
Deep Neural Network Design for Improving
Stability and Transient Behavior in Impedance

Control Applications
Jonathon E. Slightam

Unmanned Systems & Autonomy R&D
Sandia National Laboratories

Albuquerque, NM, USA

Antonio D. Griego
Department of Computer Science

University of New Mexico
Albuquerque, NM, USA

Abstract—Robot manipulation of the environment often uses
force feedback control approaches such as impedance control.
Impedance controllers can be designed to be passive and work
well while coupled to a variety of dynamic environments. How-
ever, in the presence of a high gear ratio and compliance in
manipulator links, non-passive system properties may result in
force feedback instabilities when coupled to certain environments.
This necessitates an approach that ensures stability when using
impedance control methods to interact with a wide range of
environments. We propose a method for improving stability and
steady-state convergence of an impedance controller by using
a deep neural network to map a damping impedance control
parameter. In this paper, a dynamic model and impedance
controlled simulated system are presented and used for analyzing
the coupled dynamic behavior in worst case environments. This
simulation environment is used for Nyquist analysis and closed-
loop stability analysis to algorithmically determine updated
impedance damping parameters that secures stability and desired
performance. The deep neural network inputs utilized present
impedance control parameters and environmental dynamic prop-
erties to determine an updated value of damping that improves
performance. In a data set of 10,000 combinations of control
parameters and environmental dynamics, 20.3% of all the cases
result in instability or do not meet convergence criterion. Our
deep neural network improves this and reduces instabilities and
failed control performance to 2.29%. The design of the network
architecture to achieve this improvement is presented and com-
pared to other architectures with their respective performances.

I. INTRODUCTION

Guaranteeing stability is a core technical challenge for
robot manipulation in unstructured environments. Of particular
interest, is the ability of a robot manipulator to rapidly
attain stability while performing a manipulation task with an
environment of yet to be determined dynamic properties.

This work was supported by Laboratory Directed Research and Develop-
ment program at Sandia National Laboratories. Sandia National Laboratories
is a multi-mission laboratory managed and operated by National Technology
& Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of
Honeywell International, Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA000352. This paper
describes objective technical results and analysis. Any subjective views or
opinions that might be expressed in the paper do not necessarily represent the
views of the U.S. Department of Energy or the United States Government.
[emails: jslight@sandia.gov, deano505@unm.edu]

Early manipulators were directly controlled by human oper-
ators. For example, Goertz developed manipulators to facilitate
interactions with dangerous radioactive materials for labora-
tory work [1]. These systems maintained stability due to the
direct control of the human operators coupled with sensors in
the manipulators that provided force reflection.

Eventually, control systems were developed for robotic arms
that made use of computers in order to enable automatic
control without human intervention. Many different types of
force feedback control schemes exist in the literature including
pure force control, impedance control, admittance control,
hybrid position-force control, passive stiffness control with
impedance control, and others [2]–[4].

Of primary concern with control schemes like impedance
control is that the environment being interacted with needs
to be precisely defined and known in advance of any ma-
nipulation task. In addition to this concern, many lightweight
mobile manipulators have flexibility in links and high gear
ratios which may result in non-passive behavior when im-
plementing impedance control. With on-line system identi-
fication of the environment, it is possible to adapt to the
environment. This motivates using prior knowledge of closed-
loop coupled system performance to define new system pa-
rameters when the environment properties are identified. This
paper presents a machine learning approach that updates a
dissipative impedance control parameter (damping) to improve
performance. The paper’s objective is to demonstrate the
feasibility of using neural networks as a tool for mapping
control parameters that will attain desired control performance
for contact rich manipulation tasks.

II. BACKGROUND

Previous work has been established using non-machine
learning methods for learning impedance control param-
eters. Kim proposed a recursive least-square filter-based
episodic natural actor-critic algorithm in order to find opti-
mal impedance control parameters [5]. Arimoto presented a
physical interpretation of practice-based learning that steadily
learns a desired task by monotonously increasing the grade
of impedance matching pertaining to the dynamics of the

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

U.S. Government work not protected by
U.S. copyright

1336



robot task with controller dynamics [6] . Cheah introduced a
method for learning impedance control for robot manipulators
[7]. Unlike other approaches, Cheah’s method is implemented
without the need to switch the learning controller between non-
contact and contact tasks. Wang presented an iterative learning
control law for the impedance control of robotic manipulators
[8]. This method does not require a reference trajectory for
training and instead the performance is determined by a target
impedance.

