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Abstract— As human-robot interaction (HRI) advances, the
nuanced interpretation of implicit commands embedded in
human gestures becomes paramount for fostering seamless
collaboration. In this context, we present a novel machine
learning algorithm designed to endow robots with the ability
to decipher implicit commands from Inertial Measurement
Unit (IMU) sensor data worn at specific locations on the
human body. Our approach integrates memory and attention
mechanisms inspired by ideomotor cues, allowing the robot
to comprehend both temporal and spatial relationships within
the sensor data. The attention mechanism operates bidirec-
tionally, enhancing the system’s awareness of the temporal
sequence of human movements and the spatial interdepen-
dencies between sensor data across different body locations.
This unique spatial attention enables the robot to understand
the kinematic chain between joints during human motion,
accommodating variations in sensor data arising from factors
such as height differences and motion range capacity. Drawing
on prior research in attention mechanisms, ideomotor cues, and
memory augmentation, our algorithm represents a significant
advancement in addressing the challenges of implicit command
understanding in HRI. The proposed system’s adaptability
and nuanced comprehension of human gestures make it well-
suited for diverse anatomies and movement patterns. Through
comprehensive experiments, we demonstrate the effectiveness of
our algorithm, paving the way for more intuitive and adaptable
robotic systems in real-world applications.

I. Introduction

Integrating robots into human environments is a com-
plex challenge spanning technical, social, and cognitive
domains. This paper introduces a machine learning algo-
rithm to improve robots’ interpretive abilities, focusing on
implicit command recognition and user-specific adaptation.
Traditional Human-Robot Interaction (HRI) systems rely on
explicit commands, lacking the flexibility of human-human
interactions. To address this, we leverage the ideomotor
principle, linking thought processes with motor actions. Our
system deduces user intentions from natural, non-verbal cues,
streamlining interactions. We use Inertial Measurement Units
(IMUs) to capture human motion nuances, processed through
a dual attention mechanism considering temporal and spatial
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dimensions. This allows accurate interpretation even with
sensor data variations due to user-specific factors.

Our algorithm adapts to individual users through adaptive
machine learning and a feedback loop, refining predictive
capabilities for a tailored user experience. This enhances
implicit command interpretation and enables personalized
HRI experiences. This research has implications for robotics
in various settings, from industrial collaboration to assistive
technologies. By aligning human intentions with robot ac-
tions, we move towards collaborative partnerships enhancing
human capabilities and experiences.

II. Background

A. Robot Control in Human-Robot Interaction

The domain of HRI has been significantly advanced by the
integration of user motion as a medium for robot control. The
concept of operating robots through the physical movements
of a user has its roots in early teleoperation systems and
has evolved with the advent of sophisticated sensors and
machine learning algorithms. Pioneering work in this field
was conducted by Sheridan, who explored the foundational
principles of teleoperation and the potential of human motion
to guide robotic systems, laying the groundwork for subse-
quent research in the field [1], [2]. The utility of IMUs for
capturing user motion was further highlighted by Roetenberg
et al. [3], who demonstrated the effectiveness of IMUs in full-
body motion tracking, thus opening new avenues for user-
driven robot control. Significant advancements were made by
researchers such as Fang et al., who developed a system for
capturing complex human gestures through a combination
of IMUs and computer vision, thus enabling more nuanced
interactions between humans and robots [4]–[6]. This work
underscored the importance of precise motion capture in
translating user intent into robotic action. The concept of
“learning from demonstration” (LfD) allows robots to learn
control policies directly from human demonstrations, using
user motion as the primary input. This paradigm shift facil-
itated a more intuitive and natural means of robot control
[7]–[9].

B. Attention Mechanisms in Machine Learning

Research by Vaswani et al. on attention models in neural
networks has inspired subsequent work on attention-based
machine learning systems [10], especially in the field of
sequence prediction tasks. Bahdanau et al. [11] introduced
the concept in the context of neural machine translation,
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which has since been adapted to various domains. For
instance, Xu et al. [12] successfully applied attention models
to image captioning, demonstrating their effectiveness in
focusing on relevant features of the input data.More recently,
attention has been integrated into reinforcement learning
and HRI frameworks to enhance the interaction between
agents and their environments. For example, Sorokin et al.
[13] introduced deep attention recurrent Q-networks, which
use attention-driven memory to improve decision-making in
video games.

