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Abstract—In recent years, Deep Reinforcement Learning
emerged as a promising approach for autonomous navigation
of robots and has been utilized in various areas of navigation
such as obstacle avoidance, motion planning, or decision making
in crowded environments. However, most research works either
focus on providing an end-to-end solution training the whole
system using Deep Reinforcement Learning or focus on one
specific aspect such as local motion planning. This however,
comes along with a number of problems such as catastrophic
forgetfulness, inefficient navigation behavior, and non-optimal
synchronization between different entities of the navigation stack.
In this paper, we propose a holistic Deep Reinforcement Learning
training approach in which the training procedure is involving
all entities of the navigation stack. This should enhance the
synchronization between- and understanding of all entities of the
navigation stack and as a result, improve navigational perfor-
mance in crowded environments. We trained several agents with
a number of different observation spaces to study the impact
of different input on the navigation behavior of the agent. In
profound evaluations against multiple learning-based and classic
model-based navigation approaches, our proposed agent could
outperform the baselines in terms of efficiency and safety attaining
shorter path lengths, less roundabout paths, and less collisions
especially in situations with a high number of pedestrians.

I. INTRODUCTION

As human-machine-collaboration becomes essential, mobile
robot navigation in crowded environments is increasingly be-
coming an important aspect to consider. Traditional navigation
stacks of robots utilize the ROS navigation stack [1], which
consists of a global planner, which, given a global map, calcu-
lates an optimal path from a start point to a goal position and a
local planner, which executes the global plan by utilizing sensor
observations to avoid dynamic obstacles that were not present
in the map. While navigation in static or slightly dynamic
environments can be solved with currently employed navigation
stacks, navigation in highly dynamic environments remains a
challenging task [2]. It requires the agent to efficiently generate
safe actions in proximity to unpredictably moving obstacles
in order to avoid collisions. Traditional model-based motion
planning approaches often employ hand-engineered safety rules
to avoid dynamic obstacles. However, hand-designing the nav-
igation behavior in dense environments is difficult since the
future motion of the obstacles is unpredictable [3]. In recent
years, Deep Reinforcement Learning (DRL) has emerged as
an end-to-end method that demonstrated superiority for ob-
stacle avoidance in dynamic environments and for learning
complex behavior rules. Thus, a variety research publications
incorporated DRL to solve high-level tasks such as grasping,
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Fig. 1: Information about the global planner and waypoint generator
will be given as input for the DRL agent in order to enhance
understanding of the DRL agent for high-level planners and thus
improve synchronization and navigation efficiency.

navigation or simulation [4], [5], [6], [7]. However, DRL-
based navigation approaches come along with issues such as
difficult training, the myopic nature of the DRL agent, or
catastrophic forgetfulness [8], [9]. Recent approaches either
handled this problem by shortening the planning horizon using
waypoints [10],[11], employing hybrid approaches [8] [12],
or switch between classic model-based navigation and DRL
planners. However, regarding the parts of the navigation system
separately can lead to synchronization issues and non-optimal
behavior such as jerky motions or the agent moving too far
away from the initially planned global path. On that account,
this paper proposes a holistic training approach incorporating
the global planner and the waypoint generator into the DRL
training pipeline. Therefore, classic global planners such as
RRT or A*, and the waypoint generators presented in our
previous work [11] will be utlilized to provide the agent
with more information about the higher-level planning directly
within its training procedure. Thus, the understanding of the
agent for decisions made by other components of the navigation
stack should be improved, which makes navigation smoother
and more consistent. We compare different agent inputs and
evaluate all agents against classic baseline approaches within
the simulation platform arena-rosnav [5] in terms of various
navigational metrics. The main contributions of this work are
the following:

• Proposal of an holistic training approach utilizing the
whole navigation stack instead of an isolated training
procedure

• Incorporation of global planning and waypoint informa-
tion into the reward system of the agent to improve syn-
chronization between the entities and as a result improve
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navigational performance
• Qualitative and quantitative evaluation on different highly

dynamic environments and comparison against a baseline
DRL and classic model-based navigation approaches

The paper is structured as follows. Sec. II begins with related
works. Subsequently, the methodology is presented in Sec. III.
Sec. IV presents the results and discussion. Finally, Sec. V will
provides a conclusion and outlook.

