
  

Abstract—Digital image correlation (DIC) is a widely used 
technique for full-field deformation measurement based on 
image processing. The high quality of images input for 
correlation is the most important guarantee for obtaining 
accurate physical field. In this paper, we propose a new method 
to deal with the negative effects of noise especially for deep 
learning-based DIC. Denoising convolutional neural network 
(DnCNN) block is introduced to deal with the noise before 
speckle patterns are fed into deep learning-based DIC. A new 
speckle pattern dataset, SPDataset, is created to train DnCNN 
on speckle features rather than on images with semantic 
information. The performance of networks trained on specific 
and blind noise level is compared and the possibility of network 
structure simplification is explored. The depth and performance 
of the network reach a good compromise at a layer number of 9. 
The denoising ability of the network for speckle patterns was 
confirmed qualitatively and quantitatively. 

I. INTRODUCTION 

Digital image correlation (DIC) [1], as a full-field 
deformation measurement technique based on computer vision 
and image processing, has been widely applied in various 
advanced fields requiring experimental mechanics tasks, 
including damage/flaw evolution tracking [2], health 
monitoring [3], and mechanical response analysis [4]. By 
analyzing the pixel-level correlation between successive 
images, DIC algorithms enable the extraction of critical 
information such as strain distribution, surface deformation, 
and motion trajectories. During the measurement, images are 
taken before and after deformation, and distributed 
deformation field is determined by comparing intensity 
changes in the grayscale distribution of the image pair [5][6]. 
As illustrated with an experimental test in Fig.1, the 
displacement and strain fields are reconstructed using DIC 
based on speckle images correlation.  

The high quality of images input for correlation is the most 
important guarantee for obtaining accurate physical field [7]. 

  
Figure 1. Illustration of DIC method [5]. (a) Speckle patterns captured for DIC 
calculation; (b)(c) colored cloud map representing the reconstructed 
deformation field based on underlying speckle images, where (b) for 
displacement field and (c) for strain field.  

 
Figure 2. Illustration of the proposed preprocessing method.  

However, due to factors such as camera shots and 
environmental influences, various defects are inevitably 
introduced in the process of digital image acquisition. 
Especially for the deformation analysis in motion, it is often 
necessary to acquire images in a moving environment, which 
makes it impossible to maintain consistent lighting and 
background and bring about a decrease in the quality of the 
acquired images. Therefore, extensive studies were conducted 
to obtain high-fidelity deformation fields by reducing the 
effect of image defects. 

As illustrated in the flowchart of Fig. 2, a preprocessing 
step against contaminations between image acquisition and 
correlation is commonly incorporated in the traditional multi-
step DIC. The effect of motion blur on the uncertainty of DIC 
measurements is investigated in [8] and a physical model is 
further developed. A zero-mean normalized sum of squared 
difference (ZNSSD) criterion is proposed by Pan et al. [9]. The 
normalization of the image grayscale values can effectively 
cope with the changes in ambient light during image 
acquisition. For the most common defect, noise, a Gaussian 
filter is commonly used for the generic approach. The 
effectiveness of the Gaussian low-pass filter for reducing the 
noise-induced error was verified experimentally in [7].  

With the advancement of deep learning concepts and the 
increase of graphics processing unit (GPU) computing power, 
deep learning-based DICs are starting to emerge in recent 
years. Different from multi-step traditional DIC, end-to-end 
neural network is the remarkable feature of deep learning-
based DICs. The traditional denoising method is no longer 
suitable to continue as preprocessing for deep learning-based 
DIC. That is because as a low-pass filter, Gaussian filtering 
will cause image smoothing, hindering the great advantage of 
neural networks being able to capture high-frequency 
deformation information.  

