it is necessary to show time t dependence
will they be written as qqq(t), etc., after that.

TABLE I
ACQUISITION CONDITION FOR DATA COLLECTION

Sampling period 10 ms
Target average velocity 30 deg/s

Maximum radius of robot motion 200mm

525

Fig. 2. System configuration diagram for the robot control

B. Data collection with real robot

In the no-collision data collection, random teaching points
and paths through these points were generated, and the real
robot moved on the path (Fig. 3). We used the xArm API
to obtain the path, and no-collision data were acquired by
moving the xArm 7 along the paths without collision.

Fig. 3. Path generation from given teaching points

To collect collision data, an experimenter intentionally
collided with the moving robot by hand. The collision data
were generated by contacting one of the following four
points: between the third and fourth joints, between the
fourth and fifth joints, between the fifth and sixth joints, and
between the sixth and seventh joints. During the intentional
collision, the experimenter turned on a mechanical switch to
add a flag on the joint state time history (Fig. 4).

Fig. 4. Anomalies data collection

C. Data collection with VR robot simulator

VR4robots, the robot physics simulator for fusion device
remote handling environment, was used for the virtual data
collection. The real robot velocity history was used as the
input to the VR simulator, as shown in Fig. 5. VR simulator
calculated qqq and q̈qq based on the real robot velocity history.
Then, the left-hand side of (1) was determined, and its value
was recorded as VR effort τττeff.

Fig. 5. VR data collection

D. Comparison of collected data in each configuration

Fig. 6 through Fig. 9 are examples of collected data. The
physics engine in the VR software re-calculated the joint
positions of VR data based on the real robot velocity history;
no errors are shown between the real robot data and VR data.
Regarding the joint efforts, although there are differences due
to modeling errors between the VR model and the actual
robot, the trends are consistent.

Fig. 6. Joint positions (the actual robot)

Fig. 7. Joint positions (VR)

Fig. 8. Joint efforts (the actual robot)

E. Collision Detection

As mentioned in Section III-B and Section III-C, we first
generate several target paths and obtain the real efforts τττeff

526

Fig. 9. Joint efforts (VR)

and estimated efforts τ̂ττeff using xArm 7 and VR4robots based
on the generated paths. Then, τττeff and τ̂ττeff are low-pass
filtered, and they are represented as τ̃ττeff and ˜̂τττeff, respectively
because the noise oscillation in τττeff and some spikes in τ̂ττeff
(Fig. 9) can decrease the accuracy of collision detection.

Next, to allow ˜̂τττeff to represent τ̃ττeff more accurately, ˜̂τττeff
is adjusted by linear regression. In detail, the parameters of
the linear regression āaa ∈ RD and b̄bb ∈ RD are determined by
the following equation,

āaa, b̄bb = argminaaa,bbb

N

∑
n=1

Tn

∑
t=1

||τ̃ττeff(t)− f (˜̂τττeff(t))||2, (3)

f (˜̂τττeff) = aaa⊙ ˜̂τττeff +bbb, (4)

where N is the number of the generated paths used for the
linear regression, Tn is the measurement time of n-th path
data, ⊙ means Hadamard product, and D is the number of
the joints in xArm 7, that is 7 in this paper. In the linear
regression, we use only the no-collision data because we
need to make ˜̂τττeff closer to τ̃ττeff in the collision-free case in
order to make the digital twin for using collision detection.

After the parameters āaa and b̄bb are determined from (4),
collision detection is performed. When the real effort τττeff
and estimated effort τ̂ττeff are obtained, performing the xArm
7 and VR4robots, the value score(t) to verify whether xArm
7 is in collision at a certain time t is calculated as follows,

score(t) = ||τ̃ττeff(t)− f̄ (˜̂τττeff(t))||2, (5)

f̄ (˜̂τττeff) = āaa⊙ ˜̂τττeff + b̄bb. (6)

Since in the case of a collision, τ̃ττeff(t) is different from
f̄ (˜̂τττeff(t)) calculated assuming no collision, score(t) becomes
larger when a collision occurs. Therefore, we can perform
collision detection based on score(t).

Finally, we calculate a score(t) for no-collision data to
determine the threshold thres. In this paper, we define the
threshold thres as the µ + 4σ of the score for no-collision
data, where µ and σ are the mean and standard deviation of
the score, respectively. In collision detection terms, whether a
collision occurs or not is determined based on the following,

cd(score(t)) =
{

True (score(t)≥ thres)
False (score(t)< thres). (7)

The block diagram of the proposed method is shown in Fig.
10.

Fig. 10. Block diagram of the proposed framework.

