
Flatness-based MPC using B-splines
transcription with application to

a Pusher-Slider System
Thomas Neve1,2,*, Tom Lefebvre1,2, Sander De Witte1,2 and Guillaume Crevecoeur1,2

Abstract— This work discusses the use of model predictive
control (MPC) for the manipulation of a pusher-slider system.
In particular we leverage the differential flatness of the pusher-
slider in combination with a B-splines transcription to address
the computational demand that is typically associated to real-
time implementation of an MPC controller. We demonstrate the
flatness based B-spline MPC controller in simulation and com-
pare it to a standard MPC implementation approach using direct
multiple shooting. We evaluate the computational advantage of
the flatness based MPC empirically and document computational
acceleration up to 65%.

I. INTRODUCTION

When we manipulate objects in a daily setting our actions
reach further than just simple grasping and releasing. We
perform an array of different tasks, such as pushing, pulling,
sliding, and lifting. Therefore, we argue that pushing is a mo-
tion primitive of practical significance for robotic manipulation
as well. Pushing extends the normal capabilities resulting in a
wide variety of applications, such as the manipulation of hard
to grasp objects due to for example their weight or shape, or
positioning tasks [1]. Moreover, we contend that pushing an
object allows to simplify the design of the end-effector without
significantly compromising the maneuverability of the object.
The pusher-slider system, discussed in this work, represents
a basic non-prehensile manipulation task where the goal is
to control the motion of the slider through the pusher. The
system consists of a sliding object (the slider) and a single
contact point (the pusher).

To achieve optimal control of a pusher-slider system, a
precise model of the slider’s behavior under pushing is re-
quired, as well as a robust control strategy to address model
inaccuracies and external disturbances. Model Predictive Con-
trol (MPC) has proven to be an effective control strategy
in complex systems due to its ability to anticipate future
behavior and act optimally in changing environments [2].
MPC optimizes dynamic behavior over a prediction horizon
at each sampling period while adhering to a set of constraints.
Common approaches include direct methods, which transforms
the optimal control problem into a numerical optimization

1D2Lab research group, Department of Electromechanical, Systems and
Metal Engineering, Ghent University, Tech Lane Ghent Science Park 913,
B-9052 Zwijnaarde, Belgium

2Core Lab MIRO, Flanders Make.
*Corresponding author: thomas.neve@ugent.be.

problem [3]. Several techniques exist here to transcribe the
control problem, typically using polynomial or piecewise con-
stant parameterization. A common direct approach is Direct
Multiple Shooting (DMS) which considers both the state and
control as optimization variables. Subsequent states in the
prediction horizon are tied together using equality constraints
between each control interval [4].

Solving this optimization problem in real-time can be com-
putationally demanding, limiting its practical application. In
this work we attempt to adress this challenge by exploitation
of the differentially flat properties of the dynamics model.
Differential flatness is a property of a class of dynamical
systems characterized by the ability to define all states and
controls of the system as a set of specific differential variables
and their derivatives. This property can be particularly useful
for both solving trajectory planning [5] and tracking problems
[6]–[8]. In [9] full optimal flatness based MPC has also been
used for the control of underactuated surface vessels. Most
work however does not solve the full optimal control control
problem each MPC iteration. It is still unclear how the differ-
ential flatness property is best used in an MPC implementation
and what the impact is on computational requirement.

We present an MPC controller that leverages the differen-
tially flat properties of the introduced kinematic pusher-slider
model and employs a B-spline to parameterize the trajectory.
This significantly reduces the complexity of the trajectory
optimization problem due to less optimization variables and
constraints compared to the DMS approach. The B-spline is
used to represent the trajectory of the flat coordinates of the
pusher-slider system, after which the other variables can be
deduced from the flat coordinates. However, the nonlinear flat
expressions used to compute the original states and controls
from the flat trajectory also add some nonlinearity to the
objective and constraints. It is unclear how such a flatness
based MPC would compare to standard transcription methods
such as DMS. Our contribution consists of the application
of a flatness based MPC strategy to a pusher-slider system,
and comparing its performance in terms of computational
requirements to the DMS approach.

II. PUSHER-SLIDER MODEL

The pusher-slider system can be modelled as a quasi-static
model where no accelerations occur. This model is physically

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 132

c

r

a

(x, y, c, ϕ)

(vt, vn)

b

Fig. 1: State and input values pusher-slider system.

valid in the following cases.