For deep-learning based DIC, avoiding the negative 
effects of noise is mainly achieved by enabling the network to 
learn the mapping of noisy images to theoretical values. In 
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2021, Boukhtache et al. [10] constructed a new dataset, 
Speckle 2.0, by synthesized speckle pattern pairs. The images 
in Speckle 2.0 are all noisy to train the network to handle noise. 
By transfer learning and fine-tuning an optical flow estimation 
network, the StrainNets are established to estimate the 
displacement field. To incorporate as enriched deformation 
cases as possible in the dataset, Wang et al. [11] constructed 
the Hermite dataset with the help of the complex C2 continuity 
Hermite element in the finite element method. The images in 
the Hermite dataset are with Gaussian noise level no more than 
0.5% added. Yang et al. [12] further extended the quality 
variance of the images in the dataset. Defects such as sparse 
pattern, random large speckles, extra noises, and low contrast 
are included to increase the robustness and adaptivity of their 
proposed neural networks. In general, in the currently 
proposed deep learning-based DIC methods, noisy images are 
placed directly into the training set. However, a well-
performing neural network to DIC is expected to cope with 
various quality of input images, the training set will become 
very large and the network architecture will be more complex. 
Meanwhile, the mathematical principle of image correlation 
indicates that theoretical deformation produces a direct 
mapping with noise-free images rather than noisy images. So 
as another widely studied challenge, image denoising is 
difficult to achieve expected results by relying on DIC neural 
networks alone, which is also confirmed by our experiments.  

Inspired by image denoising before correlation in 
traditional multi-step DIC, in this paper, we propose a new 
preprocessing method to deal with the negative effects of noise 
especially for deep learning-based DIC. As shown in Fig. 2, 
the image denoising function is separated from the neural 
network used for DIC computation. Denoising convolutional 
neural network (DnCNN) [13] block is introduced to handle 
the noise of speckle patterns. We construct speckle pattern 
dataset, SPDataset, with specific and blind Gaussian noise 
level to train DnCNN. The possibility of a further lightweight 
network structure is also explored. The proposed method 
guarantees the image quality for the DIC input, allowing the 
subsequent DIC computation network to focus more on the 
relationship between the grayscale position change and the 
deformation field, thus improving the measurement 
performance.  

The remainder of the paper is organized as follows.  
(1) The network architecture for denoising is presented. 

The generation of speckle pattern dataset, SPDataset, and the 
training strategy for DnCNN are demonstrated.  

2) The denoising performance of SPDataset-trained 
DnCNN is assessed qualitatively and quantitatively. The 
possibility of a further lightweight network structure is also 
explored.  

3) The image pairs with and without SPDataset-trained 
DnCNN denoising are fed into a deep learning-based DIC 
method, StrainNet-h, and the results of displacement fields are 
reconstructed and compared.  

II. METHODOLOGY 

In this paper, a convolutional neural network-based 
denoising block (DnCNN) is used for image preprocessing of 
deep learning-based DIC method. The trained DnCNN 
denoising block will be performed before the speckle patterns 
are fed into the DIC network, thus ensuring the quality of input 
images. The DnCNN architecture is demonstrated together 

with the training dataset and training strategy in Section II. A 
new speckle pattern dataset, SPDataset, is constructed 
specifically to enable DnCNN to acquire the feature and the 
noise of speckle patterns.  

A. DnCNN architecture  
DnCNN [13] is introduced here for DIC denoising as the 

architecture is capable of remove Gaussian noise with 
unknown variance in the images. DnCNN is well-known for 
its good performance and has been adopted as a preprocessing 
fashion for many other optical measurement techniques, 
including digital holographic interferometry [14] and positron 
emission tomography [15].  

The specific network structure is shown in Fig. 3. The input 
and output are the original speckle patterns 𝑓𝑓 captured by the 
camera and the latent clean image 𝑔𝑔, respectively. The first 
layer contains convolution and rectified linear unit (ReLU). 
Since the speckle patterns are all single-channel grayscale 
images, convolution consist of 64 filter of size 3×3×1. ReLU 
is an activation function, defined as (1).  

𝜎𝜎(𝑥𝑥) = max(𝑥𝑥, 0) (1) 
The last layer include only convolution with one filter of size 
3× 3× 64 to reconstruct the pattern from feature maps. 
Assume that the depth of DnCNN is D, layer 2~(D-1) are the 
same structure comprised of convolution (64 filters of size 3
×3×64), batch normalization and activation function 𝜎𝜎(𝑥𝑥).  

Residual learning [16] and batch normalization (BN) [17] 
are the two key characteristics of DnCNN. Residual learning 
avoids the problem of learning degradation and allows the 
depth of the network to be greatly extended. A single residual 
unit is adopted to obtain the residual image. Batch 
normalization is inserted between convolution and nonlinear 
activation. BN can mitigate the negative effects of variance 
shifts in each batch of data during training, such as training 
speed and network performance degradation.  

The loss function 𝐿𝐿(𝜔𝜔) for speckle pattern denoising is 
defined as (2).  

