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Abstract—In this paper, we present a novel tactile-based method
for detecting slippage in robotic manipulation, using a single
piezoelectric sensor. The method combines spectral analysis (FFT)
and deep learning (GRU) for improved efficiency and adaptability.
We implement an automated data-collection process with accurate
and unbiased labels of slip events. The proposed method is
evaluated through an ablation study characterizing the influence
of model hyperparameters and interaction settings. The results
show a high classification accuracy of 98.70% at 100Hz and
detection delays of 8.5 ± 23.7ms, demonstrating the relevance
of our spectro-temporal pipeline. The proposed method has the
potential to enhance the performance of robotic systems and
increase their reliability in robotic grasping applications.

I. INTRODUCTION

Context

Robotic manipulation tasks, in which objects need to be
physically interacted with, involve contact interactions that
are best monitored through tactile sensing. Slip detection is a
critical aspect in robotic manipulation, as it can prevent costly
mistakes and ensure the successful completion of tasks. The
term ”slip” refers to relative motion between two surfaces in
contact, notably in robotic manipulation, between the robotic
fingers and the grasped object. Even small slippage induces
loss of information about object pose and location, which can
lead to task failure [1]. The naive approach to prevent slip
is applying maximal tightening force, thus increasing friction
to ensure grasp stability. By detecting slip at an early stage,
corrective actions can be taken to prevent substantial slippage,
allowing the robotic finger to minimize the force and energy
required to maintain stable grasp control, and to prevent the
fingers from damaging the object [2]. Furthermore, slippage
could be understood more generally as a specific type of
tactile event, involved in many dexterous tasks (such as tactile
exploration or human-robot interactions).

Related Work

Friction plays a major role in grasp stability, and is the
foundation of force-closure [3]. Thus, most slip detection
methods are based on the analysis of the friction phenomenon,
either through analytical models [4] or with data-driven ap-
proaches [5]. Analytical models often derive from the Coulomb
friction law and are interested in friction coefficients and
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Fig. 1. FFT-GRU pipeline for slip detection. The piezoelectric sensor captures
mechanical stress due to friction vibration. FFT extracts spectral features that
are processed by the recurrent network. Contact mode is classified as hold / slip
at 100Hz.

tangential-to-normal force ratios. Alternatively, dynamic me-
chanical signals at the contact interface can be detected and
processed to identify friction vibrations [6], for gross-slip
or incipient-slip detection. Data-driven approaches can use a
broader range of sensory input from which a learning model
can extract characteristic features of slippage [7].

1) Friction-vibration detection: Our approach for slip de-
tection is based on the force dynamics at contact interface,
captured by a piezoelectric sensor [8]. Comparative studies of
sensor technologies can be found in relevant reviews [1]. Inspi-
ration comes from the human hand’s Fast Adaptive mechanore-
ceptors which detect vibrations during slippage [9] [10]. The
piezoelectric sensor reacts to dynamic events, generating elec-
tric charges in response to changes in the stress field within
the material. Performing a frequency-domain analysis of the
dynamic signal enables identification of a spectral profile that
is characteristic of friction vibrations. Relevant frequencies
can be selectively monitored to inhibit signals coming from
motor vibrations and other sources [7]. While this line of work
relies on the assumption of a characteristic frequency pattern
of slippage dynamics, research does not seem to converge to
a simple solution and the vibration profile is dependent on a
number of parameters of the environment, the robot sensor,
and the interaction. Reported relevant frequencies for slip
detection can range from 40Hz to 1kHz [11] [7] [2]. This again
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makes learning methods particularly relevant as they can extract
features and find patterns for a wide range of setups, provided
that training data has sufficient variability. In the human hand,
distribution of fast-adaptive mechano-receptors FA-I and FA-II
suggests the 5-50Hz band is relevant for tactile exploration with
the fingertips, while 40-400Hz provides information on grasp,
through the palm, for object-holding tasks [9].