1) The motions of the slider are slow enough that inertial
forces are negligible compared to friction forces.

2) The friction forces at the contact point between pusher
and slider are negligible with respect to the friction
forces between the slider and the ground.

We start by describing the kinematic model and continue
by discussing the differentially flat properties of the resulting
model and the accompanying expressions of the pusher-slider
system.

A. Kinematics

The system consists of a sliding object (the slider) and a
single contact point (the pusher). We define the state of the
system as

x⊤ =
(
x y c ϕ

)
and the input as

u⊤ =
(
vt vn

)
with variables shown in figure 1. Here (x, y, ϕ) represents
the planar configuration of the slider in the global frame of
reference and c the relative position of the pusher contact with
the slider. The inputs vt and vn denote, respectively, the speed
tangent to and normal to the surface against which is pushed.
Some additional geometric parameters are defined as well:
with a and b denoting the length of the slider’s side, and r
denoting the radius of the pusher.

By assuming quasi-static interaction and frictionless contact
between the pusher and the slider, the model becomes entirely
kinematic. The former means physically that we assume that
in any configuration of the slider the ground friction is large
enough to keep the slider stationary if not acted upon. The

following equations emerge

ẋ = − β2

β2 + c2
vn sin(ϕ)

ẏ =
β2

β2 + c2
vn cos(ϕ)

ċ = vt −
(
b

2
+ r

)
c

β2 + c2
vn

ϕ̇ =
c

β2 + c2
vn

where β2 is a factor that depends on the geometry of the slider.
In the case of a rectangular geometry β2 = 1

12(a
2 + b2). For

the complete derivation we refer to the work by Lefebvre et
al. [10].

B. Differential flatness

Differential flatness or just flatness is a generalisation of
the notion of inverse dynamics for underactuated nonlinear
systems, hence nx > nu where nx and nu denote the state
x ∈ Rn and control u ∈ Rm dimensionality. To circumvent
the over-defined inverse dynamics problem, a set of flat
coordinates y ∈ Rnu is selected with the same dimensionality
as the control. The flat coordinates themselves may not have
physical meaning.

y = y(x,u, u̇, ü, ...,u(p))

Then the system state and the control are expressed as a
function of the flat coordinates and its derivatives.

x = x(y, ẏ, ÿ, ..., y(q))

u = u(y, ẏ, ÿ, ..., y(q))

It can be shown that the equations of motion of the pusher-
slider are flat [10]. A set of flat coordinates with the same
number of coordinates as the input nu = 2 is defined. For
the pusher-slider system the flat coordinates are taken as the
Cartesian coordinates.

p⊤ =
(
x y

)
The flat expressions for the control input and auxiliary states
can be derived as a function of these coordinates and their
derivatives.

c = β2 ẋÿ − ẍẏ√
ẋ2 + ẏ2

3

ϕ = − arctan
ẋ

ẏ

vt =

(
1 + β2 (ẍẏ − ẋÿ)2

(ẋ2 + ẏ2)3

)√
ẋ2 + ẏ2

vn = β2 ẋ
...
y − ...

x ẏ√
ẋ2 + ẏ2

3 + 3β2 (ẍẏ − ẋÿ)(ẋẍy + ẏÿ)√
ẋ2 + ẏ2

5 + · · ·(
b

2
+ r

)
ẋÿ − ẍẏ

ẋ2 + ẏ2

(1)

133

III. MODEL PREDICTIVE CONTROL

Model predictive control (MPC) is a control strategy that
optimizes over a prediction horizon to steer a dynamic system
in an optimal way whilst satisfying a set of constraints.

Consider the following optimal control problem (OCP)

min
u(t)

lT (x(T)) +
∫ T

t

l(x(t),u(t))dt

s.t.