𝐿𝐿(𝜔𝜔) =
1

2𝑁𝑁
�‖𝜎𝜎(𝑓𝑓𝑖𝑖;𝜔𝜔) − 𝑔𝑔𝑖𝑖‖2

2
𝑁𝑁

𝑖𝑖=1

+ 𝜆𝜆‖𝜔𝜔‖2
2 (2) 

where 𝑓𝑓𝑖𝑖  and 𝑔𝑔𝑖𝑖  denoted the 𝑖𝑖𝑡𝑡ℎ  noisy image and noise-free 
image, respectively. 𝑁𝑁 is the number of image pairs in a mini 
batch. 𝜔𝜔  is the parameter that the neural network needs to 
learn. 𝜆𝜆  represents the weight decay coefficient of 𝐿𝐿2 
regularization, which contributes to avoid overfitting of the 
neural network.  

 
Figure 3. DnCNN architecture.  
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B. Speckle Pattern Dataset Generation 
The original DnCNN is trained by the MatConvNet 

package. Unlike the package containing pictures of daily life 
scenes, the speckle pattern is composed of irregular scattered 
disks and have no semantic information. Therefore, we 
construct a new synthetic speckle pattern dataset, SPDataset, 
for the neural network training.  

The images taken before and after deformation of the 
measured surface are denoted as reference image and current 
image, respectively. The relationship between the image pair 
is expressed as (3).  

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 �𝑥𝑥 + 𝐷𝐷𝑥𝑥(𝑥𝑥,𝑦𝑦),𝑦𝑦 + 𝐷𝐷𝑦𝑦(𝑥𝑥,𝑦𝑦)� (3) 
where 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟  and 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐  denote the grayscale distribution of 
reference image and that of current image. 𝐷𝐷𝑥𝑥  and 𝐷𝐷𝑦𝑦 
represent the displacement fields in the x- and y-directions.  

As suggested in [18], the simulated speckle patterns are 
yielded by (4).  

𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝒔𝒔) = �𝐼𝐼0exp�−
|𝒔𝒔 − 𝒊𝒊𝑘𝑘|2

𝑎𝑎2
�
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(4𝑏𝑏) 

where 𝒔𝒔 = (𝑥𝑥,𝑦𝑦) , and 𝒊𝒊𝑘𝑘  is a random position within the 
pattern. The peak intensity 𝐼𝐼0 =1, speckle size 𝑎𝑎 =4, total 
number of speckles 𝑆𝑆=12000 and image size (800×800 pixels) 
are employed to generate image pairs.  

It was pointed out that blindly expanding the size of the 
dataset brings only a small improvement in network 
performance [13]. Therefore, we constructed a large 
SPDataset and a small SPDataset with 400 images and only 5 
images, respectively. The performance of the networks trained 
by different size datasets was compared in Section III.  

C.  Training Strategy 
DnCNN has the ability to remove unknown levels of 

Gaussian noise. Ref.[13] employs two structures, DnCNN-S 
and DnCNN-B, with total layers of 17 and 20, respectively, to 
deal with specific and blind noise level. Since we will 
specifically discuss the effect of the network depth on the 
removal of speckle pattern noise in III.C, here a network with 
20 layers is trained separately to deal with specific and blind 
noise level.  

TABLE I. NETWORK NOMENCLATURE 

DnCNN-𝛂𝛂𝛂𝛂 Image noise Dataset size 
DnCNN-SS specific 𝜎𝜎 = 5 small 
DnCNN-SL specific 𝜎𝜎 = 5 large 
DnCNN-BS blind 𝜎𝜎 ∈ [1,9] small 
DnCNN-BL blind 𝜎𝜎 ∈ [1,9] large 

TABLE II. TRAINING PARAMETER 

Parameter Value 
Max epoch 50 

Mini batch size 128 
Patch size 50×50 

L2 regularization 1e-4 
Momentum 0.9 

Gradient threshold 0.005 

Both the large and small SPDatasets are utilized to train the 
DnCNN with 20 layers. For clarity, the networks trained for 
different functions and by different size datasets are named as 
DnCNN-αβ, where α ∈ {S, B} denotes the network trained to 
handle specific or blind noise level, and β ∈ {S, L} represents 
the network trained by small or large dataset.  

For DnCNN- Sβ , the specific standard deviation of 
Gaussian white noise was set to 𝜎𝜎 = 5 . Each image is 
randomly cropped into 256 patches and then randomly 
generated zero-mean Gaussian white noise with 𝜎𝜎 = 5, which 
means the noise is unique for each image patch.  

