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Abstract— This paper deals with particle motion on a
cone-shaped feeder unit of an industrial multihead weigher,
that distributes products through rotation. Thereby, rotational
speed, rotational direction, and constraint-dependent friction
substantially influence particle motion. Thus, particle motion is
modeled considering dynamic friction and constraint forces for
a viscoelastic case. Due to the cone-shape of the feeder, a specific
kinematic model is proposed that comprises a differentiable
restriction functions for calculating constraint forces. After-
wards, simulation results are tested against real data for a food
application. Furthermore, application cases for the resulting
model are proposed: The model can be incorporated into a
digital twin environment of the weigher as well as used to
generate simulation data for data-driven control algorithms.

Keywords: Dynamic friction, constraint modeling, multihead
weigher

I. INTRODUCTION

Food packaging industry requires product to be weighed,
proportioned, and packaged to a predefined amount rapidly
and precisely. For this purpose, food producers frequently
employ multihead weighers (MHW) (see Fig. 1). The multi-
head weigher or combination scale is an industrial scale, that
consists of multiple weighing heads and, thus, weighs several
partial amounts simultaneously. Afterwards, a combination
of partial amounts is formed that meets the predefined
packaging amount precisely.

Thereby, a weighing cycle runs as follows:

i. Product is conveyed onto the cone-shaped rotary or
vibratory feeder unit (cone feeder).

ii. The cone feeder conveys the product into radially
outward leading dosing channels.

iii. The dosing channels move the product via vibration
into the preliminary hoppers, that store the product
until the weighing hopper underneath is available.

iv. The product is weighed in the weighing hopper and
available for combination formation.

v. After determination of the hopper combination, the re-
spective weighing hoppers are emptied and the product
is lead over discharge chutes to a packaging machine.
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Fig. 1. Schematic illustration of a multihead weigher

Several aspects of the weighing process have already
been addressed in literature: Since nominal hopper fill levels
are often determined via rules of thumb, research seeks
to obtain (near-) optimal hopper set points e.g. by means
of Response Surface Methodology and a MHW machine
simulator [2]. Thereby, costs for product surplus and shortage
in a package have been considered. Furthermore, the MHW
machine setup problem has been formalized and the perfor-
mance of gradient-based, Brute Force, and random sampling
optimization algorithms has been analyzed [3]. Moreover,
different strategies for determining set points have been
evaluated and optimized [8]. These strategies involve creating
hoppers subgroups of equal set points with the set points
being determined by a common average product amount and
shifts in positive or negative direction.

Also, the operation times of vibratory line feeders have
been optimized [14]. At that, operation times have been
determined by (Weighted) Least Squares Method to supply
product of varying shape and weight to the hoppers precisely
in the amount specified by the set points.

Variability reduction and process optimization in the pack-
aging process is also an issue in literature. Thereby, [16] and
[1] measured the variability reduction in the MHW process
by the percentage variability reduction index. Furthermore,
the variability of different packaging strategies can be eval-
uated using a six-sigma approach [15]. In addition, modified
control charts have been used to monitor and control the
package weight for a packaging process optimized by a novel
variability reducing packaging strategy [7].

Last, the determination of the optimal hopper combination
is frequently addressed. Combination algorithms based on
bit operation [13] and dynamic programming have been
proposed by [11], [9], and [10]. Dynamic programming
algorithms to find the optimal hopper combination for duplex
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food packaging (simultaneous packaging of two packages)
[11] [9], and mixture packaging of two elements [10] have
been proposed. Furthermore, the performance of an enhanced
dynamic programming algorithm for duplex packaging has
been evaluated and compared to the quasi-duplex packag-
ing process (packing two packages one after another with-
out intermediate weighing) [9]. In addition, the combina-
tion problem has been stated as lexicographic, bi-criteria
combinatorial optimization problem for two double-layered
weigher configurations and solved via dynamic programming
algorithms [12].

