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Abstract— In highly automated driving vehicles, a human-
vehicle interface might still be required for individualization
and emergency intervention. We propose a tactical human-
vehicle collaboration framework by leveraging the hand-
landmark extraction algorithm and the augmented reality vi-
sual feedback. The proposed vision-based interface projects the
gesture, as the driver’s intention, onto the ground and feeds the
projection back to the driver through the AR-HUD interface.
The projected intention functions as a strategic decision or
planning suggestion to the vehicle while collision avoidance,
traffic rules compliance, and precise control are realized by the
automation algorithm. The feasibility of the framework is val-
idated through an integrated self-driving algorithm combining
the risk field, learning-based trajectory prediction, and model
predictive control. Comparisons with the conventional manual
driving scheme demonstrate that high-level collaboration vastly
reduces human physical burdens without compromising driving
performance and driver mental workloads.

I. INTRODUCTION

For future mobility, the necessity of the conventional
human-vehicle interface is yet to be decided [1]. As highly
automated self-driving does not require continuous super-
vision and intervention, the driver-vehicle interface seems
redundant to normal driving tasks [2], [3]. As for emergent
takeovers, the conventional steering-wheel-and-pedal inter-
face requires the driver to directly intervene at the control
level [4]. When an emergent intervention requirement arises,
the driver might not be well prepared to jump directly into
the control loop; it is irresponsible to abruptly throw the
entire control task to the driver[5], [6], [7], [8]. Additionally,
humans in autonomous vehicles might not be ”qualified” to
drive, as a human should be a passenger instead of a driver
in a highly autonomous vehicle, and enforcing the passenger
to acquire a driving license is paradoxical. On the other
hand, humans have the inherent instincts to make appropriate
plans and decisions in most scenarios [9], [4] regardless
of the driving license, which inspires us to design a novel
collaboration framework. Regarding the malfunctions of the
highly automated intelligence, such as miss detection, in-
correct prediction, and over-risky/conservative decision [10],
technical issues still exist, while moreover, passengers may
prefer to drive in their own styles [11]. Therefore, using a
more inclusive, expressive, and transparent interface [12] to
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coalesce the human’s high-level intelligence and the vehicle’s
lower-level accuracy and swiftness might shed light on the
future mobility.

Scarcely any extant autonomous driving algorithm claims
to cover all the uncertainties that could possibly take place,
in reality [13]. When an unknown emergent situation occurs,
most of the automation algorithms are still designed to hand
over the final judgment to the human driver. Obviously, the
human driver is not always the panacea. For example, in a
highly automated self-driving vehicle, the driver is allowed to
conduct secondary tasks, which consequently slows down the
human’s reaction to unanticipated events. Therefore, instead
of a brute-force takeover, the authority is steadily released
to the driver based on the monitored driver status [14],
[15], [16], [17] and driving performance [18], [19] in the
shared control scheme. In this scheme, haptic [5], visual
[20], and acoustic feedback is suggested to enhance the
overall driving performance and assist the driver back to a
sufficiently situation-aware status [7], [4], [21]. Nevertheless,
the control authority shifting process is essentially a trade-off
between the response time and system robustness. Besides,
collaboration at the control level requires expertise, which
consequently limits the massive deployment of this scheme.
The direct control command on the conventional interface
exchanges the least amount of interactive information [22];
thus, the shared scheme requires enduring interactions there-
upon aggravating human burdens.

Consequently, more expressive and inclusive human ve-
hicle interfaces have been explored [23]. The gesture-based
interface [24] interprets the driver’s gestures into high-level
commands [25], [26], such as changing lanes, acceleration,
and deceleration. However, these types of commands can be
easily replaced by physical buttons and the commands do not
include the driver’s comprehension of the scene. On the other
hand, brain-computer interface using Electroencephalogram
(EEG) [27], [28] is a sophisticated but invasive approach
for human-vehicle interaction [29], thus, is only pragmatic
for lab-exclusive environments. Both the EEG and gesture
interfaces do not comprise tactical information, such as the
driver’s initiatives, or the exact geographical information.
Hence, the visual feedback, especially AR-HUD, is supple-
mented for more transparent interactions [20]. These two
techniques inspired us to form a closed-loop human-vehicle
interaction framework.