IV. EXPERIMENT

A. Dataset

As described in Section III-B to III-C, we collected the
data for the collision detection experiments with xArm7
and VR4Robots. Training data were collected by running
the robot on xArm 7 and VR4Robots without collisions
along 30 different paths, and validation data were also
collected without collisions along the other five paths. Test
data were collected with collisions along the other five paths.
However, the test data also included data points without
collisions because xArm does not always collide with the
experimenter’s hand (Fig. 4). The minimum measurement
time per path was 21.8 seconds, and the maximum was 34.7
seconds. Then, 2183 to 3467 data points were collected per
path.

We computed τττext using MOB [8], [9] from the qqq and q̇qq
collected on the paths for use in the comparison methods. In
the calculation of τττext, we fixed the observer gain to 100.0.

B. Comparison Methods

We compared the proposed method with the following
seven prior methods. For all methods, low-pass filtered data
were input. In the first two methods, we used the validation
data to determine the threshold and the test data to evaluate
the method, and the training data were not used. For all
of the remaining methods, the models’ parameters were
trained with training data, thresholds were determined with
validation data, and evaluations were performed with test
data Since the methods except the first two methods used
machine learning model for collision detection, the input data
was normalized by dimension as follows:

x[0,1] =
x− xmin

xmax − xmin
, (8)

where x was the value by dimension in the input, and xmin and
xmax were the minimum and maximum values by dimension
in the training data, respectively. The used quantities in each
method are shown in Table II.

1) Naive Diff τττeff [16], [17]: The method simply com-
pares between the real effort τττeff ∈ R7 and the simulated
effort τ̂ττeff ∈R7. This method is equal to the substitution āaa= 1
and b̄bb = 0 in the proposed method.

2) Naive MOB [1]: When τττext ∈ R7 is calculated by
MOB, a naive collision detection that judges an abnormality
if ||τττext||2 is large, can be performed.

527

3) Point OCSVM: We adopted OCSVM, which was used
in [13] as the comparison method. However, the proposed
method performed collision detection for each data point,
whereas Park et al. [13] did for each time window consisting
of 16 data points, making comparisons impossible. Then,
we performed collision detection for each data point with
OCSVM. The input data was τττext calculated by MOB. We
set the kernel of OCSVM to rbf and the hyperparameter ν ,
which is an upper bound on the fraction of training errors,
to 0.1.

4) Point AE: Since Park et al. [13] used AE as the colli-
sion detection method, we also adopted it as the comparison
method. However, because AE was also used as a collision
detection method for time windows, we inputted τττext of each
data point calculated by MOB to AE for collision detection
to use AE for comparative evaluation. AE consisted of three
middle layers, and these dimensions were set to 5, 3, and
5, respectively. Other hyperparameters were set as follows:
the bath size was 1000, the active functions in all middle
layers were ReLU, the dropout rate was 0.1, the optimizer
was Adam, and the learning rate was 10−4.

5) LSTM MOB [19]: Lim et al. [19] proposed a collision
detection method that compares τττext(t) calculated by MOB
with the output of LSTM, which was trained to output τττext(t)
from qqq(t), q̇qq(t), and q̇qq(t − 1) in the case of no collisions.
The several hyperparameters of the LSTM model were
determined based on Lim et al. [19]. However, the optimizer
and learning rate were changed because the training did not
proceed in the original setting with our data. The details of
the settings were as follows: the sequence length of the input
was 100, the dimensions in the middle layers of LSTM were
100, the batch size was 1000, the dropout rate was 0.0, the
optimizer was Adam, and the learning rate was 10−4.

6) Time Window OCSVM [13]: Although the methods
proposed in Park et al. [13] could not be compared with
the proposed method directly, collision detection using these
methods was conducted as a reference. For each time win-
dow, we assigned a label of collision if the robot was touched
by the experimenter’s hand in the time. Otherwise, we
assigned a label of no collision. We set the time window size
to 16, the kernel of OCSVM to rbf, and the hyperparameter
ν to 0.1. From the time window size, the dimension of input
data was calculated as 7×16 = 112.

7) Time Window AE [13]: The label settings and time
window size were the same as in the case of Time Window
OCSVM. AE consisted of three middle layers, and these
dimensions were set to 32, 11, and 32, respectively. Other
hyperparameters were set as follows: the bath size was 128,
the active functions in all middle layers were ReLU, the
dropout rate was 0.1, the optimizer was Adam, and the
learning rate was 10−4.

C. Evaluation Metric

We used the F1 score and AUC as the evaluation metric
of collision detection. The F1 score is a value calculated
by the harmonic mean of Precision and Recall, which are
calculated with the score output from the collision detection

model and the threshold value for the score. Since the F1
score has a threshold dependence, we calculated the mean
µ and standard deviation σ of the score calculated from
the validation data for each method and then calculated the
F1 score for each threshold value µ + iσ in 0.1 increments
from i = 0 to 1 and in 1 increments from i = 2 to 5. The best
F1 score for each method was compared with each other. To
evaluate the methods independently of the threshold, we also
used the AUC. For both metrics, the higher the values, the
better the method.