II. RELATED WORKS

DRL-based navigation approaches proved to be a promising
alternative that has been successfully applied into various
approaches for navigation of vehicles and robots with
remarkable results. Various works demonstrated the superiority
of DRL-based OA approaches due to more flexiblility in the
handling of dynamic obstacles, generalization to new problem
instances, and ability to learn more complex tasks without
manually designing the functionality. Thus, various research
works incorporated DRL into their navigation systems for tasks
in autonomous navigation [13], [14], [15], [16], cooperative
behavior planning [17], [18] or obstacle avoidance among
crowds[6], [7], [5]. Kästner et al. proposed a DRL-based
control switch to choose between different navigation policies
[2]. Liu et al. [19] proposed a DRL approach for autonomous
driving of vehicles in urban environments using expert
demonstrations.

Other works incorporated DRL for dynamic obstacle
avoidance. Works from Everet et al. [20] and Chen et al. [7]
require the exact obstacle positions and perform a DRL-based
obstacle avoidance approach. Dugas et al. relied solely on
DRL for navigation [6]. The authors remarked that this could
lead to jerky motions and failed navigation for long ranges.
Since the reward that a DRL agent can obtain in long-range
navigation over large-scale maps is usually sparse, agents are
only suitable for short-range navigation due to local minima.
Thus, a variety of research works combine DRL-based local
planning with traditional methods such as RRT [21] or
A-Star [22]. Faust et al. utilized DRL to assist an PRM-based
global planner [8]. Similarily, Chiang et al. [12] utilized DRL
in combination with the RRT global planner. Other works
utilize waypoints, as an interface for communication between
global and local planner. These are points sampled from
the global path to be given as input to the DRL agent in
order to shorten its planning horizon. Gundelring et al. [23]
integrated a DRL-based local planner with a conventional
global planner employing a simple subsampling of the global
path given a static lookahead distance to create waypoints for
the DRL-local planner. Similarly, Regler et al. [24] propose
a hand-designed sub-sampling to deploy a DRL-based local
planner with conventional navigation stacks. A limitation of
these works is that the simple sub-sampling of the global path
is inflexible and could lead to hindrance in complex situations,
e.g. when multiple humans are blocking the way.

Hence, other works employed a more intelligent way to
generate waypoints. Brito et al. [10] proposed a DRL-based

waypoint generation where the agent is trained to learn a
cost-to-go model to directly generate subgoals, which an MPC
planner follows. The better estimated cost-to-go value enables
MPC to solve a long-term optimal trajectory. Similarly,
Bansal et al. [25] proposed a method called LB-WayPtNav,
in which a supervised learning-based perception module is
used to process RGB image data and output a waypoint. With
the waypoint and robot current state, a spline-based smooth
trajectory is generated and tracked by a traditional model-
based, linear feedback controller to navigate to the waypoint.
However, the proposed supervised training approach, requires
a tedious data acquisition stage to provide annotated training
data. In our previous work, we proposed various waypoint
generation approaches that are more flexible [11], [5], [26] and
could show improved navigation performance in long-range
navigation within crowded environments.

Of note, all previously mentioned works train the DRL
agent as a separate entity and later incorporated it into the
navigation stack, which could result in a number of issues
such as synchronization problems and inefficient navigation
behavior. The DRL agent is almost always trained for
short-range obstacle avoidance and produce failures over
long-ranges. Furthermore, navigation performance of the DRL
agent is also heavily dependent on the efficiency of the global
planner or the waypoint generator. On that account, this
work incorporates all entities of the navigation stack into the
training pipeline. More specifically, the whole navigation stack
consisting of the global planner, the waypoint generator, and
the DRL agent is deployed in the training pipeline. The DRL
agent should still be responsible for local obstacle avoidance
but receive high level input of the other two entities as input
to improve its understanding of their decisions. Thus, a better
synchronization and inter-operation between the three entities
should be attained.

III. METHODOLOGY

In this chapter, we present the methodology of our proposed
framework. In total six agents with different inputs are trained.

A. System Design and Training Procedure

Fig. 2 illustrates the system design of our approach. The
DRL agents are trained within our 2D simulation environment
arena-rosnav [27] and trained using the staged training
curriculum, that is whenever the agent reaches a success rate
of 80 percent the next stage with increasing difficulty will
be loaded. The stages contain dynamic and static obstacles
spawned randomly. The stages are illustrated in Fig. 3.
Stage 1 is an outdoor map of size 100x100 pixels without
any obstacles. Stage two is a mixed map of size 150x150
cells with static obstacles, which the agent knows. Stage 3
is an outdoor map of size 200x200 cells with known and
additionally unknown static obstacles. Stage 4 is an indoor
map of size 200x200 cells with known and unknown static
obstacles. Stage 5 is an outdoor map of size 200x200 cells
with known and unknown static obstacles and additionally
unknown dynamic obstacles. Stage 6 is an indoor map of size
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Fig. 2: System Design and Training Pipeline. The input is exemplary for agent 4. The specific parameters and tensor sizes for each of the
agents are specified in Table I

200x200 cells with known static obstacles and unknown static
and dynamic obstacles. Stage 7 is almost the same as Stage 5
but with more unknown static and dynamic obstacles.