The methods used so far mainly investigate the optimum
combination of the weights in the hoppers. However, a sig-
nificant improvement could be achieved if a targeted weight
distribution in the hoppers is already realized beforehand.
This could be achieved by selectively dropping product from
the cone feeder into the dosing channels, which requires
knowledge about the motion of particles on a rotating feeder.
To the best of the authors’ knowledge, particle motion,
including sticking and slipping, on a cone feeder in a MHW
application or broader field has not yet been addressed
in literature. However, some literature deals with particle
motion and fluid flow in, on, or around rotating cones and
disks as

• fluid flow around a rotating cone in still fluid [17],
• modeling of particles in a rotating flow for centrifugal

separation mechanism [23],
• particle and gas dynamics in a rotating cone reactor [21],
• motion of granular material on rotating disk for bunker

feeder [6] or screw conveyor [22],
• rolling of a ball on the inside surface of a rotating cone

without slipping [5],
• particle separation inside a cone shaped rotating sepa-

rator via rolling and sliding motion [4].
Nevertheless, these approaches are not suited for the

problem at hand as they either involve a fluid flow or the
main driving forces are others than adhesive and sliding
friction. Therefore, an approach for modeling the movement
of a particle on a rotating cone based on dynamic friction and
constraint forces is proposed, that is especially suited, but not
exclusively usable for a MHW. Thereby, the application case
of a cone-shaped rotating feeder is novel and requires a new
approach to continuously determine the constraint position
and velocity.

This work is organized as follows: In section II the
dynamic friction and constraint model for the particle motion
on a rotating cone feeder is described including the determi-
nation of the constraint point. Next, section III presents the
simulation and results thereof based on the model. Finally,
some conclusions are drawn in section IV.

II. MODELING

To describe the particle motion accurately, a model must
include both the impact and the adhesion and friction behav-
ior. In both cases, constraint velocity is vital. A generalizable
friction and constraint modeling approach has been described

in [18] and [19], which will be adapted to the case of a MHW
in the following.

For modeling, a particle is assumed to be described by its
position p = [px,py,pz]

T and velocity v = [vx,vy,vz]
T . The

x-, y-, z-position of the particle is considered as generalized
coordinates of the model.

q = [q1, q2, q3]
T = p (1)

Based on the generalized coordinates, a dynamic friction and
constraint model is built. Thereby, the sticking and slipping
of the particle results from friction; whereas, the constraint
model ensures that the particle is only affected by friction
when it touches the cone feeder.

At first, static friction is modeled. Then, the static model
is expanded to a dynamic friction model by means of a low-
pass filter. Afterwards, the constraint model is established
and incorporated into the dynamic friction model.

For friction modeling, not the particle´s absolute velocity
but the relative velocity between particle and cone feeder
vdif is necessary. The velocity of the cone feeder vp at the
particle position q for a given rotational speed ω is

vp(q) = ω ×q . (2)

Thus, the relative velocity vdif, its direction ev, and value v
are given by

vdif(q, q̇) = q̇−vp(q) (3)

ev(q, q̇) =− vdif(q, q̇)
|vdif(q, q̇)|+ ε

(4)

v = |vdif(q, q̇)| (5)

with the parameter ε to ensure numeric stability by avoiding
zero division [20].

A. Static friction model

The static friction force Qs consists of viscous FV,
Coulomb FC, and Stribeck friction FS.

Qs(q, q̇) = FV(q, q̇)+FC(q, q̇)+FS(q, q̇) (6)

The functions for viscous, Coulomb, and Stribeck friction
force are defined analogously to [18].

Viscous friction force behaves proportionally to the relative
velocity with the damping parameter d.

FV(q, q̇) = dvev(q, q̇) (7)

Coulomb friction force depends on the sliding friction coef-
ficient µC, normal force F⊥, and parameter vC, that defines
the slope of the approximated sliding friction curve during
zero crossing. The tanh-function is favored over the sign
function to express the direction dependency of the Coulomb
friction and avoid the non-differentiable properties of the sign
function by a smoothed transition [18].

FC(q, q̇) = µC F⊥ tanh
(

v
vC

)
ev(q, q̇) (8)
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Stribeck friction force depends on the adhesive friction
coefficient µS and the parameter v̂S, where v̂S defines the
velocity that would result in the maximum adhesive force.

