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Abstract— This paper investigates the design of optimal
inputs for dynamic system identification. Specifically, this paper
concerns the perturbation design for system identification
experiments where target human systems are perturbed by
mechanical inputs produced by an active device. Although con-
ventional perturbation design criteria are generally applicable,
including the scenario described above, problems arise due to
the dynamics of the active device. A low-bandwidth active device
may distort the input signal and thereby void the optimality
of the input. To address this issue, the paper formulates an
optimization problem for optimal input design that explicitly
incorporates the active device dynamics. The cost function is the
determinant of a modified covariance lower bound that takes
the active device dynamics into consideration. The proposed
method is demonstrated with an identification of a linear
dynamics model simulating human arm impedance. Simulation
results show that, compared with a standard optimal input
and an input with a flat spectrum, the proposed optimal input
with active device compensation achieved a smaller parameter
covariance. Furthermore, the proposed optimization problem
suggests that the optimal covariance lower bound can be
achieved by active devices with different dynamics properties.
This allows the control design of the active device to satisfy a
wide variety of requirements without sacrificing its ability to
perform system identification.

I. INTRODUCTION

Estimation of parametric models from experimental data
is a common practice in science and engineering. While the
selection of model structures and estimation algorithms are
crucial, experimental design also plays an important role
in determining the estimation accuracy. A mathematical ap-
proach to optimal experimental design for static models was
surveyed in [1]. The technique was then extended to system
identification of dynamic systems [2]–[5]. Recent works have
been focusing on describing the input design problem as a
convex optimization problem with modified cost functions
and added constraints [6], [7]. By doing so, non-standard cost
functions and constraints with practical considerations can be
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incorporated into the optimal experimental design problem,
which can be solved efficiently using standard toolboxes and
optimization solvers [8], [9].

The concept of optimal experimental design is to achieve
the best estimation accuracy given a prescribed amount of
resources. For dynamic system identification, a limitation
on experimental resources may come from an allowable
downtime of a process plant, or the maximum excitation
levels of an active device. In human system identification,
both the duration and excitation level must be carefully
considered. In this context, the optimal experimental design
seeks for power-limited input signals to perturb the target
dynamic system such that the resulting parameter covariance
is minimized. This is based on the fact that, when an
unbiased estimator is used, the covariance matrix is lower
bounded by the inverse of the Fisher information matrix [10].
Since the Fisher information matrix is a function of the input
signal, it is possible to design inputs that maximize the Fisher
information matrix to achieve the smallest covariance.

Designing optimal input signals requires some prior
knowledge about the target system. That is to say, the
optimality of the designed input is with respect to the current
knowledge of the system. If such information is not available,
the parameter estimation can be performed in an iterative
process [6]. It is recommended to use an input signal with
a flat spectrum to obtain an initial model. Then, based on
this initial guess, an optimal input can be designed. The
subsequent optimal inputs can be obtained by repeating the
same process until a certain confidence level is reached.
The nature of the optimal input design makes it suitable
for identifying subtle changes in the target system, such as
the changes in the robot dynamics caused by operations in
the field, or changes in the human sensorimotor system due
to intervention. This paper focuses on the design of optimal
inputs for linear dynamic systems and the associated physical
realization problem.

II. PROBLEM STATEMENT

Modeling of the human sensorimotor system can benefit
from optimal input design given its success in identify-
ing dynamic systems in other settings [11]–[13]. While
the methodology of designing optimal inputs is generally
applicable to any dynamic system, expected performances
may not be always achieved in human system identification
due to the involvement of active devices for physical input
realization [14]. Typically, an active device used in human
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Fig. 1. Identification of human joint dynamics using a mechanical platform.
A random mechanical input is applied to perturb the human system.

experiments is a manipulandum on the scale of human
musculoskeletal systems. For example, Fig. 1 illustrates an
experiment where a human arm is perturbed by a mechanical
perturbation in order to estimate the arm impedance. Such
devices often have limited bandwidths and act as a low-pass
filter on optimally designed perturbations. Since the optimal
inputs are designed based on either the correlation function
or spectrum, this filtering effect degrades the input quality,
leading to worse-than-expected performance.

