
  

  

Abstract—Hypersonic vehicle actuating system will 

endurance great thermal load when it re-enters the atmosphere. 

Pump-controlled loop pipe (PCLP) is widely used to dissipate its 

thermal load. PCLP is a kind of organic Rankine cycle (ORC).  

ORC is also commonly used in residual energy recovery. To 

address challenges to optimize multiple conflicting objectives at 

the same time in ORC, a multi-objective optimization (MOO) 

method for ORC is proposed, using energy consumption, total 

exergy loss, and compression ratio as objective functions. The 

unconstrained multi-objective evolutionary algorithm based on 

decomposition and fitness rate rank based multi-armed bandit 

(MOEA/D-FRRMAB) is enhanced to handle constrained MOO 

problem. An improved entropy weight-technique for order 

preference by similarity to an ideal solution (entropy 

weight-TOPSIS) approach is proposed for selecting the best 

solution from Pareto optimal solutions, which can obtain a set of 

real-time optimized parameters of system to achieve a 

comprehensive optimization effect, considering the system's 

thermal load. 

Index Terms—Mechatronic system, organic Rankine cycle, 

thermal management, multi-objective optimization. 

I. INTRODUCTION 

The mechatronic system of hypersonic vehicle usually 
generates a lot of heat during work, including the heat 
generated by electronic equipment and hydraulic actuators, 
mainly because the high-power electric actuator system needs 
strong current and high-frequency switching in the work. The 
heat generated is highly concentrated on the actuating system 
and electronic system, increasing the temperature of the 
actuating system, which makes the actuating system bear a 
large thermal load when the aircraft re-enters the atmosphere, 
thus affecting the flight reliability [1]. Due to the wide 
application of composite materials and the requirements of 
stealth performance, it is more and more difficult to disperse 
the heat inside the aircraft through the skin, and the space of 
the actuating system is relatively closed and narrow, which 
results in the heat dissipation of power teletype actuators face 
great challenges. PCLP is commonly used for the dispersion 
of thermal loads, which is an ORC system. ORC technology is 
an emerging thermal management solution that employs the 
phase change process of organic working fluids for energy 
conversion [2], and it finds wide application in various 
medium and low-temperature power generation fields [3]. 
ORC technology has been widely studied for its potential 
applications in the aerospace industry since the 1960s [4]. 
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Despite the wide range of potential applications for ORC 
technology in the aerospace industry, several issues remain 
unresolved. The parameters of ORC system can significantly 
influence the effectiveness of thermal management and energy 
utilization efficiency [5]. Therefore, it is necessary to engage 
in MOO to achieve optimal system performance. Additionally, 
relevant algorithms are utilized to evaluate a series of Pareto 
solutions’ quality [6]. Various complex engineering problems 
have been solved by numerous multi-objective evolutionary 
algorithms (MOEAs) [7], [8]. 

In MOO design for enhancing system performance, 
various algorithms are commonly used, including simulated 
annealing algorithm, non-dominated sorting genetic algorithm 
and particle swarm optimization [9]. Muhammad proposed an 
ORC system and optimized it using a genetic algorithm to 
solve MOO problem, with the goal of reaching the optimal 
points for both system entropy generation and heat exchanger 
thermal capacity [10]. Wang utilized an evolutionary 
algorithm to perform MOO of ORC system, aiming to achieve 
the optimal performance in waste heat recovery [11]. Pili 
proposed a MOO method that considers the performance of 
ORC under different conditions. Moreover, a method which 
evaluates the system uncertainty and provides a set of 
optimized parameters that ensure optimal performance under 
different load conditions was studied in [12]. Salim proposed a 
combined system that utilizes the cooling energy of liquefied 
natural gas and waste heat from dual-fuel marine engines. 
MOO was used to study the effects of evaporating and 
condensing pressures [13]. 

This paper studies the utilization of ORC for heat removal 
in aircraft and to optimize the operating parameters and to 
improve the efficiency of heat management in aircraft. The 
paper proposes an enhancement to MOEA/D-FRRMAB, 
named C-MOEA/D-FRRMAB, which can deal with the 
constrained optimization problems, and it can handle 
constrained MOO problems better. Next, an improved entropy 
weight-TOPSIS approach is proposed to objectively select the 
optimal flight parameters from Pareto solution set for 
achieving the optimal values of MOO problem in the system. 
Compared with the traditional TOPSIS method, the proposed 
method can mitigate the impact of subjective perception on the 
selection of optimal parameters [14]. 