FS(q, q̇) = F∆
S

v
v̂S

e
1
2−

1
2

(
v

v̂S

)2

ev(q, q̇) (9)

with

F∆
S =

(
µS −µC tanh

(
v̂S

vC

))
F⊥−dv̂S . (10)

Based on the static friction Qs and the weight force Fg =
[0, 0,−mg]T, Newton´s second law can be applied to obtain
the following differential equation for particle motion

q̈ =
1
m
(Qs(q, q̇)+Fg) . (11)

B. Dynamic friction model

The static model does not adequately represent the dy-
namic friction effects and results in a zero force during
standstill. This is due to a lack of hysteresis and memory
effect, which can be avoided by an extension to a dynamic
friction model using a linear parameter-varying low-pass
filter At that, static friction force Qs is delayed and the
delayed force Qd is applied to the system. [18]
Thus, (11) adapts to

q̈ =
1
m
(Qd(q, q̇)+Fg(q, q̇)) . (12)

This requires the introduction of Qd as a new system state.
The following first order differential equation describes the
dynamics of Qd with TF as time constant of the low-pass
filter.

Q̇d(q, q̇) =
a(q̇)
TF

(Qs(q, q̇)−Qd(q, q̇)) (13)

with

a(q̇) = 1− e−
( vdiff(q,q̇)

q̇F

)2

. (14)

The parameter a(q̇) adapts the filter dynamics to the different
relative velocities and, thus, to the system dynamics [18].

C. Constraint model

To ensure that particle motion is only influenced by
friction when the particle is in contact with the cone feeder,
a constraint model is established. Furthermore, the constraint
model allows to represent the collision and bouncing of the
particle on the cone feeder. Thereby, the general constraint
modeling approach is based on [19] and the interested reader
is referred to [19] for further details.

As the surface of the cone feeder represents the constraint,
with which the particle collides, at first, a novel type of
constraint distance function for the cone feeder is proposed.
Afterwards, the proposed constraint distance function is used
for the dynamic constraint and friction model.

1) Cone feeder constraint distance function: The con-
straint distance function s⊥(q) calculates the distance be-
tween the constraint (cone feeder surface) and the center of
mass of the particle based on its position q. The challenge
of this application is the nonlinear, three dimensional motion
of the particle with respect to the cone feeder.

For modeling the constraint distance function, the cone
feeder is assumed to be a straight cone with height h, radius
r, and a circular base. For sake of simplicity, the attached
second cone, that is depicted in Fig. 1, is neglected and
the cone base center O is the origin of the considered
coordinate system. The simplified cone is depicted in Fig.
2. Additionally, a condensed form of writing the formulas
without dependencies on generalized coordinates is used. In
the following, uppercase letters denote points and lowercase
letters their respective position vectors.

For the constraint distance function s⊥(q), the collision
point C between particle and cone must be calculated con-
tinuously via an analytical function. C corresponds to the
momentary collision point between particle and cone, if the
particle is in free fall without the influence of external forces
other than gravity. At first, the position q of the particle
is projected onto the cone base to obtain a hypothetical
intersection Cb with the cone base.

c⃗b =

 q1
q2
0

 (15)

Then, a straight line is placed through the cone base center
O = (0,0,0) and the hypothetical intersection Cb to deter-
mine the intersection B with the boundary of the cone base.
This results in the following equation

x⃗base = o⃗+λb(⃗cb − o⃗) = λb ·⃗ cb . (16)

As the boundary of the cone base has the distance r to the
center O, it follows

|⃗xbase|= λb

√
q2

1 +q2
2

!
= r ⇐⇒ λ

∗
b =

r√
q2

1 +q2
2

. (17)

Thus, the intersection with the boundary B is given by

b⃗ = λ
∗
b ·⃗ cb . (18)

Fig. 2. Simplified cone for determination of the constraint distance function
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To obtain the collision point C=(q1,q2,cz), the line equation
for the cone surface line from the point B to the tip A =
(0,0,h) must be established as follows

c⃗ = a⃗+λ (⃗b− a⃗) . (19)

Considering (19) line by line, a system of three equations
with each equation representing a dimension results.

cx = ax +λ (bx − ax)⇐⇒ cx = λbx (20)
cy = ay +λ (by − ay)⇐⇒ cy = λby (21)
cz = az +λ (bz − az)⇐⇒ cz = h+λ (bz −h) (22)

To obtain the coordinates of the collision point C, the system
of equations must be solved. Since the x- and y-position of
C are given by q1 and q2, a system of equations with two
unknowns (λ and cz) remains.

q1 = λbx (23)
q2 = λby (24)
cz = h+λ (bz −h) (25)