This foundational work demonstrates the effectiveness of
impedance control and various novel techniques for learning
impedance control parameters. However, most of these ap-
proaches are brittle in the sense that they focus on teaching
one specific task or interaction to the controller and they do not
generalize to new environments without completely retraining
the controller for each new scenario. It is the hope that this
work can build off the ideas of these methods and develop
an approach to generalize a way to adapt impedance control
parameters for stability no matter what environment a robot
may interact with.

In addition to traditional techniques described previously,
there has also been a lot of work in using machine learning
techniques to learn impedance control parameters. Tsuji devel-
oped a method to use an array of neural networks to regulate
the impedance parameters of a manipulator’s end-effector
while identifying environmental characteristics through on-line
learning [9]. Jung proposes a method using neural networks
to compensate for uncertainties in the robot model by using a
novel error signal for the neural network training [10]. Katic
presents an application of connectionist structures for fast
and robust online learning of internal robot dynamic relations
used as part of impedance control strategies in the case of
robot contact tasks [11]. Cohen presents an evaluation of the
associative search network (ASN) learning scheme which is a
stochastic scheme that uses a single scalar value as a measure
of the system performance [12].

Previous work using machine learning methods has pro-
vided solid evidence that neural networks can be applied effec-
tively to solve impedance control parameter learning problems.
This work has either focused on using neural networks to
train an actuator on learning specific tasks or focuses on using
online learning methods.

A. Contributions

This paper presents a supervised machine learning method
(neural networks) that guarantees stability using a passivity
approach with additional transient criterion. In our proposed
approach, a damping parameter in an impedance controller is
mapped to meet this criterion as a function of current control
parameters and estimated environment stiffness and mass. This
approach is applied to a simulated 1-degree-of-freedom (DOF)
model utilizing simple impedance control. A function fitting
network and deep neural network are created using Matlab’s
Deep Learning Toolbox and the performance of these different
neural network architectures are compared with a before and
after use case scenario in simulation.

III. MODELING

In this section, we present a single DOF robot actuator and
link model that we used in data generation and simulations
with closed-loop impedance control.

A. System Model Dynamics

A high level diagram of a single DOF robot joint is
illustrated in Fig. 1.

Fig. 1. High level representation of a robot arm segment as a 1-DOF robot
actuator.

As described in the introduction, high gear train ratios
and light-weight structures that introduce compliance in the
robot links may potentially lead to non-passive properties and
instability when coupled to certain environments. This paper
considers systems with these properties.

A model of the single DOF robot actuator and link system
is illustrated in Fig. 2.

Fig. 2. Model diagram for a 1-DOF robot arm actuator.

In Fig. 2, θ1 is the angle of the motor rotor, θ2 is the output
angle of the gearbox model, θ3 is the angle of the robot link,
L is the length of the output link, Tin is the input torque, b1 is
the viscous friction coefficient of the motor model, J1 is the
motor rotor inertia, N1 and N2 are the number of teeth on the
input and output gears, respectively, b3 is the viscous friction
coefficient of the output shaft, k3 is the combined angular
stiffness of the output shaft and link, J3 is the inertia of the
output link, and Tload is the external torque load on the robot
link. The values of system parameters are defined in Table I.