The observations are processed by the DRL agent, which
produces an action in the environment. Compared to our
previous work [5] training the DRL agent is not separated
from the navigation system. Rather the full navigation stack is
included inside the training loop. Although this might increase
the overhead and extend the training due to more complex
input, the agent should learn to synchronize better with the
global planner and waypoint generator.

While it is common to train only the local planner for
local obstacle avoidance with DRL and integrate it as part of
the full navigation stack, the proposed system already involves
the global and waypoint generator and uses its input while in
the training stage. Thereby, 6 different inputs where developed
to test the extend to which these input will influence the
behavior of the agent. The input of the different agents are
listed in Tab. [?].

B. Agent and Neural Network Design

In total, we propose six different agents, each with different
observation spaces to study the effect of different inputs. The
agent’s input is listed in Tab. I. The internal architecture and
output layer are equal for all of them. They differ only in the
input layer.

TABLE I: Input of the different agents
Agent Scan Global Goal Subgoal Waypoints Length

Agent 1 0 - 359 360, 361 362, 363 364 - 463 –
Agent 2 0 - 359 360, 361 – – –
Agent 3 0 - 359 360, 361 362, 363 – 364
Agent 4 0 - 359 360, 361 362, 363 – –
Agent 5 0 - 359 360, 361 – – 362
Agent 6 0 - 359 360, 361 – 362 - 461 –

All agents get as primary input the Lidar scan data and
the global goal, represented as two values, the linear and
angular distance from the odometry to the goal. All points
are represented the same way as the global goal. Likewise,

the optional subgoal is represented as a single point, whereas
the global plan is represented in 2 different ways: as a
representation of waypoints. From the global plan, every 5th
point is extracted as a waypoint until 50 points are extracted in
total. If the plan is not long enough to extract 50 points, the last
extracted waypoint is used to fill up the waypoints list. Way 2
simplifies of the whole plan as a summed-up length of the plan.

The internal architecture is illustrated in Figure 2. For
the body network, CNNs are used while the actor-critic
network is designed using LSTM cells. The agent might be
able to recognize movement directions and memorize older
scan data for a better exploration of the area.
The output layer consists of 2 scalar values. Both are used to
create a Twist message for a 2D space. It consists of a linear
velocity and an angular velocity.

C. Reward Functions

Since sparse rewards do not lead to fast convergence of the
agent, we design our reward function to be dense and return a
reward after each transition. Negative rewards are only given
for collisions or if the agent gets too close to a static or dynamic
obstacle. Positive rewards are given when the agent moves
toward or reaches the target with a reasonable number of steps:
the fewer steps required, the higher the reward. Equation 1
states the reward system of our agents. The reward function is
the sum of all sub rewards

rt = rt
gr + rt

c + rt
ga + rt

sd + rt
f gp + rt

dgp + rt
tc + rt

adc (1)

Where rt
gr is the success reward for reaching the goal, rt

c is the
punishment for a collision and both lead to episode ends. rt

ga
describes the reward for approaching the goal. Additionally, we
introduce the safety distance reward rt

sd , for keeping a distance
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Fig. 3: Stage one to seven of the 2D simulator on our arena-rosnav platform [5]. The maps increase in difficulty by adding more static and/or
dynamic obstacles to it.

to dynamic obstacles.

rt
gr =

{ 45 , if goal reached
0 , otherwise (2)

rt
c =

{ −50 , if collided
0 , otherwise (3)

rt
ga =

{ 0.8∗di f f t
robot,goal , if di f f t

robot,goal > 0
0.6∗di f f t

robot,goal , otherwise (4)

rt
sd =

{ −1.25 , if ∃o ∈ O : d(pt
robot , pt

o < Ds)
0 , otherwise (5)