2) Learning models: Typical machine-learning classifiers
as Support Vector Machine and Random Forest have already
shown good results for slip detection, with generalization to
novel objects [12] [13]. Deep learning models are also very
common. Temporal Convolutional neural Networks (TCN) and
Recurent Neural Networks (RNN), notably Long Short-Term
Memory (LSTM), process data in a structured way that is well-
adapted to time series such as tactile-sensor signals [5] [14]
[15] [16]. Despite these advances, collecting large training data
remains a major challenge for generalizing beyond constrained
environments and capturing the diversity of possible manipu-
lation scenarios in real-world robotics.

3) Incipient slip and slip prediction: Mandil et al. proposed
a slip-prediction system by classifying predicted future sensor
signals [13]. This is a very complex problem and it requires
taking future robot actions into account, as they influence
tactile states. Incipient-slip detection, on the other hand, focuses
the phenomenon of local slippage, with micro-displacements
already happening. This behaviour can be favoured directly by
the hardware design [17] [10]. In this work, the objective is
to perceive the actual contact state, considering that slippage
is not inherently something to avoid, but an integral part of
dexterous manipulation [4] [16].

Contributions

We study the capabilities of a learning model to detect slip
with a single piezoelectric sensor, through a combination of
spectral and temporal analysis. Our proposed detection pipeline
leverages the efficiency of the Fast Fourier Transform (FFT) to
extract relevant representations of the friction vibration, and
the flexibility of deep learning to generalize across a wide
range of slip-event parameters, such as speed, texture and force.
Gated Recurrent Units (GRU) offer a mechanism to extract
data-driven temporal patterns that are shown to be relevant
to the task of slip detection. An overview of the pipeline is
presented in Fig. 1. Instead of collecting data during an actual
manipulation task, which can be laborious and inaccurate, we
setup an automatic data-collection bench with parameterized
slip-trajectory generation and unbiased labels.

Section II briefly describes the design of our piezoelectric
tactile sensor. Section III discusses the formulation of the
detection task and delves into the data-collection process. Sec-
tion IV details our spectro-temporal model, its motivation and
implementation. In Section V, various ablations of the model
are conducted, and its performance is rigorously evaluated.
Finally, Section VI summarizes our findings and concludes the
paper.

II. PIEZOELECTRIC TACTILE SENSOR

The piezoelectric sensor is embedded underneath a flexible
mechanical support shown in Fig. 2. Ten piezoelectric generator
layers are stacked for better energy harvesting and perfor-
mance. They constitute alternating layers of electrodes (800nm
thick high-conductivity polymer, PEDOT-PSS) and electroac-
tive polymer (2.5µm thick ferroelectric ink, copolymers PVDF-
TrFE). The sensor spans 20×10 mm2 at the center of the tactile
area. The electronic board samples the piezoelectric signal with
a 10kHz frequency.

z-axis 
force sensor

Tactile sensor with 
piezoelectric cell

3-DoF robotic probe 
with position encoders

#2#1 #3

Probe tip

Fig. 2. Robotic data-collection setup with 3D-position and 1D-force ground-
truth. The tactile sensor embedding a piezoelectric cell is fixed on the bench
and touched by a mechanical probe. Tips with different shape, texture and
softness provide variability in the generated slips.

III. DATA COLLECTION

Obtaining accurate ground-truth information on the slippage
of un-instrumented objects presents a significant challenge.In
order to not only evaluate but also train the slip detector with
labeled data, we implement a fully-automated data collection
and labeling system.

A. Methodology

Slip detection systems in robotics research are often evalu-
ated on simple manipulation tasks, using grasp stability metrics
as a high-level proxy for slip-detection performance. Actual
validation with accuracy and delay of slip detection is hard to
perform but is still necessary [18]. As underlined by Waters
et al., grasp success as a metric can be relevant for slip
detection only if the mechanism of grasp force minimization
is also characterized [17]. Using conservative slip detection
ensures grasp stability easily but can miss the point of energy
minimization [19] [12]. Proper validation should comprise
variations of environment and task parameters, such as object
material and geometry, slip speed, grasp force [10].

