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Abstract—Normalizing flows have gained increasing attention in
the area of probabilistic modeling. For solving inverse problems,
BayesFlow is a state-of-the-art Bayesian inference method based
on normalizing flows. However, BayesFlow suffers from overfit-
ting in many real-world scenarios. Therefore, we put forward
stochastic BayesFlow, enhancing BayesFlow through stochastic
normalizing flows. Apart from being less prone to overfitting,
stochastic BayesFlow performs more robustly in parameter iden-
tification from noisy observations. Moreover, we develop a stochas-
tic BayesFlow algorithm to solve stochastic inverse problems
and validate it using the inverse uncertainty quantification of a
simulated vehicle dynamics model.

Index Terms—Neural Networks, Identification and Estimation
in Mechatronics, Vehicle Control

I. INTRODUCTION

The goal of solving an inverse problem is to identify the un-
known parameters of a deterministic, physics-based model from
the observed signals or measurements. When the observations
are random processes originating from random parameters or
the observations are affected by error, noise, and uncertainty,
the problem turns into identifying the probability densities of
the parameters, i.e., the stochastic inverse problem (SIP). SIPs
can be numerically solved by determining the variation in the
parameters from the variation in the model outputs with the
help of Bayes’ theorem. This approach was formulated as
a measure-theoretic computational method [3]–[5]. Recently,
machine learning has been utilized to solve SIPs. For example,
generative adversarial networks were used to minimize the
divergence between the distributions of experimental observa-
tions and model outputs [6]. However, this approach requires
the prior distributions to be given in advance, which is usually
not possible in practice.

Besides, due to intractable noises in observed signals and
stochasticity in the physical model, a closed-form posterior
distribution of parameters is hardly possible or precise. There-
fore, we propose a likelihood-free algorithm for solving SIPs by
disintegrating an SIP into a group of deterministic inverse prob-
lems, i.e., identifying parameters from each observation, and
then reconstructing the estimated data points into probability
densities of the random parameters. In order to acquire reliable
parameter identification solutions, we apply the globally amor-
tized Bayesian inference method BayesFlow [1], which is based
on conditional normalizing flows [2]. In this method, simulation
is used to learn a probabilistic mapping from observed data to

underlying model parameters. In practice, the method has been
proven to be well-performed in end-of-line testing of MEMS
(micro-electro-mechanical systems) sensors [7]. However, in
this use case, BayesFlow shows its tendency to overfit. Inspired
by the novel method of stochastic normalizing flows [9], we
improve BayesFlow to ”stochastic BayesFlow” by introducing
a stochastic element into conditional normalizing flows. The
main contributions of our work are as follows:

• We propose stochastic BayesFlow as the extension of the
original BayesFlow, contributing to avoiding overfitting to
some extent with limited training data.

• We summarize and validate an algorithm for solving SIPs
with (stochastic) BayesFlow using the inverse uncertainty
quantification of a single-track vehicle model.

• We also show that the stochastic BayesFlow outperforms
BayesFlow and BNN in terms of the accuracy and preci-
sion of parameter identification, even with noisy observed
data.

II. PROBLEM FORMULATION

We denote Θ = [Θ1, . . . ,ΘD]T as a vector of random
variables and Y(t) as corresponding random processes in an
SIP, whereas θ = [θ1, . . . , θD]T as a vector of deterministic
parameters and y(t) as the corresponding deterministic model
outputs.

In an SIP, Θ is supposed to be determined from Y(t),
which contains time-varying noise ε(t). Y(t) includes N
observable time series obtained from a physical model, which
is formulated as a forward map g [10]:

g : (Θ ∈ RD) 7→ (Y(t) ∈ RN ) ; (1a) Θ1 ∼ p1(θ1)
...

ΘD ∼ pD(θD)

 7→
 Y1(t) = g1(Θ, t) + ε1(t)

...
YN (t) = gN (Θ, t) + εN (t)

 . (1b)

Thus, the goal of an SIP is to estimate the prior distributions
of the model parameters pd(θd), d = 1, . . . , D, given Y(t) and
g.