Reaching the goal gives a vast positive reward for the agent.
This is the overall purpose of the agent. The reward for
achieving this is set to 45. A collision results in a negative
reward of -50. Getting closer to the goal seems good behavior,
even though it is not like that in every case, such dead ends.
That is why the reward should not be too high. Another is
to keep a certain safe distance to obstacles. The agent should
avoid driving just one mm away from obstacles. The calculation
depends on Ds, the safe distance the agent should keep. It is
set to 0.345m. The distance is calculated based on the center of
the agent. As the agent has a radius of 0.3m, the safe distance
between the agent surface to the obstacle surface is 4.5cm.
A negative reward is given as soon as the agent is closer to
an obstacle than the safe distance. Furthermore the rewards
incorporating information about the global planner are defined
as following:

rt
f gp =

{ 0.1∗ velt
linear , if minwp∈G d(pt

wp, pt
robot)< 0.5m

0 , otherwise

(6)

rt
dgp =

{ 0.2∗di f f t
robot,wp , if

minwp∈G d(pt
wp,p

t
robot )

di f f t
robot,wp

> 0

0 , otherwise
(7)

rt
adc =−

∣∣∣velt−1
angular − velt

angular

∣∣∣4
1000

(8)

with di f f t
x,y = d(pt−1

x , pt−1
y )− d(pt

x, pt
y). The goal following

reward rt
f gp is weighted based on the linear velocity and is

given if the agent is closer than 0.5m to the next point in the
global plan. The distance to goal reward is another component
of rewarding the agent for following the global plan is to reduce
the distance to the closest point in the global plan. Furthermore,
agent navigation aims to drive smooth paths. That is why abrupt
changes in the angular velocity are penalized with the reward
rt

adc.

D. Training Hardware Setup

Every agent is trained separately on one of two different
systems. Table II shows the hardware specifications of the
systems. A docker image was created to perform the training
on the systems.

TABLE II: Training System Specifications
Component System 1 System 2

CPU Ryzen Threadripper 1950X Ryzen R7 2700X
GPU 2x NVIDIA RTX 2080TI 1x NVIDIA RTX 2080TI
RAM 64GB 40GB

This figure displays the specifications of the used computer systems for the
training.

IV. EVALUATION

In this chapter, we present the evaluation of our agents. The
experiments are split into two categories. In the first part, we
assess the training performance of all agents to assess the
overhead and complexity of the training compared to a baseline
agent with no additional input about the global planner and
waypoint generator (agent 2). In the second part, we compare
our agents against baseline navigation approaches in terms of
navigational metrics such as path length time to reach the goal
etc. Therefore, we compared our agents against the classic
local path planners Timed Elastic Bands (TEB) [28], Dynamic
Window Approach (DWA) [29], and Model Predictive Control
(MPC) [30] as well as our proposed All-in-One Planner, which
is able to switch between classic TEB and DRL planning [2].

A. Training Performance

In order to evaluate the training process, the success rate of
successfully completed tasks without collisions is investigated.
The success rates are illustrated in Fig. 4. Stage transitions
are also indicated within that figure. Generally, the time
points for reaching certain stages differ significantly among
the agents. Not all agents reached the last stage 7. Only
agent 3 was capable of reaching that stage, rather late in the
training. agent 5 was able to reach stage 6 and all other agents
only reached stage 5. Stage 5 was the first stage containing
moving obstacles. agent 1 and agent 4 reached stage 5 earliest
around training step 7M, and agent 2 was latest around step
15.5M. The additional input seems to increase the learning
speed in the lower stages. Namely, the agents with additional
inputs can reach stage 5 much earlier than the baseline
agent 2 without additional input. Surprisingly, agents with
similar input like agent 1 and agent 6 differ more than expected.

As expected,the success rate of all agents include drops
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Fig. 4: Results of the staged training of all agents

after reaching a new stage, indicating greater difficulty.
Furthermore, the rate fluctuates for all agents, with some
outlier drops in both directions. Although the agents have
many similarities, some minor differences are observable. For
example, agent 2 seems to have a higher fluctuation than the
other agents. Furthermore, the rate seems to stay at a level
of around 60% from step 25M onwards. In contrast, agent 1
still has a slight improvement trend at the end of the training.
Furthermore, the rate lies around 70% in the last 5M steps.
agent 3 is the only agent that reached stage 7. However, some
outlier runs might have caused those stage transitions.

In summary, agent 1 has the highest level of success
rate and reached stage 5 earliest and thus might be the best
agent alongside agent 3, which was able to reach the last stage
7. On the other hand, the baseline agent 2 reached stage 5 the
latest and has the lowest level of success rate. Furthermore, the
agent seems not to improve anymore. These observations on
the training metrics indicate a beneficial impact of additional
input on training speed and also hint at a better performance.