ẋ(t) = f(x(t),u(t))
x(0) = xstart
x(T) = xgoal
h(x(t),u(t)) ≤ 0

(2)

with x(0), x(T) and h the initial, final state and path con-
straints respectively. Each MPC iteration, the OCP is solved
to acquire the optimal control signal u(t). This control signal
could be applied in open-loop to the system to perform in
an optimal manner. However, due to model inaccuracies or
external disturbances the system could quickly diverge from
the expected behavior. To account for this, the actual state
following the applied control is used as the new initial state,
and the optimization process is repeated. Effectively closing
the loop. Typically, the control signal u(t) is considered over
the same time horizon T on each iteration. Should one want to
converge to a specific goal state within the given time horizon,
it is also possible to reduce this horizon on each iteration. Thus
modifying the OCP formulation on each step.

MPC could be used for both trajectory tracking and genera-
tion. The former uses an MPC controller to track a predefined
trajectory [7], [8]. In this work however we focus on trajectory
generation, generating a new trajectory at each time step. Ergo
we reconsider the full optimal control problem every time step.

The common approach to solving the optimal control prob-
lem in MPC is through the use of direct methods, which
translate the control problem into a numerical optimization
problem. Within the class of direct methods several approaches
exist to transcribe the OCP into a trajectory optimization
problem. A popular approach for longer time horizons is direct
multiple shooting (DMS), which considers both the system
state and control as optimization variable. Another approach
is the use of polynomial parameterization, e.g. B-splines [9],
of the trajectory. This approach can be particularly usefull in
combination with a differentially flat system. We continue this
section with a more detailed discussion on both approaches.
These techniques will then be applied and compared onto the
pusher-slider system in terms of computational performance
to highlight their respective advantages and disadvantages.

A. Direct Multiple Shooting

Direct multiple shooting (DMS) is a strategy to transcribe a
trajectory optimization problem into a numerical optimization
problem. The prediction horizon of the problem is split, using
a discretized dynamics model, into several equidistant shooting
nodes. The multiple shooting transcription of the control

problem (2) results in the following nonlinear program (NLP)

min
u0:N-1,x0:N

N−1∑
i=0

l(xi,ui)

s.t.


xi+1 = f(xi,ui)
x0 = xstart
xN = xgoal
xmin ≤ xi ≤ xmax
umin ≤ ui ≤ umax

(3)

with N the number of discretization steps, l the cost function
and f the discrete dynamics of the pusher-slider over one
shooting interval. Note the addition of the state trajectory xt

as an optimization variable. This component is key to the
mutliple shooting approach. Continuity in the state trajectory
between shooting nodes is enforced through a set of continuity
constraints using f .

The addition of the states xt to the optimization might seem
counterproductive compared to a single shooting approach
where only the controls ut are considered as optimization
variables. But compared to single shooting, mutliple shooting
is more flexible in initalizing the problem, and has improved
convergence properties [4], [11].

B. Flatness based MPC

The continuity constraint of (3) is implicitly fulfilled in
the flat parameterization (1) of the system. Put differently,
the entire class of feasible state-action trajectories is encoded
by the class of smooth flat paths. Therefore, the differential
flatness properties of the pusher-slider could be leveraged to
transcribe the control problem without the need for a set
of constraints to enforce continuity. To parametize the state
trajectory, B-splines can be used to represent the flat trajectory
without considering the controls themselves as optimization
variables directly. From this parameterized trajectory the full
state and controls can still be inferred using (1).

1) B-splines: In this section we give an introduction to
B-splines. For an extensive theory we refer to the related
literature [12], [13].

B-splines, first introduced in [13], consist of a union of local
curve segments which are each active on a specific interval. Its
segmented nature allows for very efficient tailoring to desired
local changes [14]. This property also makes it particularly
useful for trajectory optimization where one might desire a
local change without affecting global behaviour, which in the
end will result in sparse Jacobian and Hessian structures of
the nonlinear program.

Consider the expansion

S(τ) =

n∑
i=0

Ni,kpi, τ ∈ [0, T] (4)

where the spline S(τ) is defined over the closed interval [0, T]
which is subdivided into m sub intervals with m = k + n +
1. The vector p = [p0, . . . , pn] constitutes the set of control
points which acts as a set of weights on the basis functions
Ni,k where k is the order of the B-spline, n+1 is the number

134

of control points and m defining the number of knots. The
basis functions can be determined according to the following
recursion formula [15].

Ni,0(τ) =

{
1 τi ≤ τ ≤ τi+1

0 otherwise
,

Ni,j(τ) =
τ − τi

τi+j − τi
Ni,j−1(τ)

+
τi+j+1 − τ

τi+j+1 − τi+1
Ni+1,j−1(τ)

(5)

It can be seen here that the closed interval [0, T] is divided
uniformly through a knot vector.