In order to achieve the expected system identification
performance, the physical realization of the optimal input
must take into consideration of the active device dynamics.
The authors have previously studied the physical realization
of flat-spectrum perturbations [14], which is recommended
to identify fully unknown target systems. Once an initial
guess of the target system is obtained, the optimal input
design can be performed. Similar to flat spectrum inputs,
producing the optimal input using an actuated mechanical
system is subject to degraded quality. This paper addresses
the physical realization of the optimal input by incorporating
device dynamics into the optimization problem formulation.

The standard optimal input in the frequency domain is the
solution of a convex optimization problem that maximizes
the Fisher information matrix. To handle the active device
dynamics, a modified version of the Fisher information
matrix is proposed as the new cost function of the opti-
mization problem. The resulting optimal inputs already have
the device dynamics compensated so that accurate system
identification can be achieved.

III. METHODS

A. Fisher Information matrix of a linear SISO system

The proposed optimal input design improves the parameter
estimation accuracy by optimally redistributing the power
of the input signal that maximizes the Fisher information
matrix. For a family of polynomial model structures, the
information matrix that describes the amount of information
captured by an input signal can be derived.

Consider a polynomial model structure in the form

y(t) = G1(s)x(t− τ) +G2(s)e(t)

=
B(s)

A(s)
x(t− τ) +

D(s)

C(s)
e(t)

(1)

where x(t) and y(t) are the system input and output, e(t) is
the Gaussian white noise with unit variance, and τ is a known

input delay. Suppose that the plant model and the error model
are independently parameterized, G1(s) and G2(s) can be
defined by

A(s) = 1 + a1s+ ...+ ans
n (2)

B(s) = b0 + b1s+ ...+ bmsm (3)
C(s) = 1 + c1s+ ...+ cqs

q (4)
D(s) = d0 + d1s+ ...+ drs

r (5)

with m ≤ n and r ≤ q. The unknown model parameters is
denoted by

θ = [a1, ..., an, b0, ...bm, c1, ...cq, d0, ...dr]
T ∈ ℜp (6)

where p = n+m+q+r+2. If the output noise is Gaussian,
the model reduces to

y(t) =
B(s)

A(s)
x(t− τ) + d0e(t) (7)

and the number of unknown parameters becomes p = n +
m+ 1.

The Fisher information matrix per unit time of (1) is given
by [2]

M̄θ =
1

2π

∫ ∞

−∞

[
∂G1(jω)

∂θ

]
[G−1

2 (jω)][G−1
2 (jω)]∗[

∂G1(jω)

∂θ

]∗
Φx(ω)dω + M̄c

(8)

where M̄θ is a p-by-p matrix, Φx(ω) is the input spectrum,
and the symbol ∗ denotes the complex conjugate transpose.
It has been shown that M̄c is not a function of the input, and
therefore is a constant with respect to any input design [2].
The integral term in (8) can be simplified as

M̄ = Re
∫ ∞

0

h(jω)h∗(jω)Φx(ω)dω (9)

where h(s) is a p-vector with the i-th element

hi(s) =

{
−esτ CB

DA2 (s)s
i, i = 1, .., n

esτ C
DA (s)s(i−n−1), i = 1 + n, .., p

(10)

B. Convex optimization of the Information Matrix

According to the Cramer-Rao inequality, any unbiased
estimator θ̂ of θ results in a covariance matrix that satisfies

cov θ̂ ≤ M−1
θ . (11)

If a maximum likelihood estimator is used (or other asymp-
totically efficient estimators), M−1

θ can be used as an ap-
proximation for cov θ̂ given long enough data [3]. From (9),
the information matrix is determined by the input Φx(ω).
Therefore, the problem of improving the parameter estima-
tion accuracy can be converted into the problem of designing
Φx(ω) such that M̄−1

θ , or equivalently M̄−1, is small.
An optimal information matrix is traditionally quantified

by the D-, A-, or E-optimality as

D-optimal min− log det M̄ (12)

A-optimal min traceM̄−1 (13)

E-optimal minλmaxM̄
−1 (14)
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The D-optimality is adopted here because the corresponding
optimization problem is invariant to a nonsingular linear
transformation of the model parameters. Also note that the
D-optimal criteria as well as the other two are convex in
input spectrum Φx(ω), so an efficient optimization solver
can be used for each of the optimality criteria.