Some conventional collaboration frameworks are sum-
marized in Figure 1. At the bottom, human and machine
inputs are fused via the steering wheel, while above that,
monotonous higher-level commands are conveyed to the
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vehicle through a gesture recognition module. Compared
to these approaches, our contributions are: 1) a high-level
interaction framework using gesture recognition and visual
feedback is proposed. More gesture information is extracted
representing more tactical and expressive commands imitat-
ing a human pointing directions to another human. 2) The
model predictive control (MPC) and risk field (RF) coalesce
to achieve the proposed collaboration scheme. 3) Human-in-
the-loop experiments are conducted to evaluate human efforts
using the suggested algorithm.

II. HIGH-LEVEL COLLABORATION FRAMEWORK

Imitating the approaches through which a human man-
ifests direction to another human via gestures, a natural
human-vehicle interaction framework is proposed. The ges-
ture recognition algorithm first extracts the landmarks on
the human hand and projects these landmarks onto the
ground. Next, the projections are fed back to the driver
using the AR-HUD techniques. As is same to the human-
human interaction, we demonstrate three types of gesture
shown in Figure 1:1) Avoiding obstacle (shared percep-
tion/prediction). The human driver uses a fist to highlight the
possible obstacles alarming the vehicle to get away from it.
2) Pointing destination (shared decision). The human driver
uses an index finger to point to the preferred location. 3)
Demonstrating trajectory (shared planning). The driver uses
his forearm and hand to demonstrate a possible trajectory
that the vehicle could adopt. The gesture is identified using
another camera on the right-hand side of the driver. The
human driver interacts with the vehicle using gestures and
obtains feedback from the windshield interface. The gesture
is filtered and projected via the proposed algorithm.

A. Gesture Projection

The camera pixel is projected to the geographical location
denoted by (xt, yt) as is shown in Figure 2. The projection
is given by equation (1). To simplify the problem, we use
MediaPipe, which is an open-source library, for human body
landmark extraction. The filtered land-mark output in UV
coordinate is represented by (xg, yg). c1, c2, q1, and q2 are
the scaling and offset parameters.[

c1 0
0 c2

] [
yg
xg

]
+

[
q1
q2

]
=

[
xt

yt

]
(1)

where (xg, yg) ∈ {(xobs, yobs), (xdes, ydes), (xtraj , ytraj)}
can be the target obstacle position (xobs, yobs), the tar-
get destination (xdes, ydes), and the demonstrated trajectory
(xtraj , ytraj). Then, the car-based coordinate is converted to
the global coordinate using[

cosϕego − sinϕego

sinϕego cosϕego
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where ϕego is the yaw angle of the vehicle; xego and
yego are the ego vehicle’s current position; (xr, yr) ∈{
(xobs

r , yobsr ), (xdes
r , ydesr ), (xtraj

r , ytrajr )
}

are the projected
gesture position. A sample image of the gesture projection
is depicted in Figure 3.

Fig. 1. Comparison of high-level collaboration interface with conventional
human-vehicle interaction interface: a) use the palm to issue a speed-up
command; b) use the palm to issue a slow-down command; c) use the fist
to issue a stop command; d) use the hand to suggest a lane-change; e)
collaborate on the steering wheel issuing a maneuver command; f) use the
fist to point at a possible obstacle (shared prediction/perception); g) use the
index finger to point at a destination (shared decision); h) use the entire arm
to demonstrate a possible trajectory (shared planning).

Fig. 2. Human vehicle interface: human driver’s gesture is projected on
the ground, which is then shown on the AR-HUD interface (for simulation).

Fig. 3. Gesture projection under the shared planning mode.
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Shared perception/prediction: Pointing obstacles can
indicate positions where the driver feels unsafe. A case in
point is when the driver realizes that the vehicle is not
slowing down and heading directly into an obstacle that the
driver observes or predicts. In this case, the user can use
the fist to point at the obstacles (xobs, yobs), which is miss
detected or incorrectly predicted. The obstacle position at the
road surface can be projected using equations (1) and (2).

Shared decision: The driver uses the index finger to point
at the desired location (xdes, ydes) for a preferred location.
This gesture is opposite to the aforementioned occasion but
the UV coordinate to geographical coordinates projection
algorithm is the same.