Considering that all parameters are independent of each
other, for the parameter θd its probability density pd(θd) is
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pd(θd) =

∫
pd(θd|Y(t))p(Y(t))dY(t) (2a)

= EY(t)[pd(θd|Y(t))] (2b)

≈ 1

K

K∑
k=1

p(θ
(k)
d |y

(k)(t)) . (2c)

At a sufficient K, the expectation of θd’s posterior distribution
over the random processes Y(t) (2b) can be approximated
through Monte-Carlo estimation into the mean of K posterior
distributions over deterministic model outputs y(t) (2c). In
this way, we can obtain the prior distribution pd(θd) indirectly
by estimating K posterior distributions p(θ

(k)
d |y(k)(t)), k =

1, . . . ,K.

III. METHODS

We utilize a Bayesian inference method called BayesFlow to
learn the posteriors of parameters. BayesFlow is built up with
conditional normalizing flows and a summary network III-A.
In order to better model periodic time series, we adapt the
summary network part of BayesFlow with a long- and short-
term time-series network (LSTNet) [11] III-B. Furthermore,
the conditional normalizing flows are extended into conditional
stochastic normalizing flows III-C, aiming to enhance the
generalization ability. We refer to the method as stochastic
BayesFlow III-D. To conclude, we summarize the overall
algorithm for solving SIPs with (stochastic) BayesFlow in
Section III-E.

A. Conditional normalizing flows and BayesFlow
Normalizing flows learn complex distributions by transform-

ing a standard normal distribution of the latent variable z
through an invertible mapping [13]–[15]. Under the condition
of model observations y(t), the invertible mapping fφ models
the posterior densities p(θ|y(t)) from p(z). Accordingly, fφ is
called a conditional normalizing flow (cNF). The architecture
of the cNF, also called the conditional invertible neural network
(cINN) [12], is built up with a group of affine coupling blocks,
ensuring that the network is invertible, bijective, and has an
easily calculable Jacobian determinant [16].

Developed on the cNFs, BayesFlow is built up with a
summary network and a cINN. The summary network hϕ
extracts statistical information ỹ from time series y(t). In the
forward process, the cINN is trained to map the parameter θ
to z-space under the condition of ỹ, whereas in the inverse
process, θ can be inferred from the z-space under the same
condition. The architecture of BayesFlow is illustrated in Figure
1.

Both the summary network and the cINN are optimized
collectively via back-propagation by minimizing the Kullback-
Leibler divergence [17] between the true and the model induced
posterior of θ. The objective function is

min
φ,ϕ

Ey(t)[KL(p(θ|y(t)) ‖ pφ,ϕ(θ|y(t)))]. (3)

Via the change-of-variables formula of probability, the posterior
is reformulated into

pφ(θ|ỹ) = p(z)|detJ fφ |, z = fφ(θ; ỹ), (4)

Summary
Network

  

conditional Invertible  
Neural Network (cINN) 

  

Fig. 1. BayesFlow architecture. ϕ, φ denote the network parameters of the
summary network h and the cINN f , respectively. The blue arrows represent
the forward training process; the red arrows represent the inverse inference
process. In the inverse process, only the cINN part is inverted, and the summary
network part remains the same as that in the forward process.

where ỹ = hϕ(y(t)) and J fφ is the Jacobian matrix of fφ.
Approximating the expectation with Monte-Carlo estimation

with M training samples (y(m)(t),θ(m)),m = 1, . . . ,M from
the dataset, the objective function in Equation (3) becomes

min
φ,ϕ

1

M

M∑
m=1

(

∥∥∥fφ(θ(m);hϕ(y(m)(t)))
∥∥∥2

2
− log|detJ fφ |). (5)

After the BayesFlow network is well trained, in the inverse
direction, a single parameter estimate for the test observation
y(k)(t) can be derived by sampling the latent variable z
for one time with the optimized network parameters φ̂, ϕ̂.
When z is sampled for B times, the posterior distribution
pφ̂,ϕ̂(θ(k)|y(k)(t)) can be obtained. The estimated parameters
are taken as the mean of the implicit posteriors:

θ̂
(k)

=
1

B

B∑
b=1

f−1
φ̂

(z(b);hϕ̂(y(k)(t))). (6)

B. Summary network with LSTNet

The summary network is supposed to be adapted to the
observations. For modeling time series, the summary network
is typically realized by the long short-term memory (LSTM)
network [18], which is also applied in the original work of
BayesFlow [1]. When the observed time series is periodic,
however, the LSTM tends to forget the long-term information,
resulting in incorrect inferences. In our use case of the vehicle
dynamics model, some of the observations are periodic. We
conquer this problem by using the LSTNet [11] in the summary
network. The architecture is demonstrated in Figure 2.

The first layer of LSTNet is a 2-dimensional convolutional
neural layer, aiming to extract short-term patterns in the time
dimension as well as local dependencies between variables.
We insert a batch normalization layer after the ReLU activa-
tion function in order to accelerate the training process [20].
Subsequently, on the one hand, the time series is fed into a
regular gated recurrent unit (GRU) network [19]. On the other
hand, the time series is split into S slices and stacked into
the channel dimension. The S is the pre-defined skip step and
can be taken as the period of the time series. In the end, both
outputs from GRU and skipped GRU are combined together
by a dense layer.
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ReLU
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Fig. 2. LSTNet architecture.

C. Conditional stochastic normalizing flows

Stochastic normalizing flows (SNFs) combine stochas-
tic sampling methods with deterministic normalizing flows
[8]. Theoretically, an SNF with I deterministic invert-
ible blocks is equivalent to a pair of Markov Chains
((U0, . . . , UI), (VI , . . . , V0)), as explained and proved in [8],
[9]. For a conditional stochastic normalizing flow (cSNF), the
conditional joint distributions are

P(U0,...,UI)|Y = PU0|Y · PU1|U0,Y · · · · · PUI |UI−1,Y ; (7a)
P(VI ,...,V0)|Y = PVI |Y · PVI−1|VI ,Y · · · · · PV0|V1,Y . (7b)

Different from deterministic normalizing flows, the loss
function for a cSNF is the KL-divergence between the con-
ditional joint distributions of forward and inverse processes:

LcSNF = KL(P(U0,...,UI)|Y ||P(V0,...,VI)|Y ). (8)

In the framework of BayesFlow, Y ≡ y(t), U0 ≡ p(θ0), VI ≡
p(z), V0 ≡ p(θ|y(t)), and UI is the forward output. We denote
θi, i = 1, . . . , I as the forward output of each deterministic
layer. The loss function of cSNF in Equation (8) is expanded
into:

L̃cSNF = Ey(t)[E(θ1,...,θI)∼P(U0,...,UI )|y(t)
[log(p(θ0))

− log(pZ(θI))−
I∑
i=1

logfi(θi−1,θi) · Ti(θi−1,θi)]]; (9a)

fi(·,θi) =
dPVi−1|Vi=θi
dPUi−1|Ui=θi

; (9b)

Ti(θi−1,θi) =
pVi|y(t)(θi)

pVi−1|y(t)(θi−1)
. (9c)

When the layer i is a deterministic cINN, fi(·,θi) = 1
and Ti(θi−1,θi) = |detJ fφ |. Otherwise, the two terms are

determined by the stochastic sampling layer. In cases where
the cSNF does not contain any stochastic sampling layers, the
equation is the same as the loss function of BayesFlow (5).

D. Stochastic BayesFlow

We implement a Markov Chain Monte Carlo (MCMC) [21]
sampling layer at the end of the cINN and just before the latent
variable z. In this way, BayesFlow becomes stochastic.