By discretizing the input spectrum into a line spectrum
with Q components,

Φx(ω) =

Q∑
i=1

λiδ(ω − ωi), (15)

the standard power-constrained input optimization problem
can be described as

min
λi

. − log det

[
Re

Q∑
i=1

λih(jωi)h
∗(jωi)

]

s.t.
Q∑
i=1

λi = 1

λi ≥ 0.

(16)

Selecting a small value for Q reduces the parameter space,
however, to ensure that the information matrix is nonsingular,
Q must be greater than or equal to p. The optimal cost corre-
sponds to the smallest achievable M̄−1. A globally optimal
solution is guaranteed because it is a convex optimization
problem.

C. Input signal synthesis

The optimal input design returned by (16) specifies a
power distribution in the frequency domain. To generate
physical perturbations, time-domain realization of the opti-
mal spectrum is required. A standard approach is to construct
a multisine signal as

r(t) =

Q∑
i=1

√
2λi sin (ωit+ ϕi). (17)

The values of λi are determined by the input optimization,
but ϕi remains to be determined. Using 0 phases at all
frequencies will likely produce a signal with a large peak
amplitude that is not desirable for many system identification
experiments. Instead, Schroeder phase [15] defined as ϕi =
−i(i− 1)π/Q may be used. If ωi’s are harmonically related
with ω1 being the fundamental frequency, r(t) is periodic
and has a period of (2π/ω1) s.

D. Optimal input design with dynamics compensation

The standard input design problem in (16) returns a power
distribution Φx(ω) which can be synthesized into a reference
signal in the time domain using (17). In conventional sys-
tem identification, this signal could be an electrical signal
generated using an arbitrary waveform generator or a digital
signal stored in a digital computer. In either case, r(t) can be
generated without significant distortions. On the other hand,
when r(t) is used as a reference to generate mechanical
perturbations, the signal must go through a process shown
in Fig. 2. The actual perturbation acting on the target system

𝐺𝑑(𝑠) 𝑃(𝑠)

𝑣
𝑦

𝑦𝑚𝑟
𝑥 ++ 3.5

1

13.333-3.5 = 9.8333
7.5 – 1 = 6.5

Fig. 2. System identification using a mechanical perturbation generated
with an active device. r is the optimized input signal. x is the mechanical
perturbation generated by an active device Gd(s). P (s) is the target system
with response y when subject to mechanical perturbation x. The output
measurement ym has an additive noise v.

P (s) is x(t) which differs from r(t) due to the device
dynamics Gd(s).

To compensate for the dynamics of the mechanical device
used to generate the perturbation, the modified problem is
proposed

min
λ′
i

. − log det

[
Re

Q∑
i=1

λ′
i|Gd(jωi)|2h(jωi)h

∗(jωi)

]

s.t.
Q∑
i=1

λ′
i|Gd(jωi)|2 = 1

λ′
i ≥ 0.

(18)
λ′
i specifies the power distribution of the optimal input

that compensates for the device dynamics Gd(s). For any
mechanical device, |Gd(jω)| > 0 at all frequencies. The
time-domain input signal can be realized similarly using (17).

E. Impedance parameter estimation

A frequency domain approach is adopted to estimate the
transfer function of the target system P (s)

min
P (s)

Nf∑
k=1

∣∣∣∣P (ωk)−
Y (ωk)

X(ωk)

∣∣∣∣2 (19)

where X(ωk) and Y (ωk) are the discrete Fourier transform
of the input and output measurements.