B. Navigational Performance

After investigating the training metrics, the navigational
performance of the agents are compared against baseline
approaches. These include the model-based planners DWA
[29], TEB [31], and MPC [32], as well as the AIO planner
presented in our previous works, which is able to switch
between TEB and DRL [2]. The evaluation is done by running
150 episodes for each agent in the same random scenarios
and tasks. For each scenario, 150 episodes were performed.
The comparison concentrates on success rates, path lengths,
episode time, and collisions. For the qualitative evaluations
of the navigational performance, we tested all approaches in
three different scenarios: a) with 20 obstacles, b) with obstacle
clusters, and c) with running obstacles with an obstacle
velocity of up to 1m/s. The scenarios have a fixed start and
goal position and the obstacles are moving according to the
Pedsim social model [33]. The qualitative trajectories agents
3 and 5 are exemplary illustrated in Fig. 6. The timesteps are

sampled every 100 ms and visualized within the trajectory of
all approaches. The trajectories of the obstacles are marked
with the start and end time in seconds. The episode ended
once a collision occurred. Four metrics are considered for
the base comparison: the success rate of reaching the goal
without a collision, the mean number of collisions, the mean
path length, and the mean time. An episode is considered
unsuccessful when the agent collides with an obstacle, or a
timeout happens. Figure 5 illustrates the results of all planners.

It is observed that agent 1 performed best according to
the success rate of 97.3% and mean collisions of 0.02.
whereas agent 2 has the lowest success rate with 48.6%.
Surprisingly, agent 3 performed rather severely with a success
rate of just 70.6% and mean collisions of 0.06. The other 4
agents performed similarly and can compete well with the
AIO and TEB planner. All agents outperform the classic
planners DWA and MPC except for the baseline agent 2 and
agent 3. The path length of agent 1 is slightly higher than that
of agent 2, 3 and 4, but in general, all path lengths are higher
than those of the classic planners.

For scenarios with 15 obstacles the difference between
the DRL-based agents and the classic baselines become even
more noticeable. Whereas the success rates for the 6 agents
did not change much, the rates of the baseline planners
decreased more noticeably. The mean amount of collisions
for agent 2 has increased significantly from 0.94 to 5.18.
The mean collisions of the other agents and planners have
also increased, but not more than the drop in the success rate
would imply. The path length, mean time and speed did not
change in a substantially.

In general, agent 1 performed best among the 6 agents,
and an increase in obstacles did not significantly impact the
performance. The performance is similar to the AIO planner
on maps with 5 obstacles and slightly better on maps with
15 obstacles. As expected, agent 2 performed worst of the
6 agents. Surprisingly, agent 3 performed rather severely,
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Fig. 5: Quantitative evaluation of all agents against baseline planning approaches.

Fig. 6: Qualitative results of agent 1 (light red) compared to the
baseline agent 2 (dark red) on an indoor map. Exemplary trajectories
were taken for each agent. The dynamic obstacles’ trajectories are
depicted in blue.

although this agent was the only one which reached the last
training stage. Especially agent 2 and agent 3 have comparably
high path lengths. As they have the most timeouts, those
agents sometimes might wander around the map without
finding the goal. In some cases, the path lengths for scenarios
with 15 obstacles are lower than for scenarios with 5 obstacles.

Fig. 6 exemplary depicts the paths of agent 1 compared to the
baseline agent 2. It is noticed that the agent with additional
global information produces much more straightforward
trajectories towards the goal, whereas the baseline agent
with only Lidar information produce many roundabout paths.
This indicates the better inter-operation between global and
local planner which also results in smoother trajectories. The
navigation behavior of our planners is demonstrated visually

in the supplementary video.

V. CONCLUSION

In this paper, we proposed a holistic DRL training pipeline
incorporating all components and entities of the the ROS
navigation stack typically used in industrial ground vehicles
such as AGVs to improve synchronization between its entities.
Rather than considering each entity of the navigation stack
- global planner, waypoint generator, and local planner -
separately, the training involves all entities and provides the
DRL agent an enhanced understanding of them. Therefore,
we integrated information about the global plan, the waypoint
generator into the observation spaces of our trained agents.
In total, we proposed six agents with different observation
combinations to explore the effect of different input on the
agents training and navigational performance. The additional
information about the other entities could improve navigational
performance and resulted in higher success rates, less colli-
sions, and low path lengths compared to classic and learning-
based baseline approaches. Future works aspire to explore
the effect of additional input parameters such as semantic
information about pedestrians or vehicles on the training and
navigational performance. Furthermore, the approaches should
be deployed towards real robots.
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