For DnCNN-Bβ, the number of patches per image is set to 
1280 to acquire more complex noise information. Noise with 
a standard deviation within the range 𝜎𝜎 ∈ [1,9] is added to 
each patch.  

Stochastic gradient descent (SGD) with momentum is 
utilized for training. The max epoch is 50, and the initial 
learning rate is set to 1e-1 and decays exponentially to 1e-4 
within 50 epochs. Other training parameters are shown in 
Table II.  

The training process of the networks is done in MATLAB 
(R2022a) and running on a personal computer (Intel Core i7-
10875H 2.30GHz CPU, 16GB RAM, 64bit OS, NVIDIA 
TESLA V100 GPU). It takes 3 hours and 13 hours to train 
DnCNN-SL and DnCNN-BL, respectively.  

III. RESULTS AND DISCUSSION  

The denoising performance of SPDataset-trained DnCNN 
is demonstrated qualitatively and quantitatively. Firstly, single 
images are fed into DnCNN to evaluate the denoising ability 
of the network trained on SPDataset with different sizes and 
different noise levels. Further, the possibility of simplifying 
the DnCNN architecture is discussed based on denoising 
results. Finally, image pairs (image taken before and after 
deformation) with and without denoising are fed into a deep 
learning-based DIC for displacement field reconstruction, 
confirming the necessity and effectiveness of our proposed 
method.  

A. Assessment of Denoising Results 
1) Assessment of speckle patterns  
A new speckle pattern is generated by (4a) and Gaussian 

noise with  𝜎𝜎 = 5 is then added to the pristine pattern. The 
noisy image is separately fed into pre-trained DnCNN 
(original DnCNN trained by the MatConvNet package) and 
SPDataset-trained DnCNN for comparison.  

Fig. 4 presents the different states of the speckle pattern. 
Fig. 4(a) is the result after adding Gaussian white noise with 
𝜎𝜎 = 5 to Fig. 4(d). It can be seen that the edges of speckles 
lose original smooth gradient variation and have obvious noise 
defects, which is more obvious in the magnified insets. After 
the denoising process of the pre-trained DnCNN, the noise is 
slightly moderated, but still significantly different from the 
pristine image. While the results after DnCNN-Sβ denoising 
are so much better that it is no longer possible to qualitatively 
describe their differences from the original images.  

Fig. 5 quantitatively shows local structure similarity index 
measure (SSIM) [19] map of each image state. The darker the 
color, the lower the structural similarity between the current 
position and that in the pristine image. As in Fig. 5(b), the 
overall local SSIM maps are slightly lightened after the pre-
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trained DnCNN denoising. While shown in Fig. 5(c)(d), only 
individual dark points remain in the DnCNN trained on 
SPDataset. Especially the network trained on the larger dataset, 
the denoising results in only partial defects at the image 
boundaries.  

Both Fig. 4 and Fig. 5 demonstrate that the SPDataset-
trained network can correctly remove the noise from speckle 
patterns. Moreover, the SPDataset-trained DnCNN shows 
better denoising effect for speckle patterns than the pre-trained 
one, which indicates that DnCNN successfully learn from 
SPDataset to handle the features of speckle patterns that are 
different from images with semantic information.  

2) Assessment of datasets performance 
Datasets that are given different noise ranges and different 

sizes all have an impact on the final performance of the 
network training. Next, the performance of the networks 
trained by SPDataset under different conditions are compared.  

For specific noise level and blind noise level, the training 
set is given a standard deviation (SD) of 𝜎𝜎 = 5 and 𝜎𝜎 ∈ [1,9], 
respectively. The relationship between network names and 
datasets can be referred to Table I. Taking DnCNN-BL as an 
example, ‘BL’ denotes DnCNN being trained under ‘Blind 
noise’ and ‘Large dataset’ conditions. 

To better reflect network performance, together with SSIM, 
the peak signal-to-noise ratio (PSNR) is also used to 
quantitatively measure the effect of image denoising. Larger 
PSNR value means better denoising effect.  

Table. III lists the quantitative assessment of denoising 
performance under different training conditions, where the 
best metrics at the same noise level are marked in bold in each 
row. Some observations can be made from Table III:  

1) All the bold appears in the larger dataset columns, which 
indicates the results from networks trained by large datasets 

show better performance than those trained by small ones.  
2) Network trained with the specific noise level have 

effects in the vicinity of their noise levels beyond those based 
on blind noise training. This is because the uniformity of the 
sample makes it more focused on specific level of noise 
features. It is noteworthy that despite this difference, the 
margin between DnCNN-SL and DnCNN-BL on both SSIM 
and PSNR is only 1% and 0.05%, respectively.  