Assuming U ′i is a random variable as the candidate of Ui.
The joint distribution between U ′i and Ui−1 is

PUi−1,U ′i
= PUi−1 ·Qi, (10)

where Qi is the Markov kernel. The kernel probability density
function qi(·|x) is chosen as Gaussian distribution N (·|x, σ2I).
Assuming a uniformly distributed random variable η ∼ U(0, 1),
the next random state Ui is

Ui = Ui−1 + 1[η,1](a(Ui−1, U
′
i))ζi, ζi ∼ N (0, σ2I). (11)

1[η,1](·) denotes if the acceptance ratio is not smaller than η,
then Ui = Ui−1 + ζi; otherwise, Ui = Ui−1. The term ai(x, y)
is the acceptance ratio,

ai(x, y) := min

{
1,
pi(y)qi(y|x)

pi(x)qi(x|y)

}
. (12)

In stochastic BayesFlow, the target density pi(·) is the
distribution of latent variable z, i.e., N (0, I). This process is
also called Metropolis-Hastings algorithm [21].

E. Algorithm for solving SIPs

The overall algorithm is summarized in Algorithm 1.

Algorithm 1: Algorithm for solving SIPs
input :
• value range of each parameter

[θd,min, θd,max], d = 1, . . . , D;
• the forward map g;
• measurements of model Y(t).

Sample parameters
θd ∼ U(θd,min, θd,max), d = 1, . . . , D.

Generate training set (y(m)(t),θ(m)),m = 1, . . . ,M ,
where y(m)(t) = g(θ(m)).

Train (stochastic) BayesFlow network hϕ, fφ with the
training set.

Perform parameter inference with well-trained network
hϕ̂, fφ̂:

for k in 1, . . . ,K do
calculate θ̂

(k)
according to Equation (6).

end
Construct the prior distributions of parameters p(θ):
for d in 1, . . . , D do

calculate pd(θd) according to Equation (2c).
end
output: the prior distributions of parameters p(θ).

Given the possible value ranges of parameters and the un-
derlying physical model, for example, the ordinary differential
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equations, the prior distributions of parameters can be obtained
from the measurements of model outputs. At first, a training
set should be generated with the forward map by sampling
the parameters randomly in their value ranges. Because the
prior distributions are unknown, the sampled data points are
supposed to follow uniform distributions. Next, the (stochastic)
BayesFlow network is trained to learn the posterior distribu-
tions of parameters from corresponding model outputs. After
the network is well trained, the posteriors of the parameters
can be estimated through the measurements. At last, the prior
distribution is reconstructed by the estimated parameters, which
are the means of the posteriors.

IV. EXPERIMENTS AND RESULTS

We conduct the experiments with a nonlinear single-track
(ST) vehicle model, which is referred to the CommonRoad
vehicle models [22]. The ST model is a reasonable simpli-
fication of the real vehicle dynamics and can be fast solved
by a regular ordinary differential equation solver. The model
is called ”single-track” because the front and rear wheel
pairs are each considered one wheel. Besides, the drifting
and slipping effects of wheels are also calculated in both
lateral and longitudinal directions. The random parameters of
interest are the initial lateral position of center-of-gravity y0, the
friction coefficient µ, and the distance between vehicle center-
of-gravity and front axle lf . We sample the parameters for the
training set following the uniform distributions y0 ∼ U(−1, 4),
µ ∼ U(0, 2), lf ∼ U(0.5, 2.5) respectively. For test set, the
target distributions are y0 ∼ U(−0.5, 3), µ ∼ N (1, 0.12),
lf ∼ U(1.5, 0.152). Correspondingly, five model outputs are
observed: the steering angle of the font wheel δ; yaw angle ψ,
yaw rate ψ̇, slide slip angle β and the lateral position sy of
center-of-gravity. The deterministic input signals u1(t), u2(t)
are:

u1(t) := vδ(t) = 0.2sin(2πt), (13a)

u2(t) := ax(t) = cos(

∫
(0.1 + (3.0− 0.1)t/3)dt), (13b)

where t is from 0 s to 3 s. The model’s inputs and outputs are
sampled with a step size of 0.1 s. Note that the differential
equation is solved with a variable time step that is possibly
smaller. vδ(t) is the steering velocity, and ax(t) is the longitu-
dinal acceleration.