The rest of the paper is arranged as follows. Section II 
describes the mathematic model of ORC. Section III presents 
the C-MOEA/D-FRRMAB to solve MOO problem. Section 
IV presents the selection of optimal solution by entropy 
weight-TOPSIS. Finally, the conclusions are summarized. 
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II. METHODOLOGY 

A. System description 

The ORC system is used to collect and dissipate the heat 
generated by the electromechanical systems, and its structural 
composition is shown in Fig. 1. The refrigerant is first 
pressurized by a liquid pump before entering the evaporator. 
This way, it absorbs the heat generated by the electronic 
equipment. The high-temperature and high-pressure steam 
generated in the evaporator is then directed to the expander. 
The exhaust from the expander is condensed into a liquid state 
by the fuel in the condenser. In this way, heat is transferred 
through space and ultimately released to the fuel heat sink, 
which ensures that the operating temperature of electronic 
equipment remains within the allowed range. 

 
Fig. 1 ORC system 

 The T-S diagram in Fig. 2 illustrates the thermodynamic 
cycle process. 

 
Fig. 2 T-S diagram 

The ORC model established in this paper is based on the 
following assumptions while disregarding secondary factors: 

(1) It is assumed that there is no heat exchange between 
the system components and the external environment. 

(2) The model assumes that pressure losses in pipes and 
heat exchangers are negligible. 

(3) The refrigerant at the outlet of the condenser is in a 
saturated state, and the thermophysical parameters of 
the saturated state can be calculated using the 
REFPROP 9.0 software from National Institute of 
Standards and Technology (NIST). 

(4) The efficiency of the expander and pump are 
invariant. 

B. Thermodynamic model of ORC system 

The power consumption in the process 1-2 is 

 p 2 1 2 1 p( ) ( ) /sW m h h m h h = − = −  (1) 

The heat absorbed by the electronic device heat sink in 
process 2-3 is 

 ev 3 2( )Q m h h= −  (2) 

The work done by the expansion machine in process 3-4 is 

 t 4 3 4s 3 s( ) ( ) /W m h h m h h = − = −  (3) 

The heat absorbed by the condenser in the process 4-5 is 

 cd 4 5( )Q m h h= −  (4) 

The irreversible exergy loss is 
Pump: 

 p amb 2 1( )I T m s s= −  (5) 

Evaporator: 

 ev amb 3 2 3 2( ( ) / )hI T m s s h h T= − − −  (6) 

Expansion: 

 ex amb 4 3( )I T m s s= −  (7) 

Condenser: 

 cd amb 5 4 5 4 amb( ( ) / )I T m s s h h T= − − −  (8) 

where m  is the mass flow rate of refrigerant in g s ; while ks , 

kh  denote the entropy and enthalpy values of the organic 

refrigerant at the different position in kJ kg  and kJ (kg K) , 

1,2,2s,3,4,4s,5k = ; hT  and ambT  are the temperatures of the 

electronic equipment and equipment cabin environment, in K ; 

p  and s  are the efficiency of the pump and expander. 

C. Multi-objective parameter optimization model 

During the flight phase, it may be necessary to consider 
multiple objectives simultaneously. This paper focuses on 
three primary objectives to align with engineering practice. 
The first objective is to minimize the power consumption of 
the pump. In ORC systems, the power consumed by the pump, 
in relation to the power generated by the turbine, is relatively 
high (when compared to classical steam Rankine cycles) and 
may account for about 5-15% of the turbine power. Another 
crucial objective is to reduce the overall irreversibility exergy 
loss. This objective seeks to minimize the loss of functional 
power resulting from irreversibility factors present in each 
component of the device. Moreover, it is imperative to 
minimize the pressure ratio coefficient due to the constraints 
posed by material hardness. Therefore, the optimization 
problem of the cycle is a multi-objective optimization 
problem. The objective functions are to minimize the energy 

consumption pW , total exergy loss p ev ex cdI I I I I= + + +  and 

system pressure ratio coefficient ev cdZ P P= , where evP  and 

cdP  is the pressure of evaporator and condenser. 

