
  

  

Abstract - Amidst escalating labor costs and the imperative for 
workplace safety, automation has become a crucial trend. Yet, the 
substantial expenses and technical complexities of robotic systems, 
demanding significant time and expertise for design and 
deployment, limit their adoption in small enterprises. To tackle 
this, we present the WinGs Operating Studio (WOS) – a novel 
low-code platform for robotic arm operations. WOS stands out by 
effortlessly integrating with a wide range of robotic arms and 
accessories, including various sensors and end effectors, through 
flowchart programming and versatile APIs. This facilitates 
straightforward implementation of advanced features like 
multi-robot cooperation and external system interactions. The 
paper delves into WOS’s design, capabilities, and architecture, 
highlighting its role in lowering technical barriers and operational 
costs. Performance evaluations on ARM-based Single-Board 
Computers and real-world scenarios, such as automated coffee 
making with dual robotic arms and VR controlled spray painting, 
underscore WOS’s potential to empower small businesses with 
robotic automation. 

I. INTRODUCTION 

As collaborative robotics technology advances, a growing 
array of robotic arm hardware has emerged in recent years [1-3], 
offers a wide range of options and price points. This progress 
supports the integration of collaborative robots into various 
sectors, including catering, agriculture, and construction, with 
many startups and research teams applying these technologies 
commercially [4-7]. However, robotics remains an 
interdisciplinary field with high entry barriers, necessitating 
expertise in computer science, robotics, and electronics. This 
complexity hinders the rapid adoption of robots in smaller 
commercial projects.  

Robot manufacturers commonly create specialized software, 
complemented by Software Development Kits, to facilitate 
system integrators to perform secondary development. Some 
products feature intuitive user interfaces, allowing end-users to 
quickly become acquainted with them. However, the 
proprietary nature of this software development leads to limited 
code reusability; software tailored for one product line or brand 
cannot be easily adapted for use with another, which 
significantly complicates hardware updates or iterations for 
users once development is complete.  

Numerous advanced general robotic software solutions like 
ROS 1 and ROS 2 (Robot Operating System) [8-9], YARP (Yet 
Another Robot Platform) [10], OROCOS (Open Robot Control 
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Software) [11], OPC UA (Open Platform Communications 
Unified Architecture) [12], and LCM (Lightweight 
Communications and Marshalling) [13] have significantly 
contributed to the robotics field, enhancing code reusability, 
and reducing workload. These platforms offer specialized tools 
and libraries to support the development of robust robotic 
applications, focusing on various aspects such as 
communication, control, and industrial automation.  

However, these solutions often target experts and come with 
steep learning curves. Excluding ROS, many frameworks 
address specific aspects of robotics, requiring additional effort 
for comprehensive functionality. ROS stands out for its 
system-wide openness and scalability but introduces 
complexity in version management and dependency conflicts. 
Effective use of ROS also requires substantial programming 
and robotics knowledge, underlining the interdisciplinary 
challenge in robotics system design.  An anecdotal account 
from a doctoral student in mechanical engineering and robotics 
highlights this challenge; without any previous experience with 
Linux, the student described a demanding period of 
self-directed learning, which lasted several months before they 
could successfully operate a laboratory robot using ROS for the 
first time. 

This scenario underscores the necessity for more accessible, 
versatile, and user-friendly robotic software platforms that can 
lower the entry barrier for interdisciplinary research and 
development in robotics, fostering innovation and accelerating 
the deployment of robotic solutions across various sectors. 
Addressing these challenges, this paper introduces the WinGs 
Operating Studio (WOS), a novel low-code platform designed 
for the operation of robotic applications.  

The Key Features of WOS include: 
• Hardware Abstraction and Standardized APIs: It abstracts 

robotics hardware into standardized resources, offering 
APIs across various protocols. This enables automatic 
feature availability based on component compliance. 

• Broad Compatibility & Build-Free Deployment: WOS 
ensures wide-ranging compatibility across computing 
platforms, from PCs to mobile devices, by distributing 
as a binary executable. 