IV. RESULTS

A. Simulation setup

The performance of the proposed optimal input design
is validated by simulation where a human arm impedance
model is identified. It is well-known that under consis-
tent conditions, the human arm behaves as a mass-spring-
damper system Zarm = ms2 + bs + k [16]. This ideal
arm impedance model is an improper transfer function and
its magnitude response goes to infinity. A more realistic
representation is Zarm = (ms2+bs+k)

L(s) with a monic low-pass
filter 1/L(s) of order greater or equal to 2. In this simulation,
1/L(s) = 1/((1/ω2

n)s
2+(2ζ/ωn)s+1) is used. Impedance

parameters used in the simulation are m = 2, b = 30, k =
400, ζ = 0.8, ωn = 40. The Bode diagram of the filtered arm
impedance model is shown in Fig. 3. The m, b and k values
are from [16] which are a reasonable approximation of a
typical arm impedance. The dynamics of the active device
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Gd(s) =
198s+528

0.02252s3+11.66s2+396.3s+528 is based on the motion
platform developed by the authors [14], [17].

The simulation follows the block diagram shown in Fig. 2.
r is the input reference used to generate physical perturbation
x with an active device Gd(s). y is the response of the
target system subject to x. Since the system output in
Fig. 2 represents the interaction force in this scenario, its
measurement via a force sensor is likely to be noisy. Thus,
a Gaussian white noise v with a variance of 0.1 is added
to the output measurement. On the other hand, the position
measurement, which is the input to the human arm model,
is typically acquired by an encoder that is not susceptible to
random noise.

B. Comparison of input signals

The performance of three input signals (r in Fig. 2) were
compared. They are

• ruc: optimal input without device dynamics compensa-
tion designed with (16).

• rflat: input with a flat spectrum that satisfy the power
constraint in (16).

• rc: optimal input with device dynamics compensation
designed with (18).

The spectra of ruc, rflat, and rc are defined over a discrete
set of frequencies within the range of [0.25, 30] rad/s with a
0.25 rad/s increment. Their time domain realizations shown
in Fig. 4 are obtained with (17). The spectra of these three
input signals are shown in Fig. 5. The flat-spectrum input is
noticeable by its even power distribution. This spectrum can
be interpreted as an equal effort to probe different modes
of the target systems. In contrast, the optimal inputs have
regions with high power concentration. In the case of arm
impedance identification, power is optimally allocated to
improve the estimation of stiffness (low frequency), damping
(corner frequency), and inertia (high frequency). Notice that
the spectra of the rc and ruc have different shapes. The
compensation for the device dynamics is therefore more than
a constant scaling.

C. Parameter Estimation

For each input, simulation and parameter estimation were
performed 50 times. Each simulation of the system in Fig.
2 yields an input-output dataset comprised of the noise-free
position input x and the noisy force output ym. The arm
impedance model was estimated by (19) using the input-
output data. The transfer function estimation includes the
estimation of the low-pass filter L(s). Equivalent m, b,
and k parameters are recovered by dividing the numerator
coefficients by the constant term of the denominator. The
values of mean and standard deviations of m, b, and k are
listed in Table I. The covariance matrices of the three tested

TABLE I
ARM IMPEDANCE PARAMETER ESTIMATION.

Uncompensated Flat Spectrum Compensated
m 2.0153 2.0108 2.0017

(0.1328) (0.1209) (0.0679)
b 30.0471 29.9910 30.0101

(1.0462) (0.9691) (0.4972)
k 398.4796 398.7332 398.8890

(12.3618) (9.5681) (6.9748)
standard deviation are in parentheses

TABLE II
PARAMETER ESTIMATION COVARIANCE.

Uncompensated Flat Spectrum Compensated
det cov 1.6891 0.5307 0.0311
Tr cov 153.9267 92.5027 48.9001

λmaxcov 152.8992 91.7281 48.6669

inputs are

covuc =

 0.0016 −0.0051 0.3529
−0.0051 0.2978 −0.8139
0.3529 −0.8139 148.7982


covflat =

 0.0008 −0.0020 0.1778
−0.0020 0.1897 −0.3494
0.1778 −0.3494 80.4743


covc =

 0.0003 −0.0009 0.0894
−0.0009 0.0593 −0.1130
0.0894 −0.1130 41.4333

 .

The determinant, trace, and maximum eigenvalue of the
covariance matrices are summarized in Table II.

Since the transfer function estimator in (19) is unbiased,
all three types of input signals yielded accurate mean values
of m, b, and k. However, the standard deviations are signifi-
cantly different. For each impedance parameter, the standard
deviation using the proposed optimal input (compensated)
is about half of that using the uncompensated input. The
standard deviations obtained by the flat-spectrum input are
somewhere in between.