D. Comparison Results

The experimental results are shown in Table II. Because
the methods using the deep learning model (Point AE, LSTM
MOB, and Time window AE) included randomness in the
results, five experiments were conducted, and the results
are shown in the form of mean ± standard deviation. The
training time is the time it took to train the model, and the
test time is the time it took to input test data into the model
and receive the output. Since the first two methods did not
involve training, the training time column is blank in Table
II. A GPU server equipped with an NVIDIA V100-PCIe
GPU was used to train the deep learning model, while the
other methods were experimented on a PC equipped with an
Intel(R) Core(TM) i9-10900K CPU.

Despite the simplicity of the proposed method, it achieved
the highest score in the comparison methods, including the
methods using a deep learning model for both the F1 score
and AUC. The high accuracy of the proposed method is
thought to be attributed to simple linear regression, which
allowed the model to be effectively trained with a minimal
dataset comprising only 30 paths. Moreover, the training
time was the shortest among the comparison methods, and
the test time was as short as that of the naive methods
Naive diff τττeff and Naive MOB. The short training time of
the proposed method is useful for implementing collision
detection systems, and the short detection time means that
real-time contact detection is possible.

Comparing the proposed method with Naive diff τττeff,
where linear regression was removed from the proposed
method, we can see that the proposed method improved
both the F1 score and AUC. The result indicates that the
numerically calculated effort τ̂ττeff did not represent the real
effort τττeff well because there were factors that were not taken
into account in the calculation.

E. Linear regression Results

In the proposed method, the results of linear regression
were as follows:

āaa = (1.39,1.17,1.20,1.16,1.28,1.30,21.74), (9)

b̄bb = (0.24,−1.27,−0.19,0.05,0.15,−0.01,0.18). (10)

The results show that the effort calculated by VR4Robots τ̂ττeff
tended to be smaller in absolute value than the actual effort
τττeff, indicating that the linear regression was essential for
constructing a digital twin. In Naive diff τττeff, the detection
accuracy was degraded because the absolute value of the

528

TABLE II
RESULTS OF COLLISION DETECTION

training time [s] test time [s] Input quantities best threshold F1 score AUC
Naive diff τττeff 3.4×10−4 τττeff(t), τ̂ττeff(t) µ +4σ 0.525 0.760
Naive MOB 3.1×10−4 τττext(t) µ +σ 0.588 0.815
Point OCSVM 56.4 2.76 τττext(t) µ 0.540 0.803
Point AE 245 5.6×10−2 τττext(t) µ +2σ 0.417±0.097 0.693±0.083
LSTM MOB 747 1.9×10−3 qqq(t), q̇qq(t), q̇qq(t −1), τττext(t) µ +σ 0.604±0.018 0.815±0.015
Proposed method 1.2×10−2 5.1×10−4 τττeff(t), τ̂ττeff(t) µ +4σ 000...777222222 000...888666777
Time window OCSVM 1.9×10−1 2.6×10−2 τττext(t −15), · · · ,τττext(t) µ 0.585 0.815
Time window AE 110 8.6×10−3 τττext(t −15), · · · ,τττext(t) µ +0.9σ 0.561±0.012 0.768±0.009

difference between τ̂ττeff and τττeff became large regardless of
whether there was a collision or not, due to the small estimate
of τ̂ττeff. The large seventh element of āaa is thought to derive
from the fact that the seventh joint was located at the tip of
the xArm 7, making the numerical calculation of its effect
difficult.

V. CONCLUSIONS

In this paper, we proposed the collision detection method
using digital twins, where the real efforts τττeff measured by
a robot arm and the VR efforts τ̂ττeff numerically calculated
from an equation of rigid body motion of a robot are regarded
as digital twins. In the experiments, the proposed method
achieved the highest score in the comparison methods, in-
cluding the methods using a deep learning model for both
the F1 score and AUC, while the test time was comparable
to that of the naive methods. Furthermore, the analysis of
the experimental results showed that it was important to
approximate the real efforts τττeff by applying linear regression
to VR efforts τ̂ττeff in order to construct digital twins. In
future work, we will develop a method to solve the collision
isolation problem on the robot arm, which is the problem of
identifying where the collision occurred on the robot arm by
using the digital twins system introduced in this paper.

REFERENCES

[1] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A
survey on detection, isolation, and identification,” IEEE Transactions
on Robotics, vol. 33, no. 6, pp. 1292–1312, 2017.