• Web-Based GUI and Applications: It offers low-code 
robot programming applications via a web UI, catering 
to various scenarios. For a specific scenario, it offers a 
third-party app store for custom human-machine 
interactions, ensuring optimal user experience. 

This paper is structured as follows: Section 2 details WOS's 
design philosophy and technical specifics. Section 3 showcases 
the system's capabilities and reliability through experiments 
and real-world case studies. The conclusion in Section 4 
summarizes the research findings and future works. 
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II. METHODOLOGY 

A.  Scope 
Different from the well-known robot meta-operating system 

ROS, WinGs Operating Studio (WOS) conceptualized as a 
Robot as a Service (RaaS) platform [14], focuses on rapid 
prototyping and deployment of robotics projects to meet 
end-user needs. It supports a wide range of computing 
infrastructures, including standard PCs, embedded systems, 
edge devices, and Android mobile devices, with the goal of 
broadening accessibility to robotics development. WOS is 
offered as a binary executable, simplifying integration, and 
enhancing security. Its architecture separates the transport layer 
from the customer application, enabling the use of any 
programming language that supports HTTP, WebSocket, or 
other network protocols like MQTT. In addition, we developed 
a comprehensive web-based GUI through the WOS APIs, 
enabling users without coding experience to visually program 
robots. Table I provides a comparison between WOS and ROS, 
highlighting their key differences. 

TABLE I.  COMPARISON BETWEEN WOS AND ROS 

Category 
Platform 

WOS ROS 

Deliverable Format Executable Binary Source Code 

API Intractability No WOS Dependencies 
Required 

ROS Dependencies 
Required 

User Interface Web-based GUI Command Line 
Interface 

B.  Design 
 Fig. 1 depicts the node-based architecture of WOS, designed 
to streamline robotic application development and deployment. 
At its heart, WOS Core performs communication forwarding 
and Node lifecycle management. Components, serving as 
specialized Nodes, manage hardware, whereas Application 
Nodes handle non-hardware logic, such as algorithms. 
Functional Nodes connect to WOS Core via APIs to register 
Services, making them available to front-end GUIs or custom 
programs. This architecture ensures a scalable and modular 
approach to robotics, highlighting the efficient integration and 
management capabilities of WOS. 

1) Node 
Node serves as the basic executable component within WOS, 

with its lifecycle, data production, and exception handling 
governed by the system. To accommodate varied operational 
needs, four distinct node types are delineated: 

• CMD Node: A standard host process. Primarily for 
debugging purposes. 

• Container Node: A Docker [15] container process, 
facilitating runtime environment encapsulation. 

• Internal Node: Built-in WOS utilities, not open for 
customization. 

• Macro Node: Idempotent functions for executing simple 
operations. 

Node can have inputs and outputs. Nodes receive inputs via 
environment variables or command-line parameters, and output 
data in stdout or through the WOS API. 

The node lifecycle includes states of starting, running, and 
ending, with capabilities for pausing and resuming provided by 
WOS. Node definitions are required in YAML or JSON format 
or can be dynamically registered via the WOS API, with at least 
one executable action specified. 

2) Service 
 WOS services are the control interface for node. Node can 
register itself as a service provider and other node will be able 
to control the node using standardized API. WOS Services 
underpin the system's communication and operational 
framework, focusing on Topics, Requests, and Actions: 

• Topic: Utilizes a publish/subscribe model for efficient, 
event-driven communication across the system, 
allowing services to broadcast updates and enable other 
nodes to subscribe for real-time information. 

• Request: Enables direct interactions between components 
for specific operations or data retrieval, following a 
request-response pattern for synchronous message 
exchange. 

• Action: Allows the definition and execution of 
long-running task through simple triggers, automating 
tasks within the WOS ecosystem. Facilitating feedback 
and cancel mechanism.  