Based on the analysis above, 3 objectives are as follows: 

 

1 p

2

3

min

min

min

J W

J I

J Z

=


=
 =

 (9) 

where 1J , 2J  and 3J  correspond to the power consumption, 

total exergy loss, and pressure ratio coefficient, respectively. 
As a result, the objective vector can be defined as follows: 

 1 2 3minimize   { ,  ,  }J J J=J  (10) 
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The performance parameters of heat transfer can be 
classified into three types, namely material parameters, 
structural parameters, and control parameters. Structural 
parameters are achieved during the design phase, and material 
parameters are typically excluded from the optimization 
scope. Therefore, the control parameters become the decision 
variables or decision vector for the MOO of the ORC system. 
The decision vector is selected as  

 T

ev cd[ , , ]T T m=x  (11) 

where evT  is the refrigeration capacity, cdT  is the condenser 

temperature, and m is mass flow rate of the evaporator. The 

objective function 1 2 3{ ,  ,  }J J J  can be expressed in terms of 

x . 

The constraints can be described as follows: 
(1) According to the 2nd law of thermodynamics, the 

exergy loss should meet the constraint 0JI  . 

(2) The pump's power consumption should be limited to 
ensure economic efficiency and provide the 
minimum required power for proper operation. Thus, 

the pump constraint is p1W 20WW  . 

(3) The pressure ratio in the system must be kept within 
material limitations to avoid leakage. As a result, 
1 10Z  . 

(4) Positive temperature difference ev cdT T−  to exclude 

infeasible cycle configurations, i.e. ev cd 10KT T−  . 

Based on the analysis above, the constraints can be 
expressed as 

 

1

2 p

3 p

4

5

6 cd ev

subjective to 0 0

1 0

20 0

1 0

10 0

10 0

f I

f W

f W

f Z

f Z

f T T

= − 

= − 

= − 

= − 

= − 

= + − 

 (12) 

III. HYBRID CONSTRAINT-HANDLING TECHNIQUE BASED ON 

MOEA/D-FRRMAB ALGORITHM  

A commonly used heuristic method for solving 
multi-objective optimization problems is the 
MOEA/D-FRRMAB algorithm. Jin proposed this algorithm 
with the fundamental concept of iteratively exploring the 
Pareto front to identify the best solution for the problem [15]. 
However, the traditional MOEA/D-FRRMAB algorithm 
encounters difficulties in solving multi-objective optimization 
problems. Particularly in cases with intricate constraints where 
the algorithm may struggle to manage the constraints, 
ultimately leading to decreased convergence performance. To 
effectively utilize the available information carried by 
infeasible solutions, the present study proposes an integration 
of the hybrid constraint handling techniques with the adaptive 
penalty function method into MOEA/D-FRRMAB, named 
C-MOEA/D-FRRMAB, which aims to balance population 
diversity and convergence, improving the algorithm’s 
capacity to handle multi-objective optimization problems. 

“Constraint violation degree”: suppose 
i

x  is i-th decision 

vector in the solution space,  ( )i x  is the degree of which the 

i-th individual violates the constraints, and ( )i x  is as 

  
6

1
( ) max ( ),0i i

jj
f

=
= x x  (13) 

To account for the differences in magnitudes of constraint 
conditions, it is necessary to standardize the constraint 
violation degree. The resulting standardized constraint 

violation degree nor ( )i x  can be expressed as 

  
6 max

nor 1
( ) max ( ) ,0i i

j jj
f f

=
= x x  (14) 

where 
max

jf  represents the highest value that violates the 

thj constraint conditions, which can be expressed as 

  maxmax

1max 0, ( )
N i

j i jf f== x  (15) 

If all solutions are feasible, which means 
max 0jf = , then 

(14) mentioned above will not have any solution. It is 
important to consider this scenario in the optimization process. 

In such a scenario, the set should be defined as 
max 1jf = . 

The  -constraint method, proposed by Takahama, aims to 

identify feasible solutions by setting a threshold value of such 
that any individual with a constraint violation degree less than 
this threshold is considered feasible [16]. The approach 
adopted in this paper fully leverages the information provided 
by infeasible solutions located at the boundary of the feasible 
solution range, resulting in improved convergence 
performance. In this paper, the quality of individuals is 

compared based on the following criteria: for 
1

x  and 
2

x , with 

their degree of constraint violation 1  and 2  respectively, 

the comparison between   and   can be defined as 

 

1 2 1 2

1 1 2 2 1 2 1 2

1 2

, if ,

( , ) ( , ) , if 

, otherwise



 



  

   

 

 


 =



x x

x x x x  (16) 

In comparison to the feasibility rule, the  -constraint 

method relaxes the constraints to some extent, which allows 
some non-feasible solutions with better objective values to be 
considered as feasible solutions. The effectiveness of this 
constraint handling approach heavily depends on the value 
selected for the parameter  . When 0 = , the constraint 

method can be regarded as the feasibility rule. Conversely, the 
constraint method becomes equivalent to the Pareto 
dominance-based constraint method. 