Firstly, we investigate the choices of the summary network
in BayesFlow in Section IV-A, i.e., LSTM and LSTNet. Sec-
ondly, in Section IV-B, we compare BayesFlow and stochastic
BayesFlow with the Bayesian Neural Network (BNN), which
is another state-of-the-art probabilistic modeling method [23].
Thirdly, we determine the sufficient and necessary training
set size in Section IV-C. Fourthly, we challenge the models
by increasing the noise factor in the observed time series.
In order to avoid overfitting, in the following experiments,
we implement dropout in the cINN of BayesFlow with a
dropout rate of 0.1. Finally, in Section IV-E, we perform
inverse uncertainty quantification for stochastic BayesFlow.
The code for the experiments is available at https://github.com/
yiyi1zhang/stochastic bayesflow.

We evaluate the models from the following perspectives:
• quality of parameter inference: We sample the latent

space of (stochastic) BayesFlow for 100 times (B = 100),
and obtain the posterior distributions. We consider the
following metrics:

– for accuracy of parameter estimate: NRMSE (normal-
ized root mean squared error),

– for precision of parameter estimate: NMCIW (normal-
ized mean confidence interval width),

– for examination the actual frequency that the confidence
interval contains the ground truth: CICP (confidence
interval coverage probability);

The details of above mentioned three metrics can be found
in [7].

• quality of likelihood reconstruction: We sample the prior
density to be estimated for 200 times (K = 200) and
identify all of the parameters. After that, we reconstruct
the prior density with the estimated parameters, includ-
ing the confidence intervals. To compare the target and
reconstructed likelihoods, we compute the Bhattacharyya
distance [24] between the kernel distribution estimates
[25] of the estimated and true parameters.

• examination of overfitting: Except for the Bayesian infer-
ence results, we monitor the development of training and
validation loss as well.

A. LSTM vs. LSTNet as summary network

We train 400 samples with LSTM or LSTNet in the summary
network of BayesFlow. Figure 3 shows that the parameter
inference results are obviously more precise, when the LSTNet
is applied.

(a) LSTM in the summary network of BayesFlow

(b) LSTNet in the summary network of BayesFlow

Fig. 3. Parameter inference results with different summary networks of
BayesFlow. The data points represent the mean values of the parameter pos-
teriors, and the vertical lines represent the corresponding confidence intervals.
The black dashed lines are the reference lines. When a parameter is correctly
estimated, the corresponding blue point should be located on the reference
line. RMSE means root mean squared error, and R2 is the coefficient of
determination. The accuracy of estimates of three parameters in terms of
RMSE is improved by 35.1 %, 77.3 % and 84.3 %, when LSTNet is used
in the summary network.
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B. BNN, BayesFlow vs. stochastic BayesFlow

Using the same 400 training samples, we train a BNN
with the same summary network as (stochastic) BayesFlow
and replace the cINN with two linear BNN layers. All three
approaches achieve 100 % CICP. Table I shows the comparison
in terms of NRMSE, NMCIW, and DBH of the three parame-
ters y0, µ, and lf . Both BayesFlow and stochastic BayesFlow
estimate the posteriors much more precisely than the BNN, as
indicated by the much smaller NRMSE. In the meantime, the
more narrow NMCIW under the condition of 100 % CICP sug-
gests that the estimated posteriors by BayesFlow and stochastic
BayesFlow are reliable as well.

TABLE I
BNN, BAYESFLOW, VS. STOCHASTIC BAYESFLOW

y0,µ,lf NRMSE NMCIW DBH

BNN 0.012 0.037 0.038 0.043 0.260 0.206 0.096 0.017 0.017
BayesFlow 0.007 0.008 0.011 0.051 0.109 0.099 0.098 0.015 0.015

s. BayesFlow 0.001 0.005 0.012 0.017 0.059 0.140 0.102 0.014 0.016

With regard to DBH , the three methods does not distinguish
themselves significantly. The more detailed parameter distribu-
tions are illustrated in Figure 4.