In addition, data-collection requires labels. In the work of
Yan et al., a human annotator labels slippage manually by ob-
serving the grasp [20]. Zhang et al. invoke “the intuitive human
sense of slip” as the best alternative to an objective labelling
criterion, which is difficult to implement [14]. Annotation can
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also be performed in video recordings [12] and the process can
be automated with visual detection of markers [21]. Frame-rate
and image resolution are limiting factors for the application of
vision-based method for accurate labeling of slip event, in space
and time dimensions.

To overcome this challenge, we collect sensor data jointly
with ground-truth signals by using an automated characteriza-
tion test bench instead of relying on the target manipulation
platform. The robotic bench (Fig. 2) can move an end-effector
in space, following straight trajectories. A 1D reference force
sensor (PMI SML-220N) monitors force in the normal axis z.
We generate trajectories with random positions, speed and force
in contact with the sensor to collect slippage data. Recorded
position measurements sampled at 100Hz are used to obtain
ground-truth slippage timings, as illustrated in Fig. 3. This
approach involves stepping out of the traditional manipulation
framework as we measure slippage between the tactile sensor
and an instrumented robotic probe. This setup combines the
benefits of instrumentation and automation, allowing for fully-
automated collection of rich slippage data.

B. Dataset

In addition to slip segments, sensor data is recorded when
the probe moves in the air, without contact. The tactile sensor
captures vibration noise caused by the robot motors (see Fig. 5).
We also collect slip segments with three end-effector tips
(Fig. 2), of different texture shape and compliance, to provide
variability in friction coefficient and force distribution in the
recorded slips. The dataset contains 3,200 recordings with
1,600 containing a slip segment, and 1,600 with motor noise
only. The average duration of recordings is 3.33s, and 1.5s
for slip segments. Slip trajectories are generated with random
parameters in the range 2-10N for contact force, 10-32mm for
travel distance, 200-2000 mm/min for speed.

IV. HYBRID SPECTRO-TEMPORAL CLASSIFICATION
ALGORITHM RATIONALE

The pipeline is composed of spectral analysis of the piezo-
electric signal, followed by learned temporal-feature extraction
and binary classification. An overview is proposed in Fig. 1.

A. Spectrogram

We compute Power Spectral Density (PSD) with Fast Fourier
transforms (FFT) on the mean-subtracted piezoelectric signal,
with temporal windows of 200 values (20ms at 10kHz). The
spectrogram of the entire signal is built by concatenating the
sequence of FFTs, forming a 2D array with frequency and
time axes. It contains information on the frequency content
of the signal, and its evolution over time (see Fig. 3). We
compute FFTs at intervals of 10ms, with an input window size
of 20ms. This results in an overlap between adjacent FFTs
in the spectrogram. Providing longer segments as FFT input
improves frequency resolution. The frequency bins are in range
0-5kHz with a resolution of 50Hz per bin.

Fig. 3. Slip segment example, with piezoelectric signal spectrogram and
ground-truth position measurements providing slip timing labels.

B. Stacked Gated Recurrent Units

The resulting spectrogram is then fed to a Recurrent Neural
Network (RNN), processing one FFT at a time, to detect
temporal patterns. Classification is performed on each time-
step, every 10ms. Our limitation is the label frequency, due to
100Hz sampling of the ground-truth position sensor.

1) Architecture: We train a recurrent neural network of
4 stacked Gated Recurrent Units (GRU) [22]. It produces a
32-channel representation for each time-step (”sequence-to-
sequence”). These outputs are then classified independently by
a fully-connected linear layer. The network produces a tem-
porally dense classification output. The temporal piezoelectric
signal is transformed into a sequence of FFTs (spectrogram),
which is then classified into a sequence of binary class predic-
tions (hold or slip). The model’s architecture is illustrated in
Fig. 4, highlighting the sequential processing.