For multi-constraint parameter optimization problems, the 
population in the early generations of evolution may 
predominantly comprise infeasible solutions or have a low 
proportion of feasible solutions. In such cases, it is imperative 
to swiftly identify the feasible region to accelerate the 
convergence of the algorithm. To achieve this, utilizing an 
enhanced  -constraint method improves convergence, while 

in the later stages of evolution, an adaptive penalty function is 
employed to sustain population diversity. The specific mixed 
constraint handling strategy can be described as follows: 

max

( ) ( ), if 0

( ) (1 ) ( 1), if  and 

adaptive punalty function, if  and 

( ) 0, if 

nor

gen a

gen a

gen gen

gen
gen gen r gen N

g

r gen N

gen gen N









 

  





 = =

 = − −  

  

 = 

x

 (17) 
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where ( )gen  denotes the value of   during differing 

iteration processes, ( )nor

 x  represents the degree to which 

the th  individual in the initial population violates the 

constraint conditions, and the list is sorted by degree of 

violated constraints in descending order, and maxg  is the 

maximum number of allowed iterations; genr  is a proportion 

of feasible solutions in the population, a  is a parameter that 

influences the search preference in all regions, and [0,1]a  , 

and N   is the optimized control parameters. 

The adaptive penalty function can be formulated as  

 max'( ) ( ) ( ( )) ( ( ))i i i P i

norPF PF PF PF= + −x x x x  (18) 

where 
(1 )

10 1genr
P

 −
= −  has the ability to adjust the 

punishment level for infeasible solutions, '( )iPF x  is the 

target value after punishment, and maxPF  denotes the 

maximum value of each objective vector. 

IV. MULTI-OBJECTIVE OPTIMIZATION OF WORKING 

PARAMETERS IN FLIGHT MISSIONS 

A. Working condition parameter settings 

This paper demonstrates application of multi-objective 
optimization using a fighter jet flight mission as an example. 
The flight process generates a time-varying thermal load that 

is fixed at 40kW . 

TABLE I. presents the simulation parameters of the ORC 
system used in the optimization process. 

TABLE I.  MULTI-OBJECTIVE SIMULATION PARAMETERS 

Parameter Value 

Electronic device temperature 420 K 

Fuel temperature 300 K 

Ambient temperature 290 K 

Evaporation temperature (350-390) K 

Condensation temperature (310-350) K 

mass flow (0-50) g/s 

Environmental pressure 0.1013 MPa 

Pump isentropic efficiency 0.95 

Valve isentropic efficiency 0.85 

TABLE II. shows the control parameters of the 
multi-objective algorithm. 

TABLE II.  CONTROL PARAMETERS OF MOEA/D-FRRMAB 

Control Parameter Value 

Maximum number of generations maxg  1000 

Population size maxN  190 

Crossover probability cp  0.85 

Mutation probability mp  0.125 

Distribution index for crossover c  30 

Distribution index for mutation m  20 

B. Dual objective optimal result 

This section aims to optimize the flight parameters based 
on two out of three objectives, with all simulations assuming a 

thermal load of 40kW . The section will explore bi-objective 

optimization examples, which is minimize 1J  and 2J . 

Fig. 3 depicts the Pareto front for bi-objective. When 

minimize 1J  and 2J , the overall irreversibility exergy loss 

and the pump power are conflicting indicators. Therefore, 
decreasing the pump power under the same heat load 
conditions may result in an increase in the overall 
irreversibility exergy loss. It is influenced by entropy, mass 
flow rate, and ambient temperature, and indirectly affected by 
heat transfer efficiency and expansion efficiency. Thus, it is a 
multi-factor indicator. 

 
Fig. 3 Pareto front for bi-objective 

During real flight missions, the thermal load is subject to 
variation depending on the specific flight tasks. In this paper, 
the algorithm is evaluated based on the uncertainty of the 
thermal load. When minizine two objectives, the thermal 

load's uncertainty value is set to 30, 40 and 50 kWQ = . The 

resulting updated Pareto front is presented in Fig. 4. As 
shown, both the overall irreversibility exergy loss and the 
pump power increase with increasing thermal load. 
Consequently, considering thermal load uncertainty is a 
critical factor in optimizing the parameters. 