Fig. 4. Comparison of kernel density estimates of the three parameters y0,
µ, lf . In each diagram, the red line represents the ground truth distribution,
the blue line represents the estimated value distribution, and the light blue
bands represent the reconstructed distributions obtained by running BNN
or sampling the latent space of (stochastic) BayesFlow for B times, i.e.,
θ̂
(k,b)
d , b = 1, . . . , B, k = 1, . . . ,K.

In conclusion, BayesFlow and stochastic BayesFlow are able
to reconstruct all three distributions almost perfectly, whereas
the BNN might not be adequately precise and reliable.

C. Varying size of training set

We train BayesFlow and stochastic BayesFlow with 200,
400, and 800 training samples, respectively. Figure 5 compares
the metrics NRMSE, DBH , NMCIW, and CICP for the param-
eter µ.

When the training set size is doubled from 200 to 400,
both the NRMSE and NMCIW of BayesFlow and stochastic
BayesFlow drop sharply. The NRMSE of BayesFlow at 400
is about 1/3 of that at 200, while the NRMSE of stochastic
BayesFlow at 400 is about 1/5 of that at 200. However, when

200 400 800

0.025 
0.02 

0.015 
0.01 

0.005 
0 

(a) NRMSE & DBH

200 400 800

0.2 

0.15 

0.1 

0.05 

0 

100%

50%

0%

(b) NMCIW & CICP

Fig. 5. Comparison of inference results for µ between BayesFlow and
stochastic BayesFlow with different sizes of training set size.

the training set size is increased to 800, the inference precision
of BayesFlow and stochastic BayesFlow does not improve
significantly. At the same time, the difference between the
reconstructed and the true prior distributions remains at the
same level. Thus, the training set with 400 samples is sufficient
and necessary to acquire precise and reliable probability density
estimates of parameters.

Compared with BayesFlow, stochastic BayesFlow achieves
lower NRMSE and NMCIW while keeping CICP at 100 %.
In addition, stochastic BayesFlow has more advantages than
BayesFlow in respect of avoiding overfitting. The training and
validation losses of the two networks are monitored, as shown
in Figure 6. A very high validation loss can occur in some
epochs of BayesFlow. Stochastic BayesFlow, on the other hand,
requires more training time to converge due to the stochastic
sampling layer. Besides, the number of epochs is related to the
stopping criterion of training.

Fig. 6. Comparison of training and validation loss development between
BayesFlow and stochastic BayesFlow with training set size 400.

D. Influence of noise

For a better simulation of the stochastic inverse problem,
we add additive white Gaussian noise to the observations as
follows:

Yn(t) = gn(Θ, t) + εn(t), n = 1, . . . , N, (14)

εn(t) = a

max
1≤k≤K

(Y(k)
n )− min

1≤k≤K
(Y(k)
n )

2
N (0, 1), (15)

where α is the noise factor multiplied with the overall am-
plitude. The inference results of BayesFlow and stochastic
BayesFlow with different noise factors for lf are shown in
Figure 7.
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Fig. 7. Comparison of inference results for lf between BayesFlow and
stochastic BayesFlow with noisy observations.

With α = 0.01, the two models estimate parameters as
precisely and reliably as they would without noisy observations.
Start with α = 0.02, the NRMSE rises and the CICP falls as the
noise factor increases. Besides, stochastic BayesFlow reaches a
lower NRMSE (-35 % at α = 0.02), a higher NMCIW (+33 %
at α = 0.02), and a higher CICP (+67 % at α = 0.02) than
BayesFlow, implying that stochastic BayesFlow is more robust
against noise in observations. The complete reconstructed dis-
tributions with different noise factors are shown in Figure 8.

Fig. 8. Comparison of distribution reconstruction for lf between BayesFlow
and stochastic BayesFlow with noisy observations.

For α < 0.02, stochastic BayesFlow reconstructs the distri-
bution flawlessly. For α > 0.05, although both models fail to
estimate the densities exactly, stochastic BayesFlow can still
rebuild a distribution that characteristically follows the ground
truth.