Solving the equation system leads to

λ
∗ =

q1
bx

=
q1

r√
q2

1+q2
2
· cb,x

=
q1

r√
q2

1+q2
2
·q1

=

√
q2

1 +q2
2

r
(26)

which can be used to calculate the z-coordinate of the
collision point

cz = h+λ
∗(bz −h) = h

1−

√
q2

1 +q2
2

r

 . (27)

Based on the collision point the distance s⊥ between particle
and cone can be calculated as

s⊥ = q3 − cz . (28)

Further, the relative velocity between particle and constraint
is given by

d
dt

s⊥ = v⊥ = q̇3 +
h
r

q1 q̇1 +q2 q̇2√
q2

1 +q2
2

 . (29)

2) Power-based restriction function: According to [19],
mathematically the power of a constraint can be represented
as a restriction function R. The restriction function depends
on the distance s⊥ between the particle and constraint and
the relative velocity v⊥ between both.

R(s⊥(q),v⊥(q, q̇)) = Ra(s⊥(q))Rp(v⊥(q, q̇)) (30)

The restriction function consists of an activation function Ra
and constraint-specific power function Rp.

Based on the distance s⊥ between object and constraint
the activation function Ra identifies constraints. Also, Ra
determines the intensity of interaction between constraint
and particle as well as the activity state of the constraint.
For elastic particles with an outer radius s0 and compression

radius sc < s0 the continuous activation function is defined
as

Ra(s⊥(q)) =
1− tanh(rt(s⊥(q)− rc))

2
∈ (0,1) (31)

with the transition coefficient rt that describes the rigidity of
the particle

rt =
2

s0 − sc
artanh(ra) (32)

and the constraint offset rc that refers to the geometry of the
particle

rc =
s0 + sc

2
. (33)

For Ra(s⊥) → 0 there is no contact between particle and
constraint and, thus, the constraint is inactive. For Ra(s⊥)→
1 a contact exists and the interaction between particle and
constraint is at its maximum.

The constraint-specific power function defines the energy
dissipation for a certain relative velocity between particle
and constraint based on a dissipation coefficient rd and the
maximum force rf the constraint can provide.

Rp(v⊥(q, q̇)) =
(

v⊥(q, q̇)
2

− log(cosh(rd v⊥(q, q̇)))
2rd

)
rf

(34)

D. Combined dynamic friction and constraint model

To merge constraint and friction model, the normal force
F⊥ between particle and constraint must be calculated. It is
obtained by the partial derivative of the restriction function
R with respect to the relative velocity v⊥. In addition, to
transform the effective direction of the constraint resistance
force Fc and, thus, the normal force F⊥ in the direction of the
generalized variables q, the relative velocity must be partially
derived with respect to the generalized velocities q̇

F⊥((q, q̇) =
∂ R(q, q̇)
∂ v⊥(q, q̇)

∂v⊥(q, q̇)
∂ q̇

= Ra(s⊥(q))
(

1− tanh(rdv⊥(q, q̇))
2

)
rf⃗ eFc

= Ra(s⊥(q))Fc(v⊥(q, q̇))⃗eFc

(35)

with

e⃗Fc =
∂v⊥(q, q̇)

∂ q̇
=


h
r

q1√
q2

1+q2
2

h
r

q2√
q2

1+q2
2

1

 . (36)

F⊥(q, q̇) is then inserted into the static friction force Qs
in place of F⊥ corrected with the factor 1

rf
. This leads to

the constraint-specific static friction force Qc
s . For viscous

friction an exception applies. As FV does not depend on the
normal force F⊥, FV is just multiplied by the activation func-
tion Ra to generate the dependency between the occurrence
of a contact to the constraint and viscous friction force.

Furthermore, the dynamic friction force and its dynamics
are influenced by the constraint modeling as follows

Q̇c
d(q, q̇) =

a(q̇)
TF

(Qc
s(q, q̇)−Qc

d(q, q̇)) . (37)
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Last, the normal force F⊥ must be incorporated into the
differential equation for particle motion as follows

q̈ =
1
m
(Qc

d(q, q̇)+Fg(q, q̇)+F⊥((q, q̇)) . (38)

III. SIMULATION AND RESULTS

Real data from a food industry application is used for
simulation. In this application, the MHW weighs raw meat
pieces and proportions them to a predefined package size.
To achieve the package size most accurately, meat is pre-
proportioned via the preliminary hoppers. Thereby, the cone
feeder indirectly determines the fill levels of the preliminary
hoppers by ejecting meat into specific dosing channels. In
this application, especially product properties are a challenge,
namely the varying shape, unit weights, and adhesive behav-
ior with other products and the metal cone feeder. To loosen
adhering meat and convey it to the dosing channels, the cone
feeder rotates clockwise and counterclockwise according to
a predefined pattern.