C. Implicit Command Interpretation

The interpretation of user intention through implicit com-
mands, derived from motion data in line with the ideomotor
principle, is a growing area of research in HRI. Wearable
sensors now capture subtle human movements that indicate
underlying intentions, building on early research by Car-
penter, Lotz, James, and Pfungst [14]–[17]. They explored
the ideomotor principle, linking thoughts with actions ini-
tiated without conscious awareness, laying a psychological
foundation for interpreting user intentions from motion data.
This principle led to systems inferring intent from physical
cues, crucial for seamless HRI but challenging. Studies show
ideomotor cues’ potential in interface design [18]–[21].

In robotics, understanding gestures, gaze direction, and
other non-verbal cues is key. Fiore et al. [22] found that
robots interpreting such cues engage more meaningfully.
Machine learning, especially deep learning like Recurrent
Neural Networks (RNNs) and Long Short-Term Memory
(LSTM) networks, models these cues, often in time-series
data form. The challenge is identifying informative cues and
their correlation with user intentions.

Personalizing models for user-specific characteristics is
crucial. Ziebart et al. [23] explored personalized models for
behavior and preferences, enhancing robots’ ability to under-
stand and predict user intentions. As HRI progresses, user
specificity will likely increase, creating more personalized
and adaptable robots for diverse users and environments.
The goal is HRI systems as diverse as their users, delivering
personalized experiences that improve collaboration.

This study integrates IMUs, attention mechanisms, and
adaptive learning to interpret both explicit and implicit
user commands. Including user specificity and ideomotor
principles enhances the system’s ability to understand and
predict human intentions, a significant contribution to HRI.

III. Network

A. Concept Outline

In the proposed methodology, outlined in Fig. 1 the sys-
tem’s learning pipeline is initiated by accumulating motion
data during user-executed tasks. Simple task execution is
accompanied by corresponding vocal commands, whereas
complex tasks incorporate a wider range of user motions
and command phrases. This data, enriched with the robot’s
motor encoder readings, forms a comprehensive dataset.

A machine learning model is trained with this dataset to
discern user intent from the motion and command data. The

Fig. 1: Training and testing flow of the designed model

Fig. 2: Outline of the network used

model’s interpretative accuracy is subsequently assessed in
practical scenarios, where correct intention predictions are
extracted and reincorporated into the training set, enhancing
the dataset.

This iterative refinement process, illustrated in the same
figure, cultivates the model’s proficiency in interpreting user
intentions, thereby improving the robot’s interactive perfor-
mance through a continuous learning loop.

B. Network

In our network architecture (Fig. 2), we use Convolutional
Neural Networks (CNNs) and Bidirectional Long Short-Term
Memory (Bi-LSTM) networks to process motion data. Each
CNN has five layers for feature extraction from Inertial Mea-
surement Units (IMUs) and motor encoders. IMUs are placed
strategically on the user’s body to capture motion data, while
motor encoders provide angle information from the robot
arm’s axes. After CNN processing, data goes through two
Bi-LSTM layers to recognize temporal dependencies. This
data then goes through a stacked dual attention mechanism,
focusing on relevant features for intention decoding. The
output goes through a softmax function and argmax operation
to generate the final command label. The input data is 44-
dimensional, transformed through the network to produce a
discrete command label for the robot system.

C. Dual Attention

Central to our approach in decoding implicit human
commands through IMU sensor data is our innovative pose
reconstruction and motion prediction strategy, underpinned
by a sophisticated dual attention mechanism outlined in
Fig.3. This mechanism is intricately designed to process
and interpret the sensor data in both spatial and temporal
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Fig. 3: Dual Attention Block (top) and benchmarking process
used (bottom)

dimensions, enhancing the robot’s understanding of human
motion and intentions.
• Sensor (Spatial) Attention:

The first component of our dual attention structure is
the Sensor (Spatial) Attention module. This element is
meticulously engineered to analyze data collected from
strategically synthesized IMUs placed across vital body
joints. By concentrating on these specific body parts,
the spatial attention module can capture the nuances
of human movements more accurately. This aspect is
crucial for achieving a human-like representation of
motion, as it enables the system to focus on the intricate
movements of key joints and limbs, which are pivotal
in conveying implicit commands.