 3) Component 
 Robotic components are virtual representations of robotic 
hardware managed by WOS, facilitating simplified interaction 
with hardware by abstracting functionality. These components 
are divided into two interconnected parts:  

• Handler: The control layer for the Component, executing 
algorithms and managing Driver communication 
through nodes and services.  

• Driver: Provides the hardware connection, handling 
essential low-level communications. Developed as 
nodes and services.  

Components are structured to potentially include child 
Components, allowing for complex hierarchical relationships 
within the robotic system. For instance, an end effector attached 
to a robotic arm would be considered a child Component, with 
WOS managing their interaction and necessary cartesian 
transformations. 

4) Application 
Application enables the ability to dynamically extend the 

capabilities of WOS. Applications are sophisticated assemblies 
of Nodes and other static assets. This architecture enables the 
creation of versatile and complex applications tailored to 

 
Fig. 1: WOS Design Architecture 
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specific tasks. Crucially, all applications can be presented 
through a Web UI, which serves as the interactive front end. 

The system also encompasses a set of system applications, 
offering critical functionalities: 

• Graph: A visual tool for orchestrating node execution., 
providing the ability to create sequential and conditional 
node execution logic. simplifying complex task design. 

• Trigger: Enables event-driven interaction, allowing WOS 
to react when certain event occurred. 

• Real-time Control: Empowers users with the capability to 
manage robotic components via a diverse array of 
interfaces, including Web UI, gamepads, VR, and more.  

C.  Communication Patterns 

1) WOS API 
The core of WOS's communication infrastructure is formed 

by its API, which exposes a suite of services including Topics, 
Requests, and Actions through Service registration. It enables 
the publishing, subscribing, and unsubscribing of Topics, the 
sending of Requests and receiving of responses, as well as the 
running of Actions, providing feedback, and canceling Actions, 
which facilitates communication among robotics components. 

2) Transport 
WOS supports diverse communication needs through two 

main transport mechanisms:  
• Internal: This method enables direct interactions within 

the WOS system, allowing components and services to 
efficiently execute and communicate through internal 
API calls.  

• External: WOS decouples its transport layer and allows 
varies of transport protocol to access WOS resource. 
Such as HTTP, WebSocket, WebRTC, MQTT or pure 
TCP connection. 

D.  Extensibility 

WOS is designed with extensibility at its core, enabling users 
and developers to customize, extend, and integrate a wide range 
of functionalities and resources. Here's how WOS supports 
extensibility across various aspects: 

 1) Customized Node 
WOS allows for the creation of customized nodes, and 

application providing developers with the tools to tailor 
functionalities specific to their needs while WOS manages their 
life cycle. For example, an ArUco [16] marker detection node 
can be developed to add pose estimation capabilities to a 
robotics project, leveraging WOS's framework for lifecycle 
management, including starting, running, and ending processes, 
as well as handling outputs and exceptions. 

2) External API Request 
WOS supports integration with external APIs, allowing 

scripts to make requests from outside the WOS ecosystem. 
Developers has the flexibility to choose their own programming 
languages and build process to build their program as long as it 
has the ability to communicate to WOS core.  

3) Third Parties’ Resources 

 The platform is open to incorporating third-party resources, 
WOS has an adapter layer that talks to ROS and other popular 
communication patterns. This allows painless migration of 
existing functionalities to WOS platform. such as the Franka 
Emika ROS driver [17], WOS utilize ROS driver to control 
Franka Robots [2] and this pattern can be extended to all other 
ROS ready robotics component. This openness ensures that 
WOS can serve as a comprehensive ecosystem for robotics 
projects, supporting a vast array of components and algorithms 
from different vendors and communities. By allowing 
third-party integrations, WOS enhances its utility and 
adaptability, making it a versatile platform for robotics 
development and deployment. 

III. EXPERIMENTS 

This chapter focuses on validating WOS's performance 
through stress tests in varied conditions and showcasing its 
application in specific cases to illustrate its efficiency and low 
entry barriers. We also highlight two application cases: 
dual-arm coffee preparation using WOS's graph low code 
module and VR-assisted remote toy spray teaching via WOS 
API. These examples demonstrate WOS's effectiveness in 
streamlining robotic operations and its potential to enhance 
automation in small businesses. 