τ = [τ0, τ1, . . . , τm] (6)

At the knot points, the polynomials are joined and connected
in a continuous manner. From the recursion (5) it is clear
that each basis function Ni,k, with weight pi, is only active
on a subset of the interval [0, T]. More specifically, it is
nonzero on the interval [τi, τi+k+1), resulting in the B-spline
not being defined at the start and the ending of the interval
[0, T]. Choosing the knot vector with duplicate knots at the
ends as

τ = [0 . . . 0︸ ︷︷ ︸
k

0 . . . T︸ ︷︷ ︸
internal knots

T . . . T︸ ︷︷ ︸
k

], (7)

alleviates this and also clamps the start and endpoint of the
spline to the two end control points, S(0) = p0 and S(T) =
pn. This is also often referred to as a clamped uniform B-
spline.

The derivative of a B-spline is simply a function of B-
splines of a lower degree. Since a B-spline function of order
k consists of polynomials of order n − 1, it’s derivatives are
continuous up to the derivative of degree n − 2. The flat
expressions require a derivative of the flat coordinates up to
order q. Thus the order of the B-spline used to represent the
flat trajectory should be at least of order q+2. This is usually
chosen as the minimum value to avoid numerical issues [9].

2) B-spline transcription: We can now represent our OCP
as a numerical optimization problem using B-spline transcrip-
tion. Here we consider the control points p0:n as optimization
variables that bend the continuous B-spline curve according
to some objective and constraints. With an equidistant knot
vector, resulting in a uniform B-spline, we can evaluate the
B-spline function at a set of collocation N + 1 points. Using
the flat expressions (1) we can express the objective and con-
straints at the collocation points, resulting in an optimization
problem without the need for continuity constraints.

min
p0:n

N∑
i=0

l(xi(p0:n),ui(p0:n))

s.t.


x0(p0:n) = xstart
xN (p0:n) = xgoal
xmin ≤ xi(p0:n) ≤ xmax
umin ≤ ui(p0:n) ≤ umax

(8)

IV. SIMULATION EXPERIMENTS

We will now verify the computational characteristics of
the proposed transcription methods in function of real-time
appliction of the corresponding MPC approach. Therefore we
define several validation cases. Due to the arbitrariness of
the global frame of reference we can consider initial position
[x, y] = [0, 0] and orientation ϕ = 0 without loss of generality.
Each case the MPC controller is used to control the pusher
to manoeuvre the slider according to some objective towards
the goal location and orientation. Each MPC iteration an
OCP is solved at discrete time points with a fixed time step
∆t = T

N+1 . Two different transcription techniques, DMS and
B-spline transcription, are used to build the MPC controller.
For each transcription technique we consider both a fixed
and shrinking horizon version, resulting in four different
implementations. The controllers are implemented in CasADi
[16] and solved using IPOPT [17]. In the simulation, noise
was added to each control, unoise ∼ N (0,Σ), with Σ =
diag(0.2, 0.2).

More concretely, the OCP takes the following generic form
for both the spline and DMS transcription.

J = min
u0:N−1

N−1∑
i=0

uT
i Rui + xT

i Qxi + xT
NPxN

s.t.
{

x0 = xstart
−0.4 ≤ c ≤ 0.4

(9)

Next to the objective desribed above, we add a regulariza-
tion term to the B-spline transcription case, Jtot = J+wregJreg.

Jreg =

n−1∑
i=0

∥pi+1 − pi∥2 (10)

This term was added with the aim of maintaining a uniform
distance between the control points. We have found empiri-
cally that this can improves numerical stability significantly.

Initial results here were promising for the most part. How-
ever, once the slider got close to the goal, MPC performance
starts deteriorating in the form of increasing computation time
and numerical instability. This phenomenon ocurred for both
the B-spline and DMS approach but was more outspoken for
the flatness based MPC which starts to fail slightly sooner. For
this reason, the MPC controller is used up untill a switching
point where the final number of steps are handled by a tracking
controller. The tracking controller uses a DMS formulation to
track the final solution from the MPC generation.

We start by describing our methodology of an MPC with
typical fixed preview horizon.