3) However, blind denoising has much better processing 
performance when noise level moving away from that 
particular value, especially when the noise becomes larger. At 
the noise level of 𝜎𝜎 = 9, the performance of DnCNN-BS is 
already comparable to that of DnCNN-SL.  

Besides, training on small dataset can be done in ten 
minutes, while large training sets take tens of times longer. 
Although the large SPDataset-based networks always 
outperform the ones training on the small SPDataset, the 
performance gap from dataset sizes is all within 3%. This 
indicates that the proposed DnCNN structure can perform well 
for speckle pattern denoising even after a short time and small 
dataset training.  

B. Simplification of the DnCNN Architecture 
In addition to the datasets, the depth of CNN architecture 

is also a major factor in performance. The above experiments 
all used a neural network structure with 20 hidden layers, 
which has the possibility of parameter redundancy. Here we 
explore the impact of simplifying the network structure on 
performance. 

As shown in Fig. 3, layer 2 to layer (D-1) are the same 
structure consisting of convolution, batch normalization and 
ReLU. We set the total number of layers D from 3 to 17 in step 
of 2. Large SPDataset (400 speckle patterns) are used and each 
image is randomly cropped into 256 patches of 50×50 pixels. 

 
Figure 4. Speckle pattern and denoising results. 

(a) Noisy 𝜎𝜎 = 5, (b) Denoised by pre-trained DnCNN, (c) Denoised by DnCNN-SS, (d) Noisefree. 

 
Figure 5. Comparison of local SSIM maps. 

(a) Noisy 𝜎𝜎 = 5, (b) Denoised by pre-trained DnCNN, (c) Denoised by DnCNN-SS, (d) Denoised by DnCNN-SL. 

(d) Noisefree(c) DnCNN-SS(b) Pre-trained(a) Noisy

Noisy
Global SSIM: 0.9416

Pre-trained
Global SSIM: 0.9586

DnCNN-SS
Global SSIM: 0.9946

DnCNN-SL
Global SSIM: 0.9969

(a) (b) (c) (d)

730



  

The max epoch number is set to 20. Other training parameters 
remain the same from those in III.A.  

 
Figure 6. Performance of the network with different number of layers during 

(a) Training, (b) Denoising.  

The performance of the network with different layers 
(including layer 20) for both training and application is 
presented in Fig. 6. Shown in Fig. 6 (a), as the number of 
network layers increases, the time required for training rises, 
while the error on the validation dataset decreases rapidly at 
the beginning and starts to level off and fluctuate after the 
number of layers reaches 9.  

The denoising performance trend of the network with 
different layer numbers basically matches that of the validation 
RMSE. Both PSNR and SSIM increasing at the beginning, and 
similarly oscillating and slowly moving upward after the layer 
number reaches 9. Therefore, the network achieves a balance 
between depth and performance at a layer number of 9.  

C. Illustration of displacement fields reconstruction  
Further, the image pairs with and without denoising are fed 

into StrainNet-h [10] to obtain the displacement field. 
StrainNet-h is a fine-tuned architecture from optical flow 
neural network, which can perform the task of image 
correlation in conventional DIC. It is worth noting that the 
computational accuracy of this network itself is not within the 
scope of this paper.  

Referring to Sample 14 in DIC Challenge [20], the x-
direction displacement with a constant periodic sinusoidal 
variation (5) in size is employed as a theoretical value to 
generate the speckle image pair by (4). The theoretical 
displacement field is shown in Fig. 7(f). 

𝑢𝑢(𝑥𝑥) = −2 sin �
2𝜋𝜋(𝑥𝑥 − 20)

180
� (5) 

The displacement field errors derived from StrainNet-h are 
evaluated in terms of root-mean-square error (RMSE).  

RMSE = �
1
𝑛𝑛
�(𝒖𝒖𝑖𝑖 − 𝒖𝒖𝑡𝑡𝑡𝑡)2
𝑛𝑛

𝑖𝑖=1

(6) 

where 𝑛𝑛  represents the number of pixels in the evaluation 
region. 𝒖𝒖𝑖𝑖  and 𝒖𝒖𝑡𝑡𝑡𝑡  denote the experimental and theoretical 
values, respectively.  

Fig. 7 illustrate x-directional displacement fields derived 
from StrainNet-h. Some findings can be made in the following: 

1) By comparing Fig. 7(a) with Fig. 7(e), it can be seen that 
the computational accuracy of the noise-free image input to the 
network is much higher than that of the image with noise. This 
means that deep learning-based DICs have difficulty in 
avoiding noise defects when performing image correlation, 
which indicates that our proposed idea of adding a denoising 
module before the end-to-end neural network is imperative.  

2) As shown in Fig. 7(b), the displacement field obtained 
after pre-trained DnCNN denoising have a 5.60% 
improvement in the accuracy. This improvement is mainly 
found at the crest and trough of the sine curve. While the 
accuracy of displacement fields derived from the images 
denoised by the SPDataset-trained networks have a much 
better performance than the pre-trained model, 35.65% and 
36.98% for the small and large dataset, respectively. The result 
differences between images denoised by DnCNN- SS  and 
DnCNN-SL  (Fig. 7(c)(d)) and noisefree (Fig. 7(e)) are too 
slight to be visually noticed. The conclusion is consistent with 
the results of the comparison between the above speckle 
patterns, shown in Fig. 4 and Fig. 5.  

IV. CONCLUSION 

This paper proposes a new preprocessing method for deep 
learning-based DIC to separate the image denoising function 
from neural network-based correlation. The main 
contributions of this paper are summarized as follows:  

1) Denoising convolutional neural network (DnCNN) 
block is introduced to deal with the noise before speckle 
patterns are fed into deep learning-based DIC. The denoising  

Number of layers Number of layers

mins

(a) (b)

PSNR SSIM

TABLE III.  QUANTITATIVE EVALUATION OF IMAGES 

Noise 
level 
(SD) 

Noisy 
Denoised 

DnCNN-SS DnCNN-SL DnCNN-BS DnCNN-BL 
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

1 47.8247 0.9970 51.3461 0.9988 51.9352 0.9990 52.0611 0.9990 52.3274 0.9991 
2 42.0838 0.9892 49.7982 0.9983 50.5178 0.9987 50.1766 0.9984 50.3338 0.9987 
3 38.6412 0.9767 47.9851 0.9973 48.8550 0.9982 48.2032 0.9973 48.4453 0.9981 
4 36.1680 0.9604 46.3362 0.9961 47.3790 0.9976 46.5063 0.9960 46.9273 0.9974 
5 34.2899 0.9413 44.7662 0.9943 45.9173 0.9967 44.9730 0.9941 45.5257 0.9965 
6 32.7120 0.9193 43.3297 0.9921 44.6054 0.9955 43.6496 0.9921 44.3315 0.9954 
7 31.4259 0.8961 42.0560 0.9895 43.5009 0.9941 42.6137 0.9901 43.3796 0.9944 
8 30.2769 0.8709 40.9212 0.9852 42.1806 0.9916 41.4337 0.9874 42.3362 0.9928 
9 29.2781 0.8449 39.0448 0.9800 40.8065 0.9886 40.3961 0.9846 41.3654 0.9913 

SD: Standard Deviation 
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Figure 7. X-directional displacement fields obtained by StrainNet-h  

based on speckle patterns after different processing.  

performance of the network is qualitatively and quantitatively 
proven to be effective.  

2) A speckle pattern dataset, SPDataset, is constructed to 
enable the neural network to be trained on the speckle pattern 
features and noise. Experiments show that the displacement 
field derived after SPDataset-trained DnCNN denoising can 
achieve a 36.98% improvement in the accuracy, while only 
5.60% for pre-trained DnCNN.  

3) The performance of networks trained on SPDatasets of 
different sizes and different noise levels is compared. The 
simplification of the DnCNN architecture is explored. The 
depth and performance of the network reach a good 
compromise at a layer number of 9.  

Enhancing the quality of image inputs for DIC holds 
significant implications for the mechatronics domain. The 
improved accuracy and reliability of DIC measurements 
enable engineers and researchers to gain deeper insights into 
the mechanical behavior of robotics systems, facilitating better 
design optimization, structural analysis, and performance 
evaluation. It is worth noting that while the preprocessing of 
deep learning-based DIC explored in this paper is mainly 
embodied in denoising, defects such as motion blur and 

ambient light changes are all worth trying in the preprocessing 
stage.  
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