 
Fig. 4 Pareto fronts with uncertainty of heat load 

It is worth noting that the heat transfer effectiveness is 
subject to variation with different temperature differences 
between evaporation and condensation. Hence, it is crucial to 
evaluate the uncertainty of the temperature difference in the 
heat exchanger. When minizine two objectives, assuming a 
certain level of variation in the temperature difference, i.e. 

10, 20 and 30 KT = , the updated Pareto front is presented 
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in Fig. 5. It means that the change in the heat transfer 
temperature difference did not have a significant impact on 
the obtained Pareto optimal solutions. 

 
Fig. 5 Pareto fronts with uncertainty of temperature difference 

C. Three-objective optimal result 

We aim to concurrently optimize three objectives, namely: 

minimizing 1J , 2J  and 3J . 

Fig. 6 indicates the Pareto front for three objectives. From 
Fig. 6, it is apparent that the constrained optimization 
algorithm produced a Pareto solution set that is more 
uniformly distributed. The optimized parameter values 
resulting from the optimization will be utilized to select flight 
parameters. Additionally, the optimal parameters can be used 
to establish a parameter database that can be promptly 
accessed during real flight missions. 

 
Fig. 6 Pareto fronts for three objectives 

In addition, similar to bi-objective optimization, changing 
the heat load changes the Pareto front of the three objectives. 

V.  BASED ON THE ENTROPY WEIGHT-TOPSIS METHOD FOR 

OPTIMAL SOLUTION SELECTION 

The MOEA/D-FRRMAB algorithm generates numerous 
uniformly distributed non-dominated solutions, as 
demonstrated in Fig. 6. However, during actual flight 
missions, only a single parameter set is necessary. To assess 
the quality of the solutions that dominate, an improved 
entropy weight-TOPSIS was utilized in this research. Unlike 
traditional subjective analysis, the weights of each index were 
determined using entropy weighting, which is a more 
objective method. 

The entropy weight-TOPSIS method is a 11-step process 
as described, as illustrated in Fig. 7. After extensive testing of 
the algorithm, improvements were made in the fifth step. As a 
result of these improvements, the new evaluation criteria 

matrix could measure the degree of dispersion in a better way. 
The optimized entropy weight-TOPSIS method generates 
proximity and ranking for points in the Pareto front. The 
proximity of the solutions corresponds to their ranking. 
Solutions with higher proximity are given a higher rank. 

The current method for normalizing the standard matrix 
involves using (19) for the calculation.  

 
1

n

ij ij ijj
P s s

=
=   (19) 

However, it does not reflect the degree of dispersion and 
therefore cannot be used to calculate entropy. This is because 
entropy is a measure of the degree of dispersion, not the 
degree of concentration. Thus, probabilities cannot be 
calculated based solely on concentration. In contrast, the 

variable ijP  measures concentration. 

Therefore, we use (20) to calculate the entropy of the data, 
which reflects its degree of dispersion. This method can avoid 
the problem in probability calculation. The specific steps are 
reflected in step 5 of Fig. 7. 

 2 2

1
' ( ) ( )

n

ij ij i ij ij
P s s s s

=
= − −  (20) 

where ijP  and 'ijP  represent the old and new weight 

respectively, ijs  is element in evaluation criteria matrix, is  is 

the average of ijs  as j  goes from 1  to 3 . 

 

Fig. 7 Enhanced entropy weight-TOPSIS method 

The entropy weight-TOPSIS approach was used in this 
study to determine the optimal flight parameters for quality 
flow rate of the evaporator, condenser temperatures, and 
refrigeration capacity. According to Part C in Section IV, the 
Pareto fronts are different for different heat loads, and using 
the entropy weight-TOPSIS method to select the optimal 
solution among the Pareto fronts for 

20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 and 75kWQ = , the 

results in Fig. 8 are obtained. Fig. 8 presents the results. 
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Fig. 8 Multi-objective optimization parameter trajectory 

VI. CONCLUSIONS 

This paper establishes a MOO mathematical model for 
organic Rankine cycles, which can minimize energy 
consumption, exergy losses, and compression ratio 
coefficients. Additionally, a hybrid constraint processing 
strategy is proposed in order to handle the MOO problem 
with constraints. This proposed strategy utilizes the 
information of excellent infeasible individuals to significantly 