

Abstract - Amidst escalating labor costs and the imperative for
workplace safety, automation has become a crucial trend. Yet, the
substantial expenses and technical complexities of robotic systems,
demanding significant time and expertise for design and
deployment, limit their adoption in small enterprises. To tackle
this, we present the WinGs Operating Studio (WOS) – a novel
low-code platform for robotic arm operations. WOS stands out by
effortlessly integrating with a wide range of robotic arms and
accessories, including various sensors and end effectors, through
flowchart programming and versatile APIs. This facilitates
straightforward implementation of advanced features like
multi-robot cooperation and external system interactions. The
paper delves into WOS’s design, capabilities, and architecture,
highlighting its role in lowering technical barriers and operational
costs. Performance evaluations on ARM-based Single-Board
Computers and real-world scenarios, such as automated coffee
making with dual robotic arms and VR controlled spray painting,
underscore WOS’s potential to empower small businesses with
robotic automation.

I. INTRODUCTION

As collaborative robotics technology advances, a growing
array of robotic arm hardware has emerged in recent years [1-3],
offers a wide range of options and price points. This progress
supports the integration of collaborative robots into various
sectors, including catering, agriculture, and construction, with
many startups and research teams applying these technologies
commercially [4-7]. However, robotics remains an
interdisciplinary field with high entry barriers, necessitating
expertise in computer science, robotics, and electronics. This
complexity hinders the rapid adoption of robots in smaller
commercial projects.

Robot manufacturers commonly create specialized software,
complemented by Software Development Kits, to facilitate
system integrators to perform secondary development. Some
products feature intuitive user interfaces, allowing end-users to
quickly become acquainted with them. However, the
proprietary nature of this software development leads to limited
code reusability; software tailored for one product line or brand
cannot be easily adapted for use with another, which
significantly complicates hardware updates or iterations for
users once development is complete.

Numerous advanced general robotic software solutions like
ROS 1 and ROS 2 (Robot Operating System) [8-9], YARP (Yet
Another Robot Platform) [10], OROCOS (Open Robot Control

This project is supported by A*STAR under “RIE2025 IAF-PP Advanced

ROS2-native Platform Technologies for Cross sectorial Robotics Adoption
(M21K1a0104)” programme.

I-Ming Chen and Yue Feng are with Robotics Research Center, Nanyang
Technological University, 639798 Singapore; Emails: michen@ntu.edu.sg,
yue011@e.ntu.edu.sg; Weicheng Huang is with WinGs Robotics LLC, NY,
10314 USA; Email: Info@WingsRobotics.com

Software) [11], OPC UA (Open Platform Communications
Unified Architecture) [12], and LCM (Lightweight
Communications and Marshalling) [13] have significantly
contributed to the robotics field, enhancing code reusability,
and reducing workload. These platforms offer specialized tools
and libraries to support the development of robust robotic
applications, focusing on various aspects such as
communication, control, and industrial automation.

However, these solutions often target experts and come with
steep learning curves. Excluding ROS, many frameworks
address specific aspects of robotics, requiring additional effort
for comprehensive functionality. ROS stands out for its
system-wide openness and scalability but introduces
complexity in version management and dependency conflicts.
Effective use of ROS also requires substantial programming
and robotics knowledge, underlining the interdisciplinary
challenge in robotics system design. An anecdotal account
from a doctoral student in mechanical engineering and robotics
highlights this challenge; without any previous experience with
Linux, the student described a demanding period of
self-directed learning, which lasted several months before they
could successfully operate a laboratory robot using ROS for the
first time.

This scenario underscores the necessity for more accessible,
versatile, and user-friendly robotic software platforms that can
lower the entry barrier for interdisciplinary research and
development in robotics, fostering innovation and accelerating
the deployment of robotic solutions across various sectors.
Addressing these challenges, this paper introduces the WinGs
Operating Studio (WOS), a novel low-code platform designed
for the operation of robotic applications.

The Key Features of WOS include:
• Hardware Abstraction and Standardized APIs: It abstracts

robotics hardware into standardized resources, offering
APIs across various protocols. This enables automatic
feature availability based on component compliance.

• Broad Compatibility & Build-Free Deployment: WOS
ensures wide-ranging compatibility across computing
platforms, from PCs to mobile devices, by distributing
as a binary executable.

• Web-Based GUI and Applications: It offers low-code
robot programming applications via a web UI, catering
to various scenarios. For a specific scenario, it offers a
third-party app store for custom human-machine
interactions, ensuring optimal user experience.