The mean, standard deviation, and covariance of the
parameter estimation can be visualized in Fig. 6-8. The
distribution of the 50 parameter estimations is shown, and
the ellipses represent the 95% confidence regions. When
all three parameters are considered, the confidence region
becomes an ellipsoid. The determinant, trace, and maximum
eigenvalue of a covariance matrix correspond to the volume,
sum of axes, and the major axis of the ellipsoid [1]. Thus,
the size of the ellipses reflects the relative magnitude of the
covariance listed in Table II. Overall, the optimal input with
compensation yields the most accurate parameter estimation,
followed by the flat-spectrum input and the uncompensated
optimal inputs. Note that this observation is specific to
the arm impedance model and device dynamics used in
the simulation. If the frequency components that the target
system is sensitive to are not attenuated significantly by the
device dynamics, using the uncompensated input may yield
better performance than using the flat-spectrum input.
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V. DISCUSSION

A. Active device dynamics

The optimization problem (18) computes an optimal input
given the dynamics of a device. When the dynamics of
a different device is provided, a different optimal input is
generated. Theoretically, an optimal solution exists for any
device dynamics that has a non-zero frequency response
over the frequency range of interest. However, it is also
important to investigate whether the same performance,
quantified by the cost function of the optimization problem,
can be achieved by different devices. The simulation results
in Fig. 9 show that this is possible. Figure 9 presents
the two combinations of device dynamics and input power
distributions that achieved the same optimal information
matrix. This result is significant because it suggests that
optimal estimation accuracy may be achieved with different
devices as long as the input signals are designed accordingly.
Similarly, it also suggests that for a specific mechanical
platform, the controller can be designed to satisfy additional
requirements without sacrificing its capability of performing
system identification. An example would be to implement a
controller that prioritizes safe and natural physical human-
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P
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Fig. 5. Spectra of the input signals
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Fig. 6. Mass and damping parameter covariance.

robot interaction instead of achieving a high bandwidth.

B. Future works

Actuator command constraints: When an optimal input is
designed to compensate for the device dynamics, the input
magnitude may increase, especially when the device behaves
as a low-pass filter. Larger input magnitudes will require
larger actuator commands, which can potentially exceed the
actuator capacity. To avoid excessive compensation, con-
straints on actuator command can be added to (18).

Robustness analysis: The optimal input design relies on
prior knowledge of the target system. In practice, perfect
knowledge is not available (system identification would
not be needed otherwise); the improvement in estimation
accuracy reported in Section IV may or may not be achieved.
To understand how the estimation accuracy depends on prior
knowledge, the robustness of the optimal input design with
respect to uncertainty and variation in the model parameter
should be analyzed.

Controller design for robustness improvement: The device
dynamics included in the cost function of (18) has been
treated as a source of performance degradation that needs
to be compensated. However, it can also be considered as
an extra degree of freedom, in addition to the input power
distribution, to improve the optimal cost of (18) and therefore
the estimation accuracy. Following the robustness analysis
described above, one can use the frequency response of the

952



1.6 1.8 2 2.2 2.4

m

360

380

400

420

440
k

no compensation

flat spectrum

with compensation

Fig. 7. Mass and stiffness parameter covariance

27 28 29 30 31 32 33

b

360

380

400

420

440

k

no compensation

flat spectrum

with compensation

Fig. 8. Damping and stiffness parameter covariance

device as a weighting function to shape the sensitivity of the
h(jωi)h

∗(jωi) term with respect to parameter uncertainty.

VI. CONCLUSION

This paper presented an optimal input design method for
linear dynamic system identification using mechanical per-
turbations. The proposed method incorporated the dynamics
of the active device in the design process so that the physical
realization of the designed input will not cause degraded
performance. The simulation showed that the proposed input
design has improved estimation accuracy compared with
the conventional optimal input and flat-spectrum input. In
addition, the proposed input design formulation suggested
that the same system identification performance can po-
tentially be achieved by devices with different dynamics.
This allows the active device to satisfy other control design
requirements without sacrificing its capability of performing
system identification.
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