1337



The resulting equations of motion for the motor and gear
train model in Fig. 2 are derived using Newton’s second law
and result in Eq. 1 for motion at θ2

θ̈2 =

(
N1

J1N2

)
Tin −

1

J1

(
N1

N2

)2

T2 −
b1θ̇2
J1

, (1)

where Eq. 1 is a consolidated form with thorough derivations
shown in [13]. The output motion of θ3 is defined as Eq. 2,

θ̈3 =
Tload

J3
− b3

J3

(
θ̇3 − θ̇2

)
− k3

J3
(θ3 − θ2) . (2)

Eq. 1 can be simplified by using the relation, T2 = b3(θ̇2−
θ̇3) + k3(θ2 − θ3). Thus, when substituting this relationship
and simplifying we have Eq. 3,

θ̈2 =
TinN1

J1N2
− b1θ̇2

J1
−

1

J1

(
N1

N2

)2 [
b3

(
θ̇2 − θ̇3

)
+ k3 (θ2 − θ3)

]
,

(3)

where the resulting output translation is simply: x = θ3L. The
equations of motion can be put into state-space form as

ẋ = Ax+Bu, (4)

where u is the control input vector. Eq. 4 can be translated to
the S-domain in Matlab and be used with the connect function
to synthesize the desired closed-loop impedance controller
with the model.

B. Control System

A simple impedance control law was implemented for the
1-DOF dynamic model, where the positional error is defined
by Eq. 5

e = xref − x, (5)

with xref defined as the reference or desired position. The
error can be used with the emulated stiffness, Ke, and when
differentiated can be used with the emulated damping, Be, and
emulated inertia, Me, along with the desired and actual forces
on the actuation system, giving

u = FD + Fload +Meë+Beė+Kee. (6)

A proportional-derivative controller is then wrapped around
the desired impedance behavior of the actuation system, de-
fined by Eq. 7.

Tin = Kpu+Kdu̇ (7)

The dynamic system and control parameters are listed in Table
I, which includes the desired possible ranges of impedance
parameters.

TABLE I
SYSTEM PARAMETERS

Parameter Value
J1 0.001 [kg −m2]
B1 1 [N −m− s/rad]
N1 1 [#]
N2 100 [#]
B3 0.01 [N −m/rad]
K3 5000 [N −m/rad
J3 0.25 [kg −m2]
Me (0.01 : 1 : 5) [kg]
Be 2

√
MeKe [N − s/m]

Ke (31.25 : 125 : 625) [N/m]
Kp 100
Kd 1.0

C. Simulated Validation and Passivity Analysis

The model and control system were validated for a number
of system parameters. Fig. 3 illustrates the ability of the
closed-loop impedance controller to track desired response
from a resulting step input force when Me = 1, Be = 22.4,
and Ke = 125.

Fig. 3. Step force input response validation of model and controller. The blue
solid line indicates the desired response as a result of a step input force and
the red dashed line is the simulated response due to a step input force.

Fig. 3 indicates that the control parameters for the
impedance controller provide sufficient performance to achieve
the desired second-order impedance. However, from an anal-
ysis perspective and for the desired impedance parameters
chosen in the case of Fig. 3, instabilities may arise when the
system is coupled with a certain environment if the system is
non-passive. By definition, a system’s impedance is passive if
all the real components of the impedance are greater than or
equal to zero as defined by Eq. 8.

Re(Y (jω)) ≥ 0 and Re(Z(jω)) ≥ 0, (8)

where Y (jω) is the system’s admittance and Z(jω) is the
system’s impedance. By looking at the Nyquist plot of the de-
sired impedance and the simulated model and control system’s

1338



impedance we can determine if the simulated control system
is in fact passive. The Nyquist plot is shown in Fig. 4.

Fig. 4. Nyquist plot of desired impedance (solid blue line) and the impedance
of the simulated dynamics and control system (red dashed line).

Fig. 4 identifies that our controlled system is non-passive
and may result in instability when coupled to certain en-
vironments. This non-passivity is likely due to higher gear
train ratios and flexibility in the output link. For the entire
range of desired impedance parameters only 8% result in
the system being passive. However, when decreasing drive
train reduction to N = 10 and the output link stiffness to
K = 500, 000N−m/rad, 72% of the parameter combinations
in the data set result in passivity. This suggests that many
lightweight, high gear reduction drive robot arms may have
difficulty in ensuring passivity and subsequently stability when
coupled to the environment.

IV. STABILITY ANALYSIS

Due to non-passivity of the system, it is important to
consider the analysis of coupled stability with the environment.
In this paper, we implement methods discussed in [14]–[16].
We consider the worst case scenario in our analysis, i.e. a
mass-spring model of the environment. Fig. 5 illustrates the
different block diagrams for the closed-loop and open-loop
transfer functions included in the analysis.