E. Uncertainty quantification

An estimated distribution’s total variance can be divided
into aleatoric σ2

a and epistemic σ2
e uncertainty. The aleatoric

uncertainty arises from the randomness of the latent variable
z and the error in observations ε, whereas the epistemic
uncertainty arises from the randomness in the model, i.e., the
MCMC layer in the stochastic BayesFlow. The aleatoric and
epistemic uncertainty for a single posterior distribution are
calculated by

σ2
a = Efφ [Vz[fφ(hϕ(z))]], σ2

e = Vfφ [Ez[fφ(z)]]. (16)

We train stochastic BayesFlow using observations with
evenly mixed noise factors α = 0, 0.01, 0.02, 0.05. Then, we
quantify the inverse uncertainty using test parameters following
different distributions but still within their value ranges, i.e.,

y0 ∼ U(−0.1, 3), µ ∼ N (0.8, 0.22), lf ∼ U(0.5, 0.152),
and correspondingly clean and noisy observations with α =
0, 0.03, 0.1. Afterwards, we execute the well-trained model 100
times in the forward direction, and at each time we sample
the latent variable B times. The three groups of uncertainty
decomposition are compared in Figure 9.

0 0.03 0.1
15 

10 

5 

0 

e-04

(a) σ2
a

0 0.03 0.1
4 

3 

2 

1 

0 

e-07

(b) σ2
e

Fig. 9. Uncertainty decomposition of the estimated distributions of y0, µ,
and lf identified from observations with α = 0, 0.03, 1. As for the value of
aleatoric, epistemic uncertainty, we take the mean value over the K samples.

The dominant uncertainty is aleatoric, suggesting the noise
in observations is not well modeled by stochastic BayesFlow
and cannot be reduced by collecting more data. Regarding the
uncertainty from clean observations as the reference, when the
uncertainty stays at a comparable level, like at α = 0.03, the
parameter distributions are well estimated. In contrast, if one
of the uncertainties is extremely higher than the reference, such
as µ at α = 0.1, the estimated parameter is unreliable. From
Figure 7a, we can infer that the prior distributions can still be
estimated within the tolerance of NRMSE < 0.1 for α < 0.04.
Otherwise, the observed signals should be pre-processed by
denoising methods.

The estimated distributions identified from noisy observa-
tions with α = 0.03, 0.1 are shown in Figure 10.

Fig. 10. Estimated distributions of y0, µ, and lf as well as joint distributions
identified from noisy observations with α = 0.03, 0.1. The light blue lines
for α = 0.03 and the light purple lines for α = 0.1 demonstrate the total
variances of the reconstructed prior distributions.
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At α = 0.03, the three estimated probability densities differ
slightly from the reference. At α = 0.1, the variance disagrees
with the reference to some extent, although the mean of p(µ)
is roughly accurately estimated. This is consistent with the
uncertainty quantification. In addition, the overlapped joint
probability densities of parameters prove that the relationship
between parameters can also be maintained.

V. CONCLUSION

The aim of this study is to determine the prior probabil-
ity densities of parameters from stochastic observations of
physics-based models. Our proposed algorithm with stochastic
BayesFlow has the following advantages: Firstly, the form
of the distributions to be estimated is unlimited because
stochastic BayesFlow infers indirectly the posteriors of pa-
rameters, and the prior distributions are reconstructed from
the estimated posteriors. Secondly, the stochastic sampling
element in BayesFlow improves its ability for generalization
and robustness against noisy observations. Thirdly, the model-
inherited possibility of uncertainty quantification provides an
indicator of the trustworthiness of the estimated parameters and
distributions.

Nevertheless, the major limitation of this algorithm is that
the value ranges of parameters for test samples must be within
those of the training set. The out-of-distribution problem might
be detected by the model misspecification method [26], or
potentially solved by test-time training [27] in future work.
In addition, another realization of stochastic BayesFlow can be
attempted by implementing a stochastic layer after each deter-
ministic layer. Then, a forward mapping from the parameter
to the summary network output is required for calculating the
target density of stochastic layers. A possible forward mapping
is the physics-enhanced latent space variational autoencoder
(PELS-VAE), which is explained in [28].
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