A. Fixed horizon

Each MPC step an OCP with preview horizon T = 1 and
N = 20 discretization steps is solved. The first control from
the solution, u0, is applied to the system and the aformentioned
OCP is resolved with the new state, position and orientation,
of the pusher-slider.

135

(a) case 1 (b) case 2

(c) case 3

Fig. 2: All cases with a fixed horizon MPC. The settings are
reported in table I.

settings diag(R) diag(Q) diag(P) wreg
case 1 (2, 2) (1, 1, 10, 0) (500, 500, 2000, 0) 2
case 2 (2, 2) (0.5, 0.5, 0, 0) (500, 500, 2000, 0) 5
case 3 (0.5, 0.5) (1, 1, 0, 0) (500, 500, 2000, 0) 10

TABLE I: Settings used for the fixed horizon MPC. For the cost
matrices, the diagonal components are reported.

1) Implementation details: The MPC controller is used up
untill the slider starts getting close to the goal, ∥(x, y) −
(xgoal, ygoal)∥ = 2.5. Afterwards the tracking controller is
activated.

The solution resulting from the B-spline transcription is a
continous trajectory in τ . The required control can be easily
computed with the expressions (1) using the flat coordinates
and its derivatives evaluated at τ = 0.

In our experiments we use a B-spline of order k = 5 with
number of knots m = 12 resulting in n = 6 control points.

2) Discussion: The results for three test cases are shown
in figure 2a, 2b and 2c with the asociated computation times
indicated in figure 3. The MPC phase is indicated in green and
tracking phase of the control is indicated in red. The indicated
computation times are only given for the MPC phase.

In all cases, the B-spline transcription with flat trajectories
outperforms the DMS method in terms of computation time.
The main reason for this is the substantially lower amount
of optimization variables in the B-spline transcription. Only
n control points are used, resulting in n · nu optimization
variables. In contrast, the DMS approach requires a control
and state vector for each of the N shooting nodes, resulting
in N · (nx + nu) + nx variables.

B. Shrinking horizon

Instead of keeping the horizon fixed, each subsequent step
the horizon is reduced with the goal of converging to the goal
within the intended number of steps N = 20 and time horizon
T = 1. In other words, after each control step, the preview
horizon T is reduced by ∆t.

Fig. 3: Computation time of an MPC controller with fixed preview
horizon for all cases.

settings diag(R) wreg
case 1 (0.1, 0.1) 1
case 2 (0.5, 0.5) 1
case 3 (0.4, 0.4) 10

TABLE II: Settings used for the shrinking horizon MPC. For the
cost matrices, the diagonal components are reported.

1) Implementation details: In contrast to the fixed horizon
formulation, we also add a terminal constraint to the problem,
xN = xgoal. This change in the formulation also allows us
to drop the Mayer term P and Q from the lagrangian term
in (9). Relying solely on the terminal constraint and reducing
horizon to converge to the goal. The tracking controller is also
activated after NMPC = 15 steps.

Since the B-spline transcription results in a continuous flat
geometric trajectory, redefining the time parameterization is
very practical. One only needs to replace the time horizon
T in the B-spline parameterization (4) with the new reduced
horizon. The number of optimization variables also remains
identical throughout the manoeuvre.

For the DMS approach, a reducing horizon is conceptually
relatively simple but can take a bit more effort in implemen-
tation. Each control step the number of steps in the preview
horizon N is reduced by 1 in order to retain the same time
step ∆t under a reducing time horizon. This also results
in a reducing number of variables and constraints on each
subsequent iteration. Here we opted to rebuild the underlying
NLP on each iteration.

2) Discussion: The results for three test cases are shown
in figure 4a, 4b and 4c with the asociated computation times
indicated in figure 5. Similar to the fixed horizon scenario, the
B-spline method outperforms the DMS method in computation
times. Notice the higher variance in the computation time of
the DMS approach. This is unsurprising as the number of
optimization variables reduces when the number of horizon
steps is reduced, resulting in a reduced computational demand
upon nearing the goal.

V. CONCLUSION

In this work we demonstrated the use of a flatness based
MPC using a B-splines transcription to parameterize a flat
trajectory on a pusher-slider system. We compared this MPC

136

(a) case 1 (b) case 2

(c) case 3

Fig. 4: All cases with a shrinking horizon horizon MPC. The
settings are reported in table II.