A.  Performance Test 
The performance evaluation was conducted on a Raspberry 

Pi 3 Model B, an Arm-based single-board computer equipped 
with a Quad Core 1.2GHz CPU. The assessment focused on the 
performance of WOS's binary core across different 
communication modes and message sizes.  
The tests covered three modes of communication: 

• Internal Process: Message passing within the WOS 
program. 

• Localhost Process: Message passing from another 
program to WOS on the same machine. 

• Remote through Ethernet: Message passing from another 
computer to WOS via onboard Ethernet through a 
router. 

Each communication mode was tested with varying message 
sizes, ranging from an empty payload to trajectory data of 

 
Fig. 2: WOS Performance Test Results  
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different sizes for a 6-DOF robotic arm, between 1KB and 1MB. 
The messages in the performance test were formatted in 
text-based JSON, undergoing message decoding, routing, and 
encoding. 

As shown in Fig. 2, internal process communication 
exhibited the lowest latency and highest transmission rate, 
making it the most efficient mode. In contrast, remote 
communication via localhost and Ethernet significantly 
increased latency and reduced transmission rates, particularly 
with larger message sizes. However, no data loss was observed 
due to the advantage of TCP, even though larger message sizes 
did result in a drop in processing frequency. 

Internal process communication, using direct WOS API calls, 
remains the most efficient, whereas external API messaging 
relies on text-based JSON, leading to high CPU usage due to 
the overhead of encoding and decoding. Despite this, memory 
usage remained stable across different communication modes, 
indicating consistent memory management. 

To improve message encoding and decoding efficiency, 
WOS is adopting Protocol Buffers [18] while exploring the use 
of UDP for scenarios that require higher frequency stability, 
such as joint state publishing.  

B. Application cases 

1) Dual-arm coffee preparation 
This section highlights the innovation of WOS's Graph 

application, demonstrating the use of visual flowcharts for 
managing dual robotic arms in complex tasks. This method 
greatly simplifies the learning curve for robotic arm 
manipulation, allowing those without robotics engineering 
expertise to easily engage in the creation and design of robotic 
applications. We showcase the setup and calibration of two 
different brand robotic arms of various sizes and costs, using 
WOS. Within just a few hours, these arms were ready to 
successfully prepare a capsule coffee, illustrating the system's 
efficiency and user-friendly approach. 

The coffee brewing experiment featured a capsule coffee 
machine and two distinct robotic arms: the Franka Emika 
Research 3 (FR3) [2], a 7-degree-of-freedom robot with a 
gripper, and the STR400 [3], a 6-degree-of-freedom compact 
robot with a 3D-printed shovel as its end effector. The FR3 uses 

Docker [15] encapsulation for its operation in FCI (Franka 
Control Interface) mode [17], enabling precise PD 
(Proportional-Derivative) position and velocity control via 
ROS Control Packages. In contrast, the STR400 is natively 
supported by WOS, directly accepting low-level motion 
commands. WOS's Graph allows for the invocation of internal 
motion planning algorithms, facilitating varied movements for 
both robotic arms in the brewing process.  

Fig. 3 presents screenshots stitching of the WOS Graph's 
interactive interface. The left side lists available Graph Nodes, 
including various trajectory planning modules for robots, as 
well as logic modules required for low-code programming. 
These nodes can be dragged from the left into the central 
workspace, where parameters are set and logics linked, 
enabling choreography of robotic actions. After arranging the 
actions, initiating the program is done by clicking the green 
play button at the bottom, with the Start Graph Node serving as 
the entry point.  

The WOS Graph in Fig. 3 displays the main program for the 
Dual-arm coffee preparation task, with eight outlined areas 
corresponding to the eight stages shown in Fig. 4. The diagram 
utilizes several functional nodes to achieve the task, specifically 
Concurrent, Run Graph, WScript, and Component Action, most 
of which are assigned nicknames for ease of debugging. The 

 

Fig. 3: WOS Graph Interface for Dual Robotic Arms Coffee Preparation 

 
Fig. 4: Sequential Collaboration of Dual Robotic Arms in Capsule Coffee Preparation 
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Concurrent node used in the first group of nodes initializes 
FR3's pose with the Move Joints node while homing the gripper 
simultaneously with the Component Action node. Upon 
completion of these actions, it proceeds to the next stage with 
another Concurrent node, whose branches orchestrate the 
actions of FR3 and STR400, enabling them to operate 
simultaneously in a pre-arranged sequence. Apart from 
"Position Capsule" node in group 3, which employs WScript (a 
WOS-defined script for editing a series of robot arm actions), 
other nodes in groups 2, 3, 4, 5, 6, and 7 are Run Graph, calling 
subgraphs during the main program execution. This 
segmentation allows complex tasks to be divided into smaller, 
manageable tasks. At the end of program, the last Concurrent 
node is used to execute pre-programmed dancing actions using 
WScripts for both robots. 

Following this, Fig. 4 illustrates the specific implementation 
steps of these processes: Initially, the environment is prepared, 
and both robotic arms are activated, setting the stage for the task 
at hand (Fig. 4-1). The FR3 takes the initiative by picking up a 
cup, while the STR400 arm approaches a predetermined 
position where the coffee capsule is placed (Fig. 4-2). 
Subsequently, FR3 carefully places the cup into the coffee 
machine's holder, and STR400 adeptly positions the coffee 
capsule at the specified spot (Fig. 4-3). In a coordinated effort, 
FR3 proceeds to open the coffee machine's lid, with STR400 
applying pressure on the machine to ensure stability and 
prevent any displacement (Fig. 4-4). Following this, FR3 
skillfully grasps the coffee capsule (Fig. 4-5), and then 
positions it within the machine, making necessary adjustments 
for optimal alignment (Fig. 4-6). Once the capsule is correctly 
placed, FR3 closes the lid and engages the brewing function 
(Fig. 4-7). The culmination of this intricate process is marked 
by both robotic arms performing a synchronized dance, 
signifying the successful completion of a freshly brewed cup of 
coffee (Fig. 4-8). 

The results were highly positive, showcasing the system's 
efficiency. While areas like improved path planning and sensor 
integration for flexible item placement were noted for 
enhancement, researchers successfully implemented the 
process in just two hours. This highlights WOS's efficiency, 
adaptability, and the practicality of robotic collaboration in 
daily tasks. 

2) VR Teleoperation Toy Spraying 
The design of the WOS, featuring a separation between the 

frontend and backend, enables the majority of functionalities 
available in the web-based interactive interface to be accessible 
via API calls. This section demonstrates how a VR application 

leverages the WOS to manage robotic hardware and sensors, 
conveniently facilitating a simple VR application for remotely 
teaching a robotic arm to spray paint toys in actual use cases.  

Fig. 5 shows the setup for VR-based remote teaching of spray 
painting, highlighting key coordinate notations. An FR3 robotic 
arm, equipped with a RealSense L515 camera [19], with its 
position denoted as {C}. An LED light marks the spray gun 
nozzle's position as {T}. The global coordinate system {G} is 
set 0.2 meters above the center table toy rabbit, with the Y-axis 
of {G} pointing to one table side and the Z-axis vertically up. 
On the left, an operator wearing VR gear scans the operation 
table, viewing a point cloud image from the scene. The VR's 
global coordinate, {VG}, matches the real-world global 
coordinate setup, placed 0.2 meters above the table center, with 
identical orientation. The VR controller, representing the spray 
gun nozzle, is marked as {VT}, mirroring the real nozzle's 
position and orientation. This setup ensures that {VT}'s 
movement relative to {VG} directly replicates {T}'s movement 
relative to {G}. Recording the controller's movements allows 
the robotic arm to replay these actions, effectively teaching it 
the spray-painting task. 

Fig. 6 outlines the system's implementation, utilizing two 
computers: Computer A runs a VR teaching demo using Unreal 
Engine 5, while Computer B runs WOS, managing the FR3 
robotic arm and a RealSense 3D camera. Initially, a button in 
the VR demo triggers a scan of the environment using the 
RealSense camera, controlled via WOS API. The resulting 
point cloud image and camera position are sent back to Unreal 
Engine 5, where coordinate transformations align the virtual 
{VG} with the real {G}. Operators can then see the 3D point 
cloud and start recording the controller's trajectory at 60Hz. 
Due to hardware noise and hand tremors, the raw data 
undergoes downsampling to 1Hz before being sent to WOS. 
WOS then interpolates the trajectory using internal WScript 
node, making it suitable for playback by the robotic arm. 
Moving from the system's technical details to its application, 
Fig. 7 shows the virtual reality setup on the left, where the 
operator, with a spray-painting device, aims at a point cloud 

 
Fig. 7: Virtual Reality Scene and Corresponding Physical Setup 

 
Fig. 6: Process Implementation of the VR Teaching System 

 
Fig. 5: Experimental Design for Remote VR Teaching in Spray Painting 
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table to record movements. The right side shows the actual 
experimental setup.  

Fig. 8 captures the trajectory data in three distinct Cartesian 
spaces throughout the experiment. The raw data of hand 
movements collected in VR are represented by small blue dots. 
These points, after being down sampled and smoothed by the 
motion planning algorithm, are depicted as solid yellow lines, 
serving directly as references for the trajectory tracking PD 
controller. Finally, the green dashed lines record the trajectory 
that the robot arm actually follows during its operation. All 
three types of data consist of 1200 steps at a frequency of 60Hz, 
indicating the entire spray teaching lasts for 20 seconds. The 
standard pose description in the WOS utilizes the most intuitive 
Cartesian coordinates x, y, z, along with Roll, Pitch, Yaw, XYZ 
Euler angles for rotation. Consequently, the six sub-figures 
visualize data for these dimensions respectively. 

The VR teaching experiment demonstrated encouraging 
outcomes. When comparing the raw data recorded from VR 
with the actual trajectory followed by the robotic arm during 
execution, it achieves a mean error of -0.00225 meters and a 
standard deviation of 0.01408 in position data, along with a 
mean error of -0.00003 radians and a standard deviation of 
0.04973 in rotation data. Using the WOS's straightforward API 
interface and its built-in motion planning algorithm, the robot's 
movements are made uniformly smooth without significantly 
distorting the original recorded data. Importantly, such system 
design does not depend on specific hardware devices, meaning 
engineers working on the VR side do not need to concern 
themselves with the specific models of robotic arms and 
cameras used on-site. 

IV. CONCLUSION 

In conclusion, this paper has introduced the WinGs 
Operating Studio (WOS), a low-code integration platform for 
robotic arms designed to simplify automation in small 
enterprises. Leveraging its hardware abstraction and 
standardized APIs design philosophy, WOS provides a solution 
that eases the management of varied robotic hardware through a 
single binary executable. Its efficiency and compatibility ensure 
smooth performance on budget-friendly PC hardware. The 
platform's web-based GUI and application framework, enabling 
intuitive flowchart programming and flexible APIs, have 
demonstrated effectiveness in scenarios such as dual-arm 
coffee preparation and VR-controlled spray painting. WOS 
stands as a significant tool for reducing technical hurdles in 
robotic automation, highlighting its capacity to drive 
innovation. 

For future work, we aim to explore communication 
technologies that maintain compatibility with current systems 

while achieving higher efficiency. Additionally, we plan to 
expand our application domains to include more industrial 
sectors, understanding and catering to their specific needs. To 
enrich the functionality of modules, we intend to devise 
strategies to encourage broader participation in the 
development of the WOS ecosystem, further enhancing its 
versatility and impact across various industries. 
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