• Sequential (Temporal) Attention:
The second element, Sequential Attention, addresses the
dynamic nature of human motion. It operates on the
understanding that movement is a continuum influenced
not just by the current physical state but also by histor-
ical motion patterns. By analyzing data over key time
intervals, this module can discern patterns and trends
in the sensor data, allowing it to predict subsequent
movements based on historical data. This temporal
focus is vital for understanding and anticipating human
actions, making the robot’s responses more fluid and
intuitive.

This dual attention mechanism, with its spatial and tempo-
ral components, provides a comprehensive framework for
interpreting sensor data. By integrating insights from both
the current state and historical patterns of movement, our
system achieves a more nuanced understanding of human
motions and intentions. This enhanced perception is critical
in enabling robots to interact with humans in a more natural,
responsive, and predictive manner, thereby improving the
efficacy and fluidity of human-robot collaboration.

In the present study, using the arbitrary parameters dS eq

and dIMU defined as:

dS eq = IMUNum × Features (1)

dIMU = S equence × Features (2)

and the normalized attention scores, determined by the
internal product of the query and key vectors:

S coreS eq = QS eqKT
S eq ∈ R

S equence×S equence (3)

S coreIMU = QIMU KT
IMU ∈ R

IMUNum×IMUNum (4)

we defined the attention ratio (AR) as obtained from the
Softmax function, applied respectively to each row of the
input matrix.

ARseq = S o f tmax

S coreS eq√
dS eq

 (5)

ARIMU = S o f tmax
(

S coreIMU
√

dIMU

)
(6)

IV. Performance Verification

A. Task Setting

The human participant is equipped with IMU sensors at
designated points on their body.
• Task 1: Simple Handover Task

The participant approaches the robot arm and extends
their hand with the object towards a designated handover
location. The system uses the motion data to predict the
intention and guides the robot arm to take the object
from the participant.

• Task 2: Dynamic Collaborative Sorting Task
A set of objects with varied shapes, sizes, and colors
are placed on the table. Designated sorting zones are
marked on the table for different categories of objects.
The participant picks up an object and gestures towards
a sorting zone, indicating where the robot should place
the item. The robot must interpret the gesture, pick the
correct object, and sort it into the designated zone. The
task involves various object handovers and placements,
requiring the robot to adjust its grip and trajectory
based on the participant’s motions and the object’s
characteristics.

Metrics include sorting accuracy, number of successful han-
dovers, number of corrective actions by the participant, and
overall task completion time. These tasks aim to test the
system’s reliability in basic interaction (Task 1) and its adapt-
ability and decision-making in more complex, collaborative
scenarios (Task 2). Success in both tasks would validate the
system’s potential for practical HRI applications.

B. Attention Benchmarking

The evaluation of our dual attention model was bench-
marked against traditional BiRNN and sequential models
(Fig.3) to quantify improvements in intention estimation
accuracy. As Table I illustrates, the dual attention model
demonstrated superior performance across all metrics when
compared to the baseline BiRNN and sequential models.

Notably, the dual attention model achieved a significant
increase in accuracy, reaching 96.2% with six layers, com-
pared to 92.1% for the sequential model and 85.2% for the

938



TABLE I: Intention estimation error comparison

BiRNN Sequential Dual Attention
layers 1 3 6 1 3 6

accuracy (%) 85.2 88.7 90.2 92.1 91.3 93.5 96.2
Standard Deviation ±7 ±4 ±3 ±3 ±4 ±2 ±1

Inference (ms) 2.56 1.28 2.73 5.22 2.45 5.60 9.68

BiRNN. This enhancement in accuracy is attributed to the
model’s ability to concurrently process spatial and tempo-
ral data, providing a more holistic understanding of user
intent.The standard deviation of accuracy also saw marked
improvement, with the dual attention model exhibiting the
lowest variability (±1) at its optimal configuration of six
layers, suggesting robust performance across different trials
and user interactions. In terms of inference time, the dual
attention model maintained competitive performance, with an
acceptable increase to 9.68 ms for the six-layer configuration,
which is a trade-off for the substantial gains in accuracy and
consistency.