Shared planning: Planning level interaction is more
tricky, as it comprises a set of coordinates and the dynamic
constraints should be considered. During human-human in-
teraction, one human would use the entire arm to present
the complex trajectory. Therefore, we extract the elbow
joint and the mid-finger landmarks (a total of 6 points) to
represent this trajectory. Considering the moving space of
the arm [24] and to make the driver feel comfortable, we
use the elbow joint as the origin of the other landmarks.
Additionally, these points are not smooth enough to track,
thus, are mainly used to control the trajectory generated by
B-spline. Therefore, the driver can use gesture to control
the shape of the desired trajectory (xtraj

r,i , ytrajr,i ), which is
smooth and physically feasible for the vehicle. The positions
indicated by the driver’s gestures are only references in this
framework. Here, we must consider three circumstances: 1)
the positions might not be extremely accurate because of
the error generated by the head-pose estimation algorithm;
2) we cannot force the driver to point at a precise location
in a moving vehicle; 3) the driver might prefer the adjacent
area as well. Therefore, the Gaussian distribution function
is used to represent the driver’s indicated position but these
representations can be replaced by other functions based on
the actual precision requirements. These functions can be
easily combined with the artificial potential field.

III. LOWER LEVEL CONTROLLER

A GRU-FRENET-based prediction module forecasts sur-
rounding vehicles’ future movements, which are fed to the
risk field to describe the future scene. The risk field combined
with the interpreted driver intention is then given to the
model-based controller, which fuses the above information
and casts the final control on the vehicle. The details of the
projections are presented in the rest of this section.

A. Trajectory Prediction

To obtain the future positions of the obstacle vehicles,
we train a GRU neural network for lightweight maneuver-
based classification tasks. The input and output of the neural
network are

Xin = [x(t−th), ..., x(t−1), x(t)] (3)

Xout = [p1, p2, ..., p45] (4)

respectively. And x(t) =
[
∑M

m=1
1

ρx,t,m
,
∑M

m=1
1

ρy,t,m
, δx(t), δy(t)].

∑M
m=1

1
ρx,t,m

is

the sum of the inverse of x distance while
∑M

m=1
1

ρy,t,m
is

the sum of the y distance between the predicted vehicle and
its surrounding vehicles. Considering the sensory range of the
ego vehicle for surrounding vehicle predictions, the positions
of the surrounding vehicles are first rotated and represented
by the ego-vehicle-based coordinates. δx is obtained through
δx(t−t′) = x

(t−t′)
obs,m − x

(t)
ego,t, t

′ ∈ [0, th],m ∈ [0,M ]. δy is

obtained through δy(t−t′) = y
(t−t′)
obs,m − y

(t)
ego,t. The output

of the neural network is the probability distribution of
45 possible future trajectories, which are generated using
[30] with the maneuver based [31] terminal statuses that
are determined by 15 longitudinal behaviors and three
lane-changing behaviors. The start and terminal status are
represented by FRENET states as[

d(tS), ḋ(tS), d̈(tS), s(tS), ṡ(tS), s̈(tS)
]

[
d(tT ), ḋ(tT ), d̈(tT ), s(tT ), ṡ(tT ), s̈(tT )

] (5)

The trajectories are given by solving the parameters of{
d(t) = αd0 + αd1t+ αd2t

2 + αd3t
3 + αd4t

4 + αd5t
5

s(t) = αs0 + αs1t+ αs2t
2 + αs3t

3 + αs4t
4 + αs5t

5

(6)
The training data are the first 50000 samples from Argoverse
[32]. The trajectory prediction algorithm will be fed to the
risk field combined with the gestures so that the trajectory
prediction errors could be compensated by human guidance.

B. Risk Field

The risk field [33] is simplified by considering only
three components in Equation (7), i.e., stationary obstacles,
dynamic objects, and road boundaries.

R = Rc +Rb +Rnc (7)

where R is the superposition of all the two factors at time
t. Rc and Rr are generated by dynamic objects and road
boundaries, respectively. Rnc is the driver’s intention given
by the gestures.

C. Model Predictive Control

A simplified vehicle model [34] is used and the integrated
solutions are obtained through repetitively solving the fol-
lowing constrained optimization problem

argmin
u

Hp∑
k=1

{||u||2Qu
+ ||y − y∗ref ||2Q∗

α1
+QrR+

Q∗
α2
(UNeg + UTraj) + ||v − vgoal||2Qv

+

||ϕ− ϕroad||2Qϕ
}

s.t.umin1 ≤ u1 ≤ umax1

umin2 ≤ u2 ≤ umax2

vmin ≤ vego ≤ vmax

(8)

where Hp is the optimization horizon; vgoal is the desired
velocity constrained by traffic rules; Qϕ is obtained from the
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road preview information. Qu, Qr, Qϕ, Q∗
α1

, Q∗
α2

, and Qv

are the weights.