2) Training: RNN and classifier are trained jointly end-to-
end. We use RMSProp optimizer with learning rate 8e−4 and
Cross-Entropy loss. The network is trained for 200 epochs,
keeping the model-state which obtained the best validation
performance (balanced accuracy). In order to build training
mini-batches (size 32), we extract short random clips of 128
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Fig. 4. Model architecture based on four stacked Gated Recurrent Units (GRU)
classifying frequency-domain features to detect slip. The network processes the
signal sequentially for a live scenario application, with 100Hz classification.
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frames from the spectrograms. This is also a form of data-
augmentation as the RNN processes the signal in the temporal
direction, and the memory is initialized before processing a
clip. By cropping the signal randomly, we vary the quantity of
past information provided for the RNN during training.

We use a smooth-change penalty (Lscp) to favour temporally
smooth predictions in parts where the label does not change.
This loss is only activated after the 20th epoch to allow more
stable training in early epochs. It is computed as the sum of
the absolute first-order temporal difference of yt, the 2-channel
output logits :

Lscp =

T∑
t=1

|yt − yt−1|. (1)

For additional regularization, we use label smoothing on
clips containing slip events, because noise in the labels could
impede model training.

The dataset has unequal numbers of frame-level samples per
class. A working solution is using class weights in the loss
function. However, we found that a balance also has to be
ensured within the non-slip frames, as both pre-slip and post-
slip frames possibly have different dynamics. This also means
the model needs to be trained to detect starting of slippage
but also end of slippage. The RNN has to consider end of
slip as a reset of its hidden state, so as to be ready to detect
slippage again. Our solution is to enforce balance in the training
batches directly with probability distributions when sampling
short clips from the recordings. A common concern of slip
detection in robotics is the confusion between motor noise and
slippage vibrations [10]. Training and testing with noise data, as
described in Section III-B, ensures the model does not leverage
motor vibration as an indication of possible slippage, but also
successfully extracts slippage features from noisy signals.

C. Discussion

This pipeline involves a hierarchy of dynamic feature extrac-
tion. The piezoelectric sensor inherently provides a measure-
ment of dynamic changes in mechanical deformation. Then,
FFT computes the frequency components in the signal. Finally,
the GRU identifies temporal patterns in the evolution of this
spectral profile. This results in a high-level and robust analysis
of the contact dynamics.

A typical alternative to RNNs in such tasks is Temporal
Convolutional Networks (TCN). They can be preferred for their
better capacity to retain past information and detect long-term
dependencies [15]. TCNs have direct access to past information
while the RNN only stores a hidden state that is supposed to
summarize information and extract relevant context. In fact, this
mechanism seems well suited to the slip detection process, in
which precise long-range dependencies are not relevant, but
we are more interested in short-term patterns and past context.
Also, the sequential processing of RNN is a constraint when
training, as it limits parallel computation. But in live scenarios,
it is very practical as data are received and processed in a
sequential way, and robot controllers do not usually run on
GPUs.

V. EXPERIMENTAL CHARACTERIZATION
AND RESULTS

We perform various ablations on the model to assess the
importance and impact of each component in the proposed slip-
detection pipeline. We provide the balanced binary accuracy
of hold / slip contact classification at frame-level. To have
more in-depth understanding of the system’s behavior, we also
report F1-score on binary classification for slip detection [12],
combining both precision and recall metrics:
F1 = 2·Precision·Recall

Precision+Recall .

We perform k-fold cross-validation with k = 5. The dataset
is composed of 3,200 recordings, half of which contain slip
while others only record motor noise. Unless specified other-
wise, the following experiments are performed with the FFT-
GRU pipeline, with feature dimension 32, using training clips
of 1.28s and frequency range 50-600Hz.