Fig. 5: Computation time of an MPC controller with shrinking
horizon for all cases.

methodology to a typical MPC controller using DMS and
evaluated how both methodologies compare on several cases
where a slider manoeuvre towards a goal is performed. We did
this for both a fixed and shrinking horizon implementation.

Results show that there is benefit in exploiting the differ-
ential flatness of the pusher-slider in combination with B-
splines. One of it’s advantages includes a reduced amount
of optimization variables required to transcribe the optimal
control problem to an optimization problem. Furthermore, the
continuous parameterization of the flat trajectory offers a more
elegant way to implement a shrinking horizon MPC.

ACKNOWLEDGMENT

This work was supported by the Flanders Make projects
DIRAC and the “Onderzoeksprogramma Artificiële Intelligen-
tie (AI) Vlaanderen” programme.

REFERENCES

[1] Kuan-Ting Yu, Maria Bauza, Nima Fazeli, and Alberto Rodriguez. More
than a million ways to be pushed. a high-fidelity experimental dataset of
planar pushing. In 2016 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 30–37. IEEE, 2016.

[2] Francois Robert Hogan and Alberto Rodriguez. Feedback control of
the pusher-slider system: A story of hybrid and underactuated contact
dynamics. CoRR, abs/1611.08268, 2016.

[3] Moritz Diehl, Hans Joachim Ferreau, Niels Haverbeke, L Magni,
DM Raimondo, and F Allgower. Efficient numerical methods for
nonlinear mpc and moving horizon estimation, 2009-01-01.

[4] Jan Albersmeyer and Moritz Diehl. The lifted newton method and its
application in optimization. SIAM J. on Optimization, 20(3):1655–1684,
jan 2010.

[5] Florin Stoican, Ionela Prodan, and Dan Popescu. Flat trajectory
generation for way-points relaxations and obstacle avoidance. In 2015
23rd Mediterranean Conference on Control and Automation (MED),
pages 695–700. IEEE, 2015.

[6] Ngoc Thinh Nguyen, Ionela Prodan, Florin Stoican, and Laurent
Lefèvre. Reliable nonlinear control for quadcopter trajectory tracking
through differential flatness. IFAC-PapersOnLine, 50(1):6971–6976,
2017. 20th IFAC World Congress.

[7] Melissa Greeff and Angela P. Schoellig. Flatness-based model predictive
control for quadrotor trajectory tracking. In 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6740–
6745, 2018.

[8] Zejiang Wang, Jingqiang Zha, and Junmin Wang. Flatness-based
model predictive control for autonomous vehicle trajectory tracking. In
2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages
4146–4151, 2019.

[9] Simon Helling, Max Lutz, and Thomas Meurer. Flatness-based mpc for
underactuated surface vessels in confined areas. IFAC-PapersOnLine,
53(2):14686–14691, 2020. 21st IFAC World Congress.

[10] Tom Lefebvre, Sander De Witte, Thomas Neve, and Guillaume Creve-
coeur. Differential Flatness of Slider–Pusher Systems for Constrained
Time Optimal Collision Free Path Planning. Journal of Dynamic
Systems, Measurement, and Control, 145(6), 04 2023. 061001.

[11] Rien Quirynen, Milan Vukov, and Moritz Diehl. Multiple Shooting in
a Microsecond, pages 183–201. 01 2015.

[12] Carl De Boor. A practical guide to splines, volume 27.
[13] Contributions to the problem of approximation of equidistant data by

analytic functions. Quarterly of Applied Mathematics, 4:112–141, 1946.
[14] Boris Rohal’-Ilkiv, Martin Gulan, and Peter Minarčı́k. Implementa-

tion of continuous-time mpc using b-spline functions. In 2019 22nd
International Conference on Process Control (PC19), pages 222–227,
2019.

[15] Carl de Boor. On calculating with b-splines. Journal of Approximation
Theory, 6(1):50–62, 1972.

[16] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and
Moritz Diehl. CasADi – A software framework for nonlinear opti-
mization and optimal control. Mathematical Programming Computation,
11(1):1–36, 2019.

[17] Andreas Wächter and Lorenz T. Biegler. On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program., 106(1):25–57, mar 2006.

137