C. Sensor Scarcity

Our study, like others using BiRNNs for motion predic-
tion, found that increasing the number of IMUs does not
significantly improve intention estimation accuracy. Even
adding sensors from 6 to 12 only slightly reduces joint
position errors (as seen in Fig.4), indicating that the BiRNN
model alone is not enough for precise posture extrapolation.

Research, including ours, suggests that beyond 12 IMUs,
there are diminishing returns on accuracy. Further expanding
the sensor array unlikely to substantially improve prediction
accuracy. However, when focusing on enhancing cognitive
depth by adding dual-attention layers instead of more sen-
sors, our results show a progressive improvement in estimat-
ing joint positions. This dual-attention mechanism analyzes
complex relationships between sensor inputs in both space
and time, crucial fori accurate predictions.

While our goal was to optimize a system with minimal
sensors, our findings suggest that adding more sensors could
enhance the dual-attention framework. This is because a
larger sensor array could provide more spatial-temporal
relationships for the framework to analyze. Therefore, com-
bining an expanded IMU setup with our dual-attention model
could further reduce joint position estimation errors, showing
promise for future research.

V. Usability Experiment

A. Participants

The participant pool for this study comprised 20 in-
dividuals, detailed in Table II. This group represented a
balanced mix of ages (21-40 years), genders, and a variety of
professional backgrounds to ensure broad usability testing of
the system. Physical attributes ranged with heights between
158 cm and 182 cm and weights from 52 kg to 90 kg,
catering to diverse body types. The participants’ previous
experience with HRI was split equally between novices and
those with experience, providing insights into the system’s

Fig. 4: Sensor scarcity versus attention layers performance
comparison

accessibility to users of varying familiarity with robotic
systems. This heterogeneous sample underpins the robustness
and generalizability of the study’s findings.

B. Simple Handover Task Performance

The simple handover task aimed to assess the system’s
capability to accurately interpret and respond to straight-
forward user commands. Success rates across participants
varied (Fig. 5a, with an average starting rate of 88.45% in the
initial trials, peaking at 95.55%. This progression indicates a
significant learning curve and adaptation to user behaviors,
enhancing task execution over time. Conversely, response
times showed a decreasing trend, starting from an average of
2.72 seconds and significantly improving to as low as 0.54
seconds, demonstrating the system’s growing efficiency in
interpreting user intentions promptly.

C. Dynamic Collaborative Sorting Task Performance

The dynamic collaborative sorting task (Fig. 5b), designed
to test the system under more complex and variable con-
ditions, revealed success rates beginning at 80.42%, with
notable fluctuations reflecting the task’s complexity. The
highest success rate observed was 87.15%, underscoring
the system’s capacity to adapt to and manage intricate
task demands. Response times for this task also decreased,
highlighting the system’s ability to streamline its processing
and response capabilities amidst challenging scenarios.

D. Average Task Completion Time

The comparison of average task completion times, shown
in Fig. 7 revealed a distinct pattern of improvement across
both tasks. For the handover task, completion times de-
creased from 14 minutes in the initial trial to 8 minutes
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TABLE II: Participant Pool for Verification Experiment

Participant ID Age Gender Height (cm) Weight (kg) Background Previous HRI Experience

P01 25 Male 172 70 Engineering Yes
P02 30 Female 165 55 Science No
P03 27 Male 178 75 Arts No
P04 22 Female 160 60 Healthcare Yes
P05 34 Male 180 85 IT Yes
P06 29 Female 167 65 Education No
P07 31 Male 175 80 Business No
P08 28 Female 162 54 Design Yes
P09 26 Male 170 72 Engineering No
P10 32 Female 168 58 Science Yes
P11 24 Male 182 88 Arts Yes
P12 33 Female 163 56 Healthcare No
P13 35 Male 176 77 IT No
P14 23 Female 158 53 Education Yes
P15 37 Male 179 82 Business No
P16 36 Female 164 59 Design Yes
P17 38 Male 181 90 Engineering Yes
P18 39 Female 169 57 Science No
P19 40 Male 174 73 Arts Yes
P20 21 Female 159 52 Healthcare No

by the fifth trial. The dynamic collaborative sorting task
showed a more pronounced reduction, from 22 minutes
initially to 10 minutes, indicating substantial efficiency gains
as participants and the system became more acquainted with
task requirements.