[2] D. M. Ebert and D. D. Henrich, “Safe human-robot-cooperation:
Image-based collision detection for industrial robots,” in 2002
IEEE/RSJ International Conference on Intelligent Robots and Systems,
vol. 2. IEEE, 2002, pp. 1826–1831.

[3] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space
approach to human-robot collision avoidance,” in 2012 IEEE Inter-
national Conference on Robotics and Automation. IEEE, 2012, pp.
338–345.

[4] M. Strohmayr, H. Wörn, and G. Hirzinger, “The dlr artificial skin
step i: Uniting sensitivity and collision tolerance,” in 2013 IEEE
International Conference on Robotics and Automation. IEEE, 2013,
pp. 1012–1018.

[5] A. Cirillo, F. Ficuciello, C. Natale, S. Pirozzi, and L. Villani, “A
conformable force/tactile skin for physical human–robot interaction,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 41–48, 2015.

[6] S. Haddadin, Towards safe robots: approaching Asimov’s 1st law.
Springer, 2013, vol. 90.

[7] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger,
“Collision detection and safe reaction with the dlr-iii lightweight
manipulator arm,” in 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2006, pp. 1623–1630.

[8] A. De Luca and R. Mattone, “Actuator failure detection and isolation
using generalized momenta,” in 2003 IEEE International Conference
on Robotics and Automation (cat. No. 03CH37422), vol. 1. IEEE,
2003, pp. 634–639.

[9] A. De Luca and R. Mattone, “Sensorless robot collision detection and
hybrid force/motion control,” in 2005 IEEE international Conference
on Robotics and Automation. IEEE, 2005, pp. 999–1004.

[10] Y. J. Heo, D. Kim, W. Lee, H. Kim, J. Park, and W. K. Chung,
“Collision detection for industrial collaborative robots: A deep learning
approach,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.
740–746, 2019.

[11] Z. Zhang, K. Qian, B. W. Schuller, and D. Wollherr, “An online robot
collision detection and identification scheme by supervised learning
and bayesian decision theory,” IEEE Transactions on Automation
Science and Engineering, vol. 18, no. 3, pp. 1144–1156, 2020.

[12] K. Narukawa, T. Yoshiike, K. Tanaka, and M. Kuroda, “Real-time
collision detection based on one class svm for safe movement of
humanoid robot,” in 2017 IEEE/RAS 17th International Conference
on Humanoid Robotics (Humanoids). IEEE, 2017, pp. 791–796.

[13] K. M. Park, Y. Park, S. Yoon, and F. C. Park, “Collision detection for
robot manipulators using unsupervised anomaly detection algorithms,”
IEEE/ASME Transactions on Mechatronics, vol. 27, no. 5, pp. 2841–
2851, 2021.

[14] Q. Qi and F. Tao, “Digital twin and big data towards smart manufac-
turing and industry 4.0: 360 degree comparison,” Ieee Access, vol. 6,
pp. 3585–3593, 2018.

[15] S. Mihai, M. Yaqoob, D. V. Hung, W. Davis, P. Towakel, M. Raza,
M. Karamanoglu, B. Barn, D. Shetve, R. V. Prasad, et al., “Digital
twins: A survey on enabling technologies, challenges, trends and future
prospects,” IEEE Communications Surveys & Tutorials, 2022.

[16] S. Takakura, T. Murakami, and K. Ohnishi, “An approach to collision
detection and recovery motion in industrial robot,” in 15th Annual
Conference of IEEE Industrial Electronics Society. IEEE, 1989, pp.
421–426.

[17] S. Morinaga and K. Kosuge, “Collision detection system for manipu-
lator based on adaptive impedance control law,” in 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 03CH37422),
vol. 1. IEEE, 2003, pp. 1080–1085.

[18] “xarm 7 manual http://download.ufactory.cc/xarm/en/xArm\%20User\
%20Manual.pdf?v=1578910898247 (last visited 2024-02-08).”

[19] D. Lim, D. Kim, and J. Park, “Momentum observer-based collision
detection using lstm for model uncertainty learning,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 4516–4522.

[20] Y. Xu, Y. Sun, X. Liu, and Y. Zheng, “A digital-twin-assisted fault
diagnosis using deep transfer learning,” IEEE Access, vol. 7, pp.
19 990–19 999, 2019.

[21] Q. Xu, S. Ali, and T. Yue, “Digital twin-based anomaly detection in
cyber-physical systems,” in 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2021, pp. 205–216.

[22] “Vr4robots website https://www.tree-c.nl/what-we-do/vr4robots/ (last
visited 2024-02-08).”

[23] “Ros2 documentation https://docs.ros.org/en/iron/index.html (last vis-
ited 2024-02-08).”

529