A. Architecture ablation

Table I reports model performance when evaluating different
architectures, with ablation to the proposed spectro-temporal
pipeline. Hyperparameter dim specifies the feature dimension
of the model while ker is the kernel size for the convolutional
models. We report the total number of parameters for each
model. First, we verify that spectral features provide good class
separability for our task. Van Wyk and Falco showed that RNN
can work directly on a combination of tactile-sensor signals [5],
but this approach does not fit well with our high-frequency
piezoelectric sensor. Computing the FFT explicitly provides an
efficient way to extract discriminative features, reducing the
complexity of the model. Our FFT-GRU model obtains 98.70%
balanced accuracy. Removing the FFT step and feeding the raw
piezoelectric sensor signal requires down-sampling to 100Hz,
as we are limited by ground-truth sensor frequency. This results
in a drop to 94.71% when the network works directly on the
raw piezoelectric signal (raw pE).

TABLE I
ABLATION ON SPECTRAL AND TEMPORAL FEATURE-EXTRACTION

Input Model dim ker Params F1-score Acc. (%)
raw pE GRU 32 − 22k 0.9157 94.71

FFT GRU 32 − 23k 0.9781 98.70
FFT GRU 128 − 352k 0.9787 98.73
FFT MLP 32 − 3.6k 0.7913 88.76
FFT MLP 128 − 51k 0.7941 89.39
FFT TCN 128 1 51k 0.8051 88.97
FFT TCN 128 8 405k 0.9579 97.64
FFT TCN 128 32 1.6M 0.9694 98.26

” ” ” ” ” 0.9836∗ 99.21∗
∗Non-causal model.

We also validate the relevance of temporal patterns in the
spectrogram, by experimenting with a single-frame Multi-Layer
Perceptron (MLP), classifying each FFT independently. The
accuracy does not exceed 90%, even when augmenting the net-
work’s dimension. To better understand the effect of temporal
features, we experiment with Temporal Convolutional neural
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Networks (TCN). We can change the temporal receptive field
of the network through the convolution-kernel size. To simplify
the analysis we use a very naive implementation by stacking
1D-convolutional layers, making model parameters linearly
increase with receptive field. When ker = 1, it is equivalent to
the single-frame MLP. A more efficient approach to increase
the temporal receptive field would use temporal pooling and
kernel dilation [15]. The reported TCN performances are not
aimed for a comparison with the RNN approach, as number of
parameters and non-linearities do not scale identically for both
network architectures. The results clearly show performance
increasing with the temporal receptive field, from 88.97% when
working on a single 20ms FFT, to 98.26% when working on
320ms spectrogram windows.

As the objective is real-time slip-detection, causality has to
be enforced so the model does not have access to future data.
This is straightforward with the RNN but requires padding the
input of TCN.

B. Informative frequency range

The spectrogram has a frequency range of 5kHz due to
computing FFT on a 10kHz piezoelectric signal. The 50Hz
bin resolution is determined by the duration of the provided
segments (20ms in our setup). Literature and data visualization
suggest friction vibrations might be limited to certain frequen-
cies (see Section I-1). Feeding the full spectrogram’s frequency
features to the model could result in waste of computation.
Thus, we experiment with different frequency ranges as input
to the GRU stack (Table II).

TABLE II
ABLATION ON SPECTROGRAM FREQUENCY RANGE

Freq. range (Hz) F1-score Acc. (%)
0− 5000 0.9589 97.40
0− 600 0.9777 98.67

50− 400 0.9769 98.40
50− 450 0.9784 98.80
50− 500 0.9783 98.79
50− 600 0.9782 98.74∗

50− 1000 0.9774 98.63
∗This frequency range is used in other experiments.