IV. EXPERIMENT

The human-in-the-loop simulation was conducted to vali-
date the feasibility and effectiveness of the proposed method.
We compared the higher-level cooperation mode with manual
driving. The study protocol and consent form were approved
by the Nanyang Technological University Institutional Re-
view Board (protocol number IRB-2018-11-025). The phys-
ical workload was evaluated using EMG criteria and the
mental workload was evaluated using EEG as is shown in
Figure 4. The experiment results are shown in Table I.

Fig. 4. Experiment Environment

TABLE I
EXPERIMENT RESULTS

EMG 1 EMG 2 EEG F3 EEG F4
Conventional Method 39.5607 149.5317 4170.6 4167.0

Proposed Method 44.0287 116.9875 4174.9 4165.7

Physical workload: The average muscle intensities of
the upper arm (EMG 1) are 39.5607 and 44.0287 for the
Manual mode and HL mode, respectively. As for the forearm
(EMG 2), the average muscle intensity of the Manual mode
is 149.5317, which is higher than the HL mode of 116.9875.
The results indicate that the forearm physical workload can
be remarkably alleviated (p < 0.05) while the muscle inten-
sities of the upper arm from both modes are not significantly
different (p > 0.05).

Mental workload: EEG comparison indicates that the
proposed interface does not escalate the driver’s mental
workload. The RMS of F3 and F4 and the RMS spectral
power of AF3/AF4 gamma frequency are used as indicators
for mental workload estimation. The average F3 RMSs are
4174.9 and 4170.6 for the HL mode and Manual mode,
respectively, while the average F4 RMSs are 4165.7 and
4167.0, respectively. The mean AF3/AF4 gamma frequency
spectral power of the Manual mode are 0.2309 and 0.2677,

which are both lower than the RMS mean of the HL mode
of 0.2710 and 0.3014, respectively. The difference between
the two modes is not significant (p > 0.05) because, during
the experiment, the driver had to continuously monitor the
automation algorithm and the traffic scene in both manual
driving and high-level collaboration mode.

Vehicle performance: The safety criteria were evaluated
after the experiment using the risk field by giving the exact
position of the surrounding vehicles and the obstacles (the
obstacle positions were not viable to the vehicle during
the experiment; the obstacles were deemed as non-crossable
stationary objects). The jerk and the lateral acceleration of
the high-level collaboration model are significantly better
than the manual mode (p < 0.05), as the jerk of the HL
mode is only 15.8949 and the lateral acceleration is 0.1441,
compared to 19.9156 and 0.2441 of the manual mode. On
the other hand, the safety is not deteriorated using the high-
level collaboration (p > 0.05), though the risk of the manual
mode is 5.4034, which is lower than the mean risk of the
HL mode (5.5152).

In brief, the algorithmic proposition is competent in miti-
gating physical exertion imposed on human drivers, without
compromising their mental workload and ensuring consistent
driving performance. The algorithm accomplishes this by
offloading the responsibility of driving-related tasks, such
as speed regulation, adherence to traffic rules, environmental
information processing, and collision prevention, from the
driver to the automated system. Consequently, the driver’s
workload is significantly reduced. Our proposed scheme
further eliminates the requirement for drivers to possess a
high degree of expertise or experience, instead enabling them
to issue commands using gesture-based communication, em-
ulating natural human interaction patterns.

V. CONCLUSION

A novel high-level human-vehicle collaboration frame-
work is proposed for fully or highly autonomous vehicles.
Using the proposed framework, a human driver can deliver
hints to the autonomous driving algorithm using gestures and
obtain feedback through the VR-HUD interface. A lower-
level control framework using a neural network for trajectory
prediction, risk-field for collision avoidance, and the MPC to
fuse the inputs from the human driver and the autonomous
driving algorithm are designed. Finally, a human-in-the-
loop experiment verifies that the proposed framework can
reduce human physical burden without compromising mental
workload and vehicle performance.
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