E. Analysis of Robot Error Distribution in the Sorting Task

Fig. 6 offers insightful revelations about the system’s per-
formance nuances. The majority of the actions, constituting
76.28%, were correctly identified and sorted, indicating a
high level of proficiency in both recognizing and categorizing
objects as intended. This significant portion underscores
the system’s robustness in accurately interpreting user com-
mands and executing tasks correctly. However, the analysis
also revealed areas for improvement. A total of 10.8% of
actions were correctly identified yet mistakenly sorted, and
9.71% were mistakenly identified but correctly sorted. These
errors highlight specific challenges in the system’s decision-
making process, where either the identification or the sorting
phase may not align perfectly with the user’s intention. This
suggests a potential misalignment in the system’s understand-
ing of the task context or its execution strategy. Furthermore,
the smallest error category, consisting of 3.21% of actions,
involved objects that were both mistakenly identified and
sorted. This category, while minor, points to instances where
the system’s interpretation of user intent significantly devi-
ates from the expected outcome.

F. Corrective Actions and Intention Estimation Accuracy

A critical aspect of our analysis focused on the system’s
need for corrective actions and its accuracy in intention
estimation, reflected in Fig. 8. The simple handover task saw
a reduction in corrective actions from 6 in the first trial to just
1 by the fifth, alongside an improvement in intention estima-
tion accuracy from 82% to 95%. The dynamic collaborative
sorting task also demonstrated progress, with corrective
actions decreasing from 13 to 4 and intention estimation

(a) handover (b) dynamic sorting

Fig. 5: Average task completion and response time compar-
ison for each participant on the handover task and collabo-
prative dynamic sorting task

(a) Overall behavior distribution (b) Error break down per object

Fig. 6: Robot arm error in identifying intended object to pick
up or sorting location.

accuracy increasing from 73% to 87%. These improvements
are indicative of the system’s learning capabilities and its
potential for minimizing human intervention over time.

VI. Discussion and Conclusion

This paper analyzed a dual attention mechanism in an
HRI system, showing its effectiveness in two tasks: a Simple
Handover Task and a Dynamic Collaborative Sorting Task.
The mechanism improved the system’s understanding of user
intentions, leading to better success rates, faster responses,
and fewer corrective actions. Processing both temporal and
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Fig. 7: Evolution of the task completion time over the course
of 5 trials

(a) Corrective Actions
(b) Intention Estimation Accu-
racy

Fig. 8: Corrective actions (human intervention) and intention
estimation accuracy evolution comparison

spatial sensor data, it accurately interpreted user commands,
addressing variability in human behavior.

Despite positive outcomes, limitations were noted, such as
variability in success rates and errors, especially in the dy-
namic collaborative sorting task, highlighting the complexity
of real-world HRI scenarios. Further refinement of decision-
making algorithms is needed for tasks with high variability
and unpredictability.

The study was conducted in a controlled experimental
setting, possibly not fully capturing real-world interactions.
Evaluation over a short term raises questions about long-
term adaptability and learning capabilities. Future research
should focus on generalizing the system across a wider array
of tasks and user behaviors, possibly with more sophisticated
machine learning models. Addressing privacy and ethical
concerns related to sensor data collection and user moni-
toring is crucial for responsible deployment.

In conclusion, this study demonstrates the potential of a
dual attention mechanism to enhance HRI systems, indicat-
ing a promising direction for future research. Refinement of
these systems could lead to seamless and intuitive human-
robot collaborations that adapt to and learn from diverse
human behaviors.
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