Data on five meat pieces sticking and slipping on the cone
feeder are extracted from a video of this process using image
recognition. Table I shows an overview of the start position,
angle when leaving the feeder, and dosing channel the meat
piece is conveyed to for these five meat pieces. Thereby, meat
pieces 1, 2, and 3 are moved by a clockwise rotation, 4 and
5 by a counterclockwise rotation. Moreover, meat piece 4
represents a single piece of meat lying on the cone feeder
and adhering to it. In contrast, meat pieces 1, 2, 3, and 5
are located on the cone feeder together with several others,
partially overlapping meat pieces resulting in interactions
between these meat pieces.

By means of the proposed model, the trajectory of a meat
piece and its exit point from the cone feeder is simulated
for a given start position and speed curve. The simulation
parameters are summarized in table II. All meat pieces are
assumed to start at the height of the cone feeder as the actual
start height cannot be determined from the 2D video. For
the adhesive and sliding friction coefficient, high values are
assumed to represent the stickiness of the meat. In addition,

TABLE I
PRODUCT DATA

Sample Start position [m] Exit angle Exit channel

1

 0.11
−0.01

0.03

 69.5 ° 2

2

 −0.10
−0.01

0.03

 63.5 ° 2

3

 0.08
−0.13

0.03

 93.6 ° 1

4

 −0.07
0.04
0.03

 (147.4 °) (13)

5

 0.14
0.06
0.03

 115.2 ° 14

TABLE II
SIMULATION DATA

ε 0.0000001
di mit i = 1...5 (225 135 750 750 30)

µc 0.85
vc 0.00005 m

s
µs 0.99
vs 0.1 m

s
m 0.125 kg
TF 0.0003 s
q̇F 0.0001 m

s
g 9.81 m

s2

s0 0.025 m
sc 0.5s0
ra 0.99
rd 120 s

m
rf 120 N

Cone diameter 0.45 m
Cone tilt 7.5 °

Dosing channels 14

the meat pieces are assumed to behave viscoelastically with a
maximum thickness compression of 50%. The cone feeder is
assumed to be rigid and not breakable by falling meat pieces.
MATLAB R 2022a is used for the numerical simulation with
the data shown in table II.

The results of the simulation are summarized in table III
and Fig. 3. The simulation results show a good approxima-
tion of the real trajectories with small errors in the exit angles
for the more common case of meat being ejected from the
cone feeder (1, 2, 3, 5). The case of meat sticking to the
feeder (5) can be modeled as well but the error regarding
the end position is significantly larger. Considering the real
data from the video, this difference might occur due to the
different setting of a single meat piece lying on the feeder
without any interaction with other meat pieces that possibly
could push it down. To solve this issue, a larger experiment
for identifying the model parameters and an expansion of the
model by particle interactions is advised.

IV. CONCLUSIONS

The presented model is a first step to approximate particle
motion on a cone-shaped rotating feeder and we were able to
confirm experimental results for the most part. The proposed
model lays the foundation to control product distribution
in the multihead weighing process. On this basis, we will
expand the model for collision dynamics between multiple
particles and develop product-specific models. Beyond that,
we will design a controller for the cone feeder to realize

TABLE III
SIMULATION RESULTS

Sample 1 2 3 4 5
Exit angle 70.0 ° 62.0 ° 93.8 ° (287.4 °) 119.0 °

Error 0.5 ° -1.5 ° 0.2 ° (140.0 °) 3.8 °
Exit channel 2 2 1 (10) 14
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Fig. 3. Real vs. simulated particle motion trajectories

a targeted and more precise product distribution in the
weighing hoppers.

Applications for the developed model are the incorporation
of the model into a digital twin environment or data genera-
tion for data-driven control algorithms such as Reinforcement
Learning Control.
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