We find that slip-related vibrations can start as low as 50Hz
and range up to about 450Hz. While higher frequency bands
could be affected by slip vibrations, this information might be
redundant. These results are coherent with previous literature
on robotic manipulation and human touch, as discussed in
Section I-1. In addition, reducing the spectrogram to relevant
frequencies is beneficial to network performance, as it can
facilitate training, because of reduced computations and better
signal-to-noise ratio.

C. Generalization to Unseen Shape and Material

Data was collected using three interchangeable probe tips
with different texture and shape (as displayed in Fig. 2).
To investigate the generalization capabilities of the model,
we perform a Leave-One-Subject-Out (LOSO) evaluation.

TABLE III
GENERALIZATION TO UNSEEN SHAPE AND TEXTURE

Left-out end effector F1-score Acc. (%)
None 0.9762 98.60

#1 0.9502 96.45
#2 0.9370 95.32
#3 0.9337 94.41

The variation in shape is actually very limited and interactions
are notably constrained to soft-finger contacts, with small area
of contact. Yet, even in this framework, the model does not
display good generalization capabilities (see Table III). We
consider this is a limitation of the data. When performing
the LOSO procedure, there are only two different tips in the
training data, providing insufficient variability.

TABLE IV
PERFORMANCE WITH AND WITHOUT NO-SLIP MOTOR-NOISE SAMPLES

Training dataset
Slip Slip + Noise

Te
st

Slip
F1-score Acc. F1-score Acc.
0.9831 98.59% 0.9766 98.16%

Slip F1-score Acc. F1-score Acc.
+ Noise 0.6779 86.50% 0.9735 98.53%

D. Immunity to Motor Noise

Tactile signals recorded during free motion without contact,
labelled as non-slipping, are very effective for training the
model to dissociate friction vibration from motor noise. An
example is provided in Fig. 5. However, the generalization to
different robots and motor-vibration profiles requires further
investigation we leave for future work. Simulated noise is
another approach we expect to be relevant for this issue, but
our setup does not allow to validate it for now.

Fig. 5. Slip signal (Top) and motor noise sample without slipping contact at
the sensor interface (Bottom). Both spectrograms have the same normalization
for comparison.

As shown in Table IV, the motor vibrations are misclassified
as slip signal if such data is not provided for training explicitly.
However, when considering motor noise, the classification
task becomes more difficult and the model suffers a small
performance loss on classifying slip segments, with -0.43%.
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Fig. 6. Slip detection delay. The model detects slippage 20ms after the ground-
truth. The total traveled distance during this time is 0.8mm.

E. Results : Detection delay

Beyond frame-level classification accuracy, slip detection is
interested in the detection delays, computed as the time interval
between ground-truth slip start and slip detection by the FFT-
GRU model. On 3,200 samples, 7 were incorrectly recognized
in a way that prevents computing a detection delay. For the
others, the average detection delay was 8.51ms, with 23.7ms
standard deviation. This result has to be considered with an
error margin of 10ms due to the ground-truth signal sampling-
rate. A visualization is provided in Fig. 6. Short detection
delays make the method well-suited for grasp stabilization in
manipulation tasks [23]. The maximum delay was 58ms, which
is very similar to the result reported in the work of Van Wyk
and Falco [5].

Motor noise frames are correctly classified at 99.85%. On
the slip recordings, balanced frame-level accuracy is 98.24%,
with an F1-score of 0.978 (precision : 0.973, recall : 0.983).
When considering both slip and noise segments, the balanced
accuracy is 98.70%.

VI. CONCLUSIONS

We have demonstrated the possibility of detecting slippage
with a high-frequency piezoelectric sensor embedded beneath
a robotic tactile skin. Taking advantage of the efficiency
of spectral representations for discriminative features, and
leveraging data-driven models for capturing temporal patterns,
we designed a classification pipeline combining Fast Fourier
Transforms and Gated Recurrent Units. The proposed detection
pipeline was kept light-weight to operate at 100Hz and showed
quick detection for real-time applicability to manipulation
tasks.
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