In Fig. 5(a), the block diagram of the closed-loop impedance
can be represented as Eq. 9.

G(s)CL =
Y (s)sysZ(s)env

1 + Y (s)sysZ(s)env
, (9)

where the subscript env denotes the environment that is
comprised of the environment mass, Menv , and environment
stiffness, Kenv . Eq. 9 can be looked at in the open-loop form
to check for stability as shown in Fig. 5(b). The open-loop
form of the coupled system is defined by Eq. 10.

G(s)OL = Y (s)sysZ(s)env (10)

Fig. 5. Block diagrams for (a) closed-loop admittance and impedance of
system and environment, (b) open-loop admittance and impedance of the
system and environment, and (c) closed loop coupling of position-force of
the system and environment.

where Eq. 10 can be used to identify instability of the
coupled system by identifying if the critical point is encircled.
The closed-loop coupled system can also be looked at in
the position-force domain to identify marginal stability and
additional controller transient constraints, e.g., settling time,
etc. This closed-loop formulation as described in Fig. 5(c) is
defined as Eq. 11.

G(s)CLp =
G(s)sys(1/G(s)env)

1 +G(s)sys(1/G(s)env)
(11)

V. NEURAL NETWORK DESIGN

In the neural network design, we aim to use the theoretical
foundations in Fig. 5 and Eqs. 9-11 to suggest improved
control parameters algorithmically and embed this analysis
and ensured improvement in coupled control. We consider two
different types of neural networks in Matlab’s Deep Learning
Toolbox: function fitting neural networks (FITNET) and deep
learning networks (DL Networks), also referred to as DNNs
herein. This section introduces the two types of networks
and how we approached solving this problem with machine
learning.

A. Function Fitting Neural Network

The function fitting neural network (FITNET) is a standard
regression/function fitting neural network architecture avail-
able in Matlab. FITNET allows the user to completely decide
the size and structure of the network. This includes the number
of hidden layers and the number of neurons in each hidden
layer. Different variations in number of neurons per layer
and number of layers were tested to see which configuration
produced the best training results. We trained and tested 1,

1339



2, 4, 8, and 12 hidden layers with different combinations of
neurons per layer, which included 1, 10, 100, 500, and 1000
neurons per hidden layer.

The benefits of this type of network over the Deep Learning
Network is that the speed of training is generally faster with
this system.

B. Deep Neural Network

The deep learning network or DNN is the other neural
network that was tested in this work. Just as FITNET pro-
vided many variables and settings to adjust, the DL Network
provides more flexibility and control than FITNET. The DL
Network tool allows each individual layer in the network to
be customized and adjusted. While this feature is available
to FITNET, the ability to do so with the DL Network is
significantly more streamlined and easier to use.

Each hidden layer was designed to be fully connected and
the ReLu activation function is used between each layer.
The same number of layers and neurons per layer were
used as FITNET in order to provide a direct comparison of
performance between the two neural network structures.

While extremely flexible, this comes at the cost of run time.
This network typically takes more time to train than FITNET.

C. Data Generation and Problem Setup

The data set generation uses a combination of Eqs. 9-11 to
analyze the simplified simulated system when it is coupled to
a sweep of mass-spring environments while using a variety of
different desired stiffness or inertia values in the controller,
where the range of these desired impedance parameter values
and environment values are in the algorithm described in 1. In
algorithm 1, we incrementally adjust the damping parameter
of the impedance controller to help ensure stability, which is
then used for the training data set.

The core algorithm for training data generation can be
described in four distinct steps. First, the ranges of values for
the impedance controller and the environment being analyzed
are generated including the inertial elements, stiffness values,
and damping. Three sets of values are generated for Be, which
is the desired output of the neural network used in training:
Be−MIN which is calculated to be the critical damping for
the robot system, Be−MAX which will be the maximum stable
damping calculated within a defined bound, and Be−MEDIAN

which is the median value between Be−MIN and Be−MAX .
It is also the value of Be used for training. The training data
input is derived by generating all possible combinations of the
parameter vectors Je, Ke, Menv , and Kenv which define the
robot system and its coupled environment.

Second, the algorithm verifies the minimum stable damping
(Be−MIN ) for all parameter combinations in the data set.
Using stability analysis, it is determined if the default value
for the minimum damping remains stable when coupled to the
defined environment. If it is not, the value of the damping is
incrementally increased by 5% until a stable solution is found.
It is important to note that we limited the settling time for the
system to be less than ten seconds. Any set of parameters that

Algorithm 1: Data Set Generation

Je ← [0.01 : 1.0 : 5.0];
Ke ← [31.25 : 125.0 : 625.0];
Menv ← [0.01 : 10.0 : 100.0];
Kenv ← [0.0 : 2.5e2 : 1e4];
Be−MIN ← 2

√
Ke× Je;

Be−MAX ← BeMIN ;
Be−MEDIAN ← BeMIN ;
trainingData← combvec(Je,Ke,Menv,Kenv);
for all t(i) ∈ trainingData do

while isStable(t(i), Be−MIN (i))→ false do
Be−MIN (i)← Be−MIN (i)× 1.05;

end
Be−MAX(i)← Be−MIN (i);
Be−WINDOW ← ∅;
while isStable(t(i), Be−MAX(i))→

true and Be−MAX < (10×Be−MIN (i)) do
Be−WINDOW ←
(Be−WINDOW ) ∪ (Be−MAX(i));
Be−MAX(i)← Be−MAX(i)× 1.05;

end
Be−MEDIAN (i)← median(Be−WINDOW );

end

takes longer than ten seconds to settle would not be feasible
and are thus discarded and considered as unstable samples.

Third, the maximum stable damping values are next calcu-
lated using the minimum stable damping as the starting point.
Once again, the damping is incremented by 5% upon each
iteration and stability analysis is done to ensure each damping
value produces a stable coupled system with a settling time
less than ten seconds. Each calculated value is stored in an
intermediary vector of stable damping values, Be−WINDOW .
The cutoff for Be−MAX is either when stable samples are
no longer generated or when the value of Be−MAX exceeds
10 ∗Be−MIN .

Finally, once Be−WINDOW has been fully calculated,
Be−MEDIAN is simply set to be the median value contained
in the vector of stable samples in Be−WINDOW , which is the
newly desired Be. The data set algorithmically determined
Be and was verified to ensure stability and desired control
specifications in 100% of the data, whereas the baseline results
in over 20% of the data set being unstable or not meeting our
control criterion. Considering Be as our desired output, the
inputs to the neural network are Je, Ke, Menv , and Kenv

which we can then design the neural network architecture
around. The environment parameters and current impedance
control parameters are needed in order to map a function to
Be, as Be = f(Je,Ke,Menv,Kenv) as a result of using Eqs.
9-11.

D. Network Training

Settings and parameters for the FITNET and DL Networks
were chosen in order to be reproducible and to provide

1340



a reasonable baseline for comparison. Both networks were
generated using consistent random number seeds, so that they
could be reproduced. Additionally, both networks were trained
to complete up to five hundred epochs. Unless otherwise noted,
all parameters were set to their default values.

When training a FITNET neural network the following
network specific parameters were used:

1) net.trainFcn — the backpropagation algorithm used in
training (scaled conjugate gradient backpropagation).

2) net.divideFcn — the training data was divided randomly.
3) net.divideMode — the training data was divided into

training, validation, and testing sets according to the
defined ratios for training (70%), validation (15%), and
testing (15%).

4) net.performFcn — the performance function used during
training is the mean squared error.

5) net.trainParam.goal — the performance goal measured
by the MSE, which is set to zero.

6) net.trainParam.min grad — the minimum performance
gradient, set to 1e−300.

7) net.trainParam.max fail — the maximum number of
validation failures, set to 1000.

8) net.trainParam.sigma — change in weight for ddot ap-
proximation.

9) net.trainParam.lambda — parameter for regulating the
indefiniteness of the Hessian.

10) net.trainParam.time — the max time to train, set to
infinite such that the network will take as long as
necessary for training.

When training a DL Network the following network specific
parameters were used:

1) solverName — solver for training the network, speci-
ficed as RMSProp (root mean square propagation).

2) InitialLearnRate — the initial learning rate for the RM-
SProp algorithm when training. Set to 1e− 4.

3) for the feature input layer, normalization of input data
is set to none.

VI. NEURAL NETWORK DESIGN RESULTS

After training the different network architectures for the
DNN and FITNET, we analyzed their performance, by quanti-
fying the total percentage of the data set that is stable with the
network using the newly suggested Be, as well as the mean-
squared-error (MSE), and time it takes to execute the network
in milliseconds. The results are tabulated in Table II and III
in the appendix. The statistics of the network’s performance
are summarized in Fig. 6.

Fig. 6. Statistics of FITNET and DL Network neural networks.

Fig. 6 shows that the DNNs used with the DL Network tool
outperformed FITNET, guaranteeing that 97.7% of the data
set would meet our control requirements, all while executing
the network in under 3 ms. While the DL Network had some
outliers in how stable the dataset was, on average 93.1% was
stable, while FITNET’s average was 89.5%. FITNET’s average
time for execution was 10.3 ms with a minimum of 6.4 ms
and maximum of 298 ms. DL Network’s average execution
time was 3.2 ms with a minimum of 3.0 ms and maximum of
5.2 ms.

The best performing DNN architecture was one using 2
hidden layers and 10 neurons for each layer. Fig. 7 shows this
top performing network architecture with its respective inputs
and output.

Fig. 7. Best performing NN, with 2 hidden layers and 10 neurons in each
hidden layer.

To show the utility of the network trained we selected
desired impedance parameters and environment that resulted
in non-desired transient response, i.e., did not settle within a

1341



certain time period specified (10s). We used the best perform-
ing DL Network to suggest a new damping parameter and
compared a before and after step response of both systems
using Eq. 11, where this formulation is the closed-loop system
depicted in Fig. 5(c). The resulting step responses for this
exemplar is displayed in Fig. 8. The initial impedance and
adjusted impedance parameters are listed in the legend of Fig.
8.

Fig. 8. Closed-loop step response of coupled system with original damping
value (solid blue line) and NN adjusted damping value (red dashed line).

Fig. 8 shows that our ML approach can be used to pa-
rameterize control performance using closed-loop transient
and open-loop stability properties of coupled systems. Im-
plementation in real-time applications, whether simulation or
hardware would require the NN to be integrated with system
identification methods, such as those presented by Park et al.,
which can be used to identify environment model parameters
that can be fed into the NN [17].

VII. DISCUSSION

This paper presented a machine learning approach to im-
prove control performance of impedance control systems when
coupled to the environment to increase stability and achieve
desired transient performance.

The machine learning approach presented utilizes analysis
tools that have been presented in prior work in [14]–[16],
while leveraging machine learning to look at a large number
of different plausible scenarios in unstructured manipulation
problems. It must be considered that this approach presents
the machine learning algorithms and design, and in order to
be implemented, this approach would need to be complimented
with a system identification approach to feed environment
parameters into the DNN [9], [17], [18]. We propose our
created DNN to run in parallel with a parameter estimation
tool that can update an impedance controller with parameters
that can be varied in real-time.

Our proposed ML approach can also be used with other
analysis tools, such as pole placement techniques for closed

loop control design [19]. Other advanced nonlinear tech-
niques for control design analysis such as those described
by Babarahmati et al. and methods used by Ficuciello et
al. for redundant manipulators can also be leveraged for our
proposed machine learning framework [20], [21]. The FITNET
and DNN architectures and training methods we proposed
are agnostic to what approaches are used for data generation.
In addition to this, our proposed approach can be used with
different control architectures that utilize force feedback when
analysis techniques can be used to ensure stability and specific
performance criterion [3], [15], [21].

The designed DNN suggest that this approach can aid in
control engineering problems that can leverage large amounts
of data and consider many different scenarios an impedance
control system may encounter in its lifetime.

VIII. CONCLUSIONS

In this work, two different approaches for neural network
design were considered to aid in improving impedance control
performance when coupled to the environment. It was found
that using DNNs (DL networks) provided superior perfor-
mance in ensuring stability when coupled to the environment
and overall execution time. The best performing network had
2 hidden layers with 10 neurons in each hidden layer and
ReLu activation functions between hidden layers. The percent
stable was improved to 97.7% from 79.7%, while executing
in 2.99 ms. It is thought that with additional data and tuned
hyper-parameters, this performance can be improved. This pro-
posed approach provides a way to update control parameters
rapidly by using machine learning techniques with coupled
and transient control analysis with impedance controllers. The
results presented in this work are highly relevant to lightweight
manipulators that have high gear ratio drive trains with non-
passive characteristics.

REFERENCES

[1] D. Whitney, “Historical perspective and state of the art in robot
force control,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2, 1985, pp. 262–268.

[2] N. Hogan, “Impedance control: An approach to manipulation,” in 1984
American control conference. IEEE, 1984, pp. 304–313.

[3] J. E. Slightam, M. Nagurka, and E. Barth, “Sliding mode impedance
control of a hydraulic artificial muscle,” in Dynamic Systems and Control
Conference, 2018.

[4] J. E. Slightam, E. Barth, and M. Nagurka, “Sliding mode impedance
and stiffness control of a pneumatic cylinder,” in Dynamic Systems and
Control Conference, 2019.

[5] B. Kim, J. Park, S. Park, and S. Kang, “Impedance learning for robotic
contact tasks using natural actor-critic algorithm,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 40, no. 2, pp.
433–443, 2009.

[6] S. Arimoto, P. Nguyen, and T. Naniwa, “Learning of robot tasks
via impedance matching,” in Proceedings 1999 IEEE International
Conference on Robotics and Automation (Cat. No. 99CH36288C), vol. 4.
IEEE, 1999, pp. 2786–2792.

[7] C.-C. Cheah and D. Wang, “Learning impedance control for robotic
manipulators,” IEEE Transactions on Robotics and Automation, vol. 14,
no. 3, pp. 452–465, 1998.

[8] D. Wang and C. C. Cheah, “An iterative learning-control scheme for
impedance control of robotic manipulators,” The International Journal
of Robotics Research, vol. 17, no. 10, pp. 1091–1104, 1998.

1342



[9] T. Tsuji and Y. Tanaka, “On-line learning of robot arm impedance using
neural networks,” Robotics and Autonomous Systems, vol. 52, no. 4, pp.
257–271, 2005.

[10] S. Jung and T. C. Hsia, “On neural network application to robust
impedance control of robot manipulators,” in Proceedings of 1995 IEEE
International Conference on Robotics and Automation, vol. 1. IEEE,
1995, pp. 869–874.

[11] D. Katic and M. Vukobratovic, “Learning impedance control of manipu-
lation robots by feedforward connectionist structures,” in Proceedings of
the 1994 IEEE International Conference on Robotics and Automation.
IEEE, 1994, pp. 45–50.

[12] M. Cohen and T. Flash, “Learning impedance parameters for robot
control using an associative search network,” IEEE Transactions on
Robotics and Automation, vol. 7, no. 3, pp. 382–390, 1991.

[13] K. Ogata, System dynamics / Katsuhiko Ogata., 4th ed. Upper Saddle
River, NJ: Pearson/Prentice Hall, 2004.

[14] J. E. Colgate and N. Hogan, “Robust Control of Dynamically Interacting
Systems,” International Journal of Control, vol. 48, no. 1, pp. 65–88,
1988.

[15] N. Hogan and S. Buerger, “Impedance and Interaction Control,”
in Robotics and Automation Handbook. Berlin, Heidelberg:
CRC Press, oct 2005, ch. 19, pp. 1–24. [Online]. Available:
http://www.crcnetbase.com/doi/abs/10.1201/9781420039733.ch19

[16] J. E. Slightam, D. R. McArthur, S. J. Spencer, and S. P. Buerger,
“Passivity analysis of quadrotor aircraft for physical interactions,” in
2021 Aerial Robotic Systems Physically Interacting with the Environ-
ment (AIRPHARO), 2021.

[17] C.-W. Park, J. Lee, M. Park, and M. Park, “Fuzzy model based
environmental stiffness identification in stable force control of a robot
manipulator,” in Modeling Decisions for Artificial Intelligence, V. Torra,
Y. Narukawa, and S. Miyamoto, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 240–251.

[18] N. Diolaiti, C. Melchiorri, and Stramigioli, “Contact Impedance Esti-
mation for Robotic Systems,” International Journal of Control, vol. 21,
no. 5, pp. 925–935, 2005.

[19] C. Wang, G. Yang, C.-Y. Chen, and Q. Xin, “Impedance control system
analysis and gain tuning of robot joints with flexibility,” in 2018 IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2018,
pp. 2159–2164.

[20] K. Babarahmati, C. Tisco, J. Smith, H.-C. Lin, M. Erden, and M. Mistry,
“Fractal Impedance for Passive Controllers: a Framework for Interaction
Robotics,” Nonlinear Dynamics, vol. 110, pp. 2518–2533, 2022.

[21] F. Ficuciello, A. Romano, L. Villani, and B. Siciliano, “Cartesian
impedance control of redundant manipulators for human-robot co-
manipulation,” in 2014 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 2014, pp. 2120–2125.

APPENDIX

TABLE II
FITNET RESULTS

Layers Neurons % Stable MSE Run Time [ms]
1 1 94.62% 1.82E+02 6.37
1 10 90.05% 2.83E+02 6.41
1 100 88.59% 7.44E+01 6.51
1 500 89.54% 2.56E+01 6.56
1 1000 88.20% 6.74E+02 6.64
2 1 94.74% 1.69E+02 6.97
2 10 88.89% 4.20E+02 7.06
2 100 88.98% 3.23E+02 7.41
2 500 88.39% 3.63E+02 13.87
2 1000 87.05% 1.14E+03 34.30
4 1 94.66% 4.26E+02 8.01
4 10 90.62% 1.17E+01 8.12
4 100 90.67% 1.32E+02 8.68
4 500 88.13% 9.44E+02 28.13
4 1000 88.25% 6.55E+00 73.67
8 1 94.29% 3.32E+01 10.14
8 10 92.13% 7.31E+02 10.28
8 100 89.45% 4.82E+01 11.39
8 500 89.77% 3.54E+01 52.54
8 1000 88.82% 5.16E+01 172.31
12 1 94.87% 1.58E+02 12.46
12 10 91.21% 9.23E+02 12.60
12 100 90.33% 1.29E+02 14.31
12 500 89.42% 4.45E+02 82.10
12 1000 89.20% 1.66E+03 298.95

TABLE III
DL NETWORK RESULTS

Layers Neurons % Stable MSE Run Time [ms]
1 1 96.15% 6.74E+04 3.52
1 10 97.15% 3.13E+04 3.07
1 100 90.76% 1.66E+06 3.16
1 500 89.76% 1.22E+06 3.18
1 1000 86.19% 2.46E+06 3.45
2 1 96.00% 7.92E+04 3.02
2 10 97.71% 3.17E+03 2.99
2 100 89.20% 1.83E+06 3.16
2 500 84.58% 4.32E+05 3.75
2 1000 92.23% 3.54E+05 3.10
4 1 41.80% 4.94E+07 3.24
4 10 95.93% 1.95E+05 3.17
4 100 97.11% 1.74E+06 3.09
4 500 95.05% 3.16E+05 5.20
4 1000 94.81% 9.23E+05 3.66
8 1 41.92% 4.94E+07 3.06
8 10 93.72% 2.99E+05 3.19
8 100 96.54% 7.53E+05 3.00
8 500 95.31% 1.55E+06 4.13
8 1000 88.58% 3.16E+06 3.76
12 1 41.73% 4.94E+07 3.23
12 10 96.73% 3.77E+05 3.21
12 100 93.07% 6.51E+04 3.16
12 500 88.46% 1.33E+05 4.37
12 1000 93.06% 2.98E+05 4.42

1343