This paper is structured as follows: Section 2 details WOS's
design philosophy and technical specifics. Section 3 showcases
the system's capabilities and reliability through experiments
and real-world case studies. The conclusion in Section 4
summarizes the research findings and future works.

Optimizing Small-Scale Commercial Automation: Introducing WOS,
a Low-Code Solution for Robotic Arms Integration

Yue Feng, Weicheng Huang, I-Ming Chen, Fellow, IEEE/ASME

2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
July 15-19, 2024. Boston, MA, USA

979-8-3503-9154-1/24/$31.00 ©2024 IEEE 272

II. METHODOLOGY

A. Scope
Different from the well-known robot meta-operating system

ROS, WinGs Operating Studio (WOS) conceptualized as a
Robot as a Service (RaaS) platform [14], focuses on rapid
prototyping and deployment of robotics projects to meet
end-user needs. It supports a wide range of computing
infrastructures, including standard PCs, embedded systems,
edge devices, and Android mobile devices, with the goal of
broadening accessibility to robotics development. WOS is
offered as a binary executable, simplifying integration, and
enhancing security. Its architecture separates the transport layer
from the customer application, enabling the use of any
programming language that supports HTTP, WebSocket, or
other network protocols like MQTT. In addition, we developed
a comprehensive web-based GUI through the WOS APIs,
enabling users without coding experience to visually program
robots. Table I provides a comparison between WOS and ROS,
highlighting their key differences.

TABLE I. COMPARISON BETWEEN WOS AND ROS

Category
Platform

WOS ROS

Deliverable Format Executable Binary Source Code

API Intractability No WOS Dependencies
Required

ROS Dependencies
Required

User Interface Web-based GUI Command Line
Interface

B. Design
 Fig. 1 depicts the node-based architecture of WOS, designed
to streamline robotic application development and deployment.
At its heart, WOS Core performs communication forwarding
and Node lifecycle management. Components, serving as
specialized Nodes, manage hardware, whereas Application
Nodes handle non-hardware logic, such as algorithms.
Functional Nodes connect to WOS Core via APIs to register
Services, making them available to front-end GUIs or custom
programs. This architecture ensures a scalable and modular
approach to robotics, highlighting the efficient integration and
management capabilities of WOS.

1) Node
Node serves as the basic executable component within WOS,

with its lifecycle, data production, and exception handling
governed by the system. To accommodate varied operational
needs, four distinct node types are delineated:

• CMD Node: A standard host process. Primarily for
debugging purposes.

• Container Node: A Docker [15] container process,
facilitating runtime environment encapsulation.

• Internal Node: Built-in WOS utilities, not open for
customization.

• Macro Node: Idempotent functions for executing simple
operations.

Node can have inputs and outputs. Nodes receive inputs via
environment variables or command-line parameters, and output
data in stdout or through the WOS API.

The node lifecycle includes states of starting, running, and
ending, with capabilities for pausing and resuming provided by
WOS. Node definitions are required in YAML or JSON format
or can be dynamically registered via the WOS API, with at least
one executable action specified.

2) Service
 WOS services are the control interface for node. Node can
register itself as a service provider and other node will be able
to control the node using standardized API. WOS Services
underpin the system's communication and operational
framework, focusing on Topics, Requests, and Actions:

• Topic: Utilizes a publish/subscribe model for efficient,
event-driven communication across the system,
allowing services to broadcast updates and enable other
nodes to subscribe for real-time information.

• Request: Enables direct interactions between components
for specific operations or data retrieval, following a
request-response pattern for synchronous message
exchange.

• Action: Allows the definition and execution of
long-running task through simple triggers, automating
tasks within the WOS ecosystem. Facilitating feedback
and cancel mechanism.

 3) Component
 Robotic components are virtual representations of robotic
hardware managed by WOS, facilitating simplified interaction
with hardware by abstracting functionality. These components
are divided into two interconnected parts:

• Handler: The control layer for the Component, executing
algorithms and managing Driver communication
through nodes and services.

• Driver: Provides the hardware connection, handling
essential low-level communications. Developed as
nodes and services.

Components are structured to potentially include child
Components, allowing for complex hierarchical relationships
within the robotic system. For instance, an end effector attached
to a robotic arm would be considered a child Component, with
WOS managing their interaction and necessary cartesian
transformations.

4) Application
Application enables the ability to dynamically extend the

capabilities of WOS. Applications are sophisticated assemblies
of Nodes and other static assets. This architecture enables the
creation of versatile and complex applications tailored to

Fig. 1: WOS Design Architecture

273

specific tasks. Crucially, all applications can be presented
through a Web UI, which serves as the interactive front end.

The system also encompasses a set of system applications,
offering critical functionalities:

• Graph: A visual tool for orchestrating node execution.,
providing the ability to create sequential and conditional
node execution logic. simplifying complex task design.

• Trigger: Enables event-driven interaction, allowing WOS
to react when certain event occurred.

• Real-time Control: Empowers users with the capability to
manage robotic components via a diverse array of
interfaces, including Web UI, gamepads, VR, and more.

C. Communication Patterns

1) WOS API
The core of WOS's communication infrastructure is formed

by its API, which exposes a suite of services including Topics,
Requests, and Actions through Service registration. It enables
the publishing, subscribing, and unsubscribing of Topics, the
sending of Requests and receiving of responses, as well as the
running of Actions, providing feedback, and canceling Actions,
which facilitates communication among robotics components.

2) Transport
WOS supports diverse communication needs through two

main transport mechanisms:
• Internal: This method enables direct interactions within

the WOS system, allowing components and services to
efficiently execute and communicate through internal
API calls.

• External: WOS decouples its transport layer and allows
varies of transport protocol to access WOS resource.
Such as HTTP, WebSocket, WebRTC, MQTT or pure
TCP connection.

D. Extensibility

WOS is designed with extensibility at its core, enabling users
and developers to customize, extend, and integrate a wide range
of functionalities and resources. Here's how WOS supports
extensibility across various aspects:

 1) Customized Node
WOS allows for the creation of customized nodes, and

application providing developers with the tools to tailor
functionalities specific to their needs while WOS manages their
life cycle. For example, an ArUco [16] marker detection node
can be developed to add pose estimation capabilities to a
robotics project, leveraging WOS's framework for lifecycle
management, including starting, running, and ending processes,
as well as handling outputs and exceptions.

2) External API Request
WOS supports integration with external APIs, allowing

scripts to make requests from outside the WOS ecosystem.
Developers has the flexibility to choose their own programming
languages and build process to build their program as long as it
has the ability to communicate to WOS core.

3) Third Parties’ Resources

 The platform is open to incorporating third-party resources,
WOS has an adapter layer that talks to ROS and other popular
communication patterns. This allows painless migration of
existing functionalities to WOS platform. such as the Franka
Emika ROS driver [17], WOS utilize ROS driver to control
Franka Robots [2] and this pattern can be extended to all other
ROS ready robotics component. This openness ensures that
WOS can serve as a comprehensive ecosystem for robotics
projects, supporting a vast array of components and algorithms
from different vendors and communities. By allowing
third-party integrations, WOS enhances its utility and
adaptability, making it a versatile platform for robotics
development and deployment.

III. EXPERIMENTS

This chapter focuses on validating WOS's performance
through stress tests in varied conditions and showcasing its
application in specific cases to illustrate its efficiency and low
entry barriers. We also highlight two application cases:
dual-arm coffee preparation using WOS's graph low code
module and VR-assisted remote toy spray teaching via WOS
API. These examples demonstrate WOS's effectiveness in
streamlining robotic operations and its potential to enhance
automation in small businesses.

A. Performance Test
The performance evaluation was conducted on a Raspberry

Pi 3 Model B, an Arm-based single-board computer equipped
with a Quad Core 1.2GHz CPU. The assessment focused on the
performance of WOS's binary core across different
communication modes and message sizes.
The tests covered three modes of communication:

• Internal Process: Message passing within the WOS
program.

• Localhost Process: Message passing from another
program to WOS on the same machine.

• Remote through Ethernet: Message passing from another
computer to WOS via onboard Ethernet through a
router.

Each communication mode was tested with varying message
sizes, ranging from an empty payload to trajectory data of

Fig. 2: WOS Performance Test Results

274

different sizes for a 6-DOF robotic arm, between 1KB and 1MB.
The messages in the performance test were formatted in
text-based JSON, undergoing message decoding, routing, and
encoding.

As shown in Fig. 2, internal process communication
exhibited the lowest latency and highest transmission rate,
making it the most efficient mode. In contrast, remote
communication via localhost and Ethernet significantly
increased latency and reduced transmission rates, particularly
with larger message sizes. However, no data loss was observed
due to the advantage of TCP, even though larger message sizes
did result in a drop in processing frequency.

Internal process communication, using direct WOS API calls,
remains the most efficient, whereas external API messaging
relies on text-based JSON, leading to high CPU usage due to
the overhead of encoding and decoding. Despite this, memory
usage remained stable across different communication modes,
indicating consistent memory management.

To improve message encoding and decoding efficiency,
WOS is adopting Protocol Buffers [18] while exploring the use
of UDP for scenarios that require higher frequency stability,
such as joint state publishing.

B. Application cases

1) Dual-arm coffee preparation
This section highlights the innovation of WOS's Graph

application, demonstrating the use of visual flowcharts for
managing dual robotic arms in complex tasks. This method
greatly simplifies the learning curve for robotic arm
manipulation, allowing those without robotics engineering
expertise to easily engage in the creation and design of robotic
applications. We showcase the setup and calibration of two
different brand robotic arms of various sizes and costs, using
WOS. Within just a few hours, these arms were ready to
successfully prepare a capsule coffee, illustrating the system's
efficiency and user-friendly approach.

The coffee brewing experiment featured a capsule coffee
machine and two distinct robotic arms: the Franka Emika
Research 3 (FR3) [2], a 7-degree-of-freedom robot with a
gripper, and the STR400 [3], a 6-degree-of-freedom compact
robot with a 3D-printed shovel as its end effector. The FR3 uses

Docker [15] encapsulation for its operation in FCI (Franka
Control Interface) mode [17], enabling precise PD
(Proportional-Derivative) position and velocity control via
ROS Control Packages. In contrast, the STR400 is natively
supported by WOS, directly accepting low-level motion
commands. WOS's Graph allows for the invocation of internal
motion planning algorithms, facilitating varied movements for
both robotic arms in the brewing process.

Fig. 3 presents screenshots stitching of the WOS Graph's
interactive interface. The left side lists available Graph Nodes,
including various trajectory planning modules for robots, as
well as logic modules required for low-code programming.
These nodes can be dragged from the left into the central
workspace, where parameters are set and logics linked,
enabling choreography of robotic actions. After arranging the
actions, initiating the program is done by clicking the green
play button at the bottom, with the Start Graph Node serving as
the entry point.

The WOS Graph in Fig. 3 displays the main program for the
Dual-arm coffee preparation task, with eight outlined areas
corresponding to the eight stages shown in Fig. 4. The diagram
utilizes several functional nodes to achieve the task, specifically
Concurrent, Run Graph, WScript, and Component Action, most
of which are assigned nicknames for ease of debugging. The

Fig. 3: WOS Graph Interface for Dual Robotic Arms Coffee Preparation

Fig. 4: Sequential Collaboration of Dual Robotic Arms in Capsule Coffee Preparation

275

Concurrent node used in the first group of nodes initializes
FR3's pose with the Move Joints node while homing the gripper
simultaneously with the Component Action node. Upon
completion of these actions, it proceeds to the next stage with
another Concurrent node, whose branches orchestrate the
actions of FR3 and STR400, enabling them to operate
simultaneously in a pre-arranged sequence. Apart from
"Position Capsule" node in group 3, which employs WScript (a
WOS-defined script for editing a series of robot arm actions),
other nodes in groups 2, 3, 4, 5, 6, and 7 are Run Graph, calling
subgraphs during the main program execution. This
segmentation allows complex tasks to be divided into smaller,
manageable tasks. At the end of program, the last Concurrent
node is used to execute pre-programmed dancing actions using
WScripts for both robots.

Following this, Fig. 4 illustrates the specific implementation
steps of these processes: Initially, the environment is prepared,
and both robotic arms are activated, setting the stage for the task
at hand (Fig. 4-1). The FR3 takes the initiative by picking up a
cup, while the STR400 arm approaches a predetermined
position where the coffee capsule is placed (Fig. 4-2).
Subsequently, FR3 carefully places the cup into the coffee
machine's holder, and STR400 adeptly positions the coffee
capsule at the specified spot (Fig. 4-3). In a coordinated effort,
FR3 proceeds to open the coffee machine's lid, with STR400
applying pressure on the machine to ensure stability and
prevent any displacement (Fig. 4-4). Following this, FR3
skillfully grasps the coffee capsule (Fig. 4-5), and then
positions it within the machine, making necessary adjustments
for optimal alignment (Fig. 4-6). Once the capsule is correctly
placed, FR3 closes the lid and engages the brewing function
(Fig. 4-7). The culmination of this intricate process is marked
by both robotic arms performing a synchronized dance,
signifying the successful completion of a freshly brewed cup of
coffee (Fig. 4-8).

The results were highly positive, showcasing the system's
efficiency. While areas like improved path planning and sensor
integration for flexible item placement were noted for
enhancement, researchers successfully implemented the
process in just two hours. This highlights WOS's efficiency,
adaptability, and the practicality of robotic collaboration in
daily tasks.

2) VR Teleoperation Toy Spraying
The design of the WOS, featuring a separation between the

frontend and backend, enables the majority of functionalities
available in the web-based interactive interface to be accessible
via API calls. This section demonstrates how a VR application

leverages the WOS to manage robotic hardware and sensors,
conveniently facilitating a simple VR application for remotely
teaching a robotic arm to spray paint toys in actual use cases.

Fig. 5 shows the setup for VR-based remote teaching of spray
painting, highlighting key coordinate notations. An FR3 robotic
arm, equipped with a RealSense L515 camera [19], with its
position denoted as {C}. An LED light marks the spray gun
nozzle's position as {T}. The global coordinate system {G} is
set 0.2 meters above the center table toy rabbit, with the Y-axis
of {G} pointing to one table side and the Z-axis vertically up.
On the left, an operator wearing VR gear scans the operation
table, viewing a point cloud image from the scene. The VR's
global coordinate, {VG}, matches the real-world global
coordinate setup, placed 0.2 meters above the table center, with
identical orientation. The VR controller, representing the spray
gun nozzle, is marked as {VT}, mirroring the real nozzle's
position and orientation. This setup ensures that {VT}'s
movement relative to {VG} directly replicates {T}'s movement
relative to {G}. Recording the controller's movements allows
the robotic arm to replay these actions, effectively teaching it
the spray-painting task.

Fig. 6 outlines the system's implementation, utilizing two
computers: Computer A runs a VR teaching demo using Unreal
Engine 5, while Computer B runs WOS, managing the FR3
robotic arm and a RealSense 3D camera. Initially, a button in
the VR demo triggers a scan of the environment using the
RealSense camera, controlled via WOS API. The resulting
point cloud image and camera position are sent back to Unreal
Engine 5, where coordinate transformations align the virtual
{VG} with the real {G}. Operators can then see the 3D point
cloud and start recording the controller's trajectory at 60Hz.
Due to hardware noise and hand tremors, the raw data
undergoes downsampling to 1Hz before being sent to WOS.
WOS then interpolates the trajectory using internal WScript
node, making it suitable for playback by the robotic arm.
Moving from the system's technical details to its application,
Fig. 7 shows the virtual reality setup on the left, where the
operator, with a spray-painting device, aims at a point cloud

Fig. 7: Virtual Reality Scene and Corresponding Physical Setup

Fig. 6: Process Implementation of the VR Teaching System

Fig. 5: Experimental Design for Remote VR Teaching in Spray Painting

276

table to record movements. The right side shows the actual
experimental setup.

Fig. 8 captures the trajectory data in three distinct Cartesian
spaces throughout the experiment. The raw data of hand
movements collected in VR are represented by small blue dots.
These points, after being down sampled and smoothed by the
motion planning algorithm, are depicted as solid yellow lines,
serving directly as references for the trajectory tracking PD
controller. Finally, the green dashed lines record the trajectory
that the robot arm actually follows during its operation. All
three types of data consist of 1200 steps at a frequency of 60Hz,
indicating the entire spray teaching lasts for 20 seconds. The
standard pose description in the WOS utilizes the most intuitive
Cartesian coordinates x, y, z, along with Roll, Pitch, Yaw, XYZ
Euler angles for rotation. Consequently, the six sub-figures
visualize data for these dimensions respectively.

The VR teaching experiment demonstrated encouraging
outcomes. When comparing the raw data recorded from VR
with the actual trajectory followed by the robotic arm during
execution, it achieves a mean error of -0.00225 meters and a
standard deviation of 0.01408 in position data, along with a
mean error of -0.00003 radians and a standard deviation of
0.04973 in rotation data. Using the WOS's straightforward API
interface and its built-in motion planning algorithm, the robot's
movements are made uniformly smooth without significantly
distorting the original recorded data. Importantly, such system
design does not depend on specific hardware devices, meaning
engineers working on the VR side do not need to concern
themselves with the specific models of robotic arms and
cameras used on-site.

IV. CONCLUSION

In conclusion, this paper has introduced the WinGs
Operating Studio (WOS), a low-code integration platform for
robotic arms designed to simplify automation in small
enterprises. Leveraging its hardware abstraction and
standardized APIs design philosophy, WOS provides a solution
that eases the management of varied robotic hardware through a
single binary executable. Its efficiency and compatibility ensure
smooth performance on budget-friendly PC hardware. The
platform's web-based GUI and application framework, enabling
intuitive flowchart programming and flexible APIs, have
demonstrated effectiveness in scenarios such as dual-arm
coffee preparation and VR-controlled spray painting. WOS
stands as a significant tool for reducing technical hurdles in
robotic automation, highlighting its capacity to drive
innovation.

For future work, we aim to explore communication
technologies that maintain compatibility with current systems

while achieving higher efficiency. Additionally, we plan to
expand our application domains to include more industrial
sectors, understanding and catering to their specific needs. To
enrich the functionality of modules, we intend to devise
strategies to encourage broader participation in the
development of the WOS ecosystem, further enhancing its
versatility and impact across various industries.

References
[1] “Universal robots.” https://www.universal-robots.com. Accessed: 05-02-

2024.
[2] “Franka emika, panda.” https://www.franka.de. Accessed: 05-02-2024.
[3] “WinGs Robotics, STR400” https://www.wingsrobotics.com/str400.

Accessed: 05-02-2024.
[4] “Artly Coffee” https://artly.coffee/. Accessed: 05-02-2024.
[5] “Zordi” https://www.zordi.com/. Accessed: 05-02-2024.
[6] Zhang, K., Yang, L., Wang, L., Zhang, L., & Zhang, T. (2012). Design

and experiment of elevated substrate culture strawberry picking robot.
Nongye Jixie Xuebao= Transactions of the Chinese Society for
Agricultural Machinery, 43(9), 165-172.

[7] Asadi, E., Li, B., & Chen, I. M. (2018). Pictobot: A cooperative painting
robot for interior finishing of industrial developments. IEEE Robotics &
Automation Magazine, 25(2), 82-94.

[8] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., ... &
Ng, A. Y. (2009, May). ROS: an open-source Robot Operating System. In
ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5).

[9] Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022).
Robot Operating System 2: Design, architecture, and uses in the wild.
Science Robotics, 7(66), eabm6074.

[10] Metta, G., Fitzpatrick, P., & Natale, L. (2006). YARP: yet another robot
platform. International Journal of Advanced Robotic Systems, 3(1), 8.

[11] Bruyninckx, H. (2001, May). Open robot control software: the OROCOS
project. In Proceedings 2001 ICRA. IEEE international conference on
robotics and automation (Cat. No. 01CH37164) (Vol. 3, pp. 2523-2528).
IEEE.

[12] Hansch, G., Schneider, P., Fischer, K., & Böttinger, K. (2019, September).
A unified architecture for industrial IoT security requirements in open
platform communications. In 2019 24th IEEE international conference on
emerging technologies and factory automation (etfa) (pp. 325-332). IEEE.

[13] Albert S. Huang, Edwin Olson, and David C. Moore. LCM: Lightweight
Communications and Marshalling. In IEEE/RSJ Inter- national
Conference on Intelligent Robots and Systems, pages 4057– 4062, 2010.

[14] Chen, Y., & Hu, H. (2013). Internet of intelligent things and robot as a
service. Simulation Modelling Practice and Theory, 34, 159-171.

[15] Boettiger, C. (2015). An introduction to Docker for reproducible research.
ACM SIGOPS Operating Systems Review, 49(1), 71-79.

[16] Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., &
Marín-Jiménez, M. J. (2014). Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern Recognition,
47(6), 2280-2292.

[17] Franka Emika GmbH. https://frankaemika.github.io/docs/. Accessed:
05-02- 2024.

[18] Currier, C. (2022). Protocol buffers. In Mobile Forensics–The File Format
Handbook: Common File Formats and File Systems Used in Mobile
Devices (pp. 223-260). Cham: Springer International Publishing.

[19] “Intel RealSense” https://www.intelrealsense.com/lidar-camera-l515/.
Accessed: 05-02-2024.

Fig. 8: Trajectory Data Across Cartesian Spaces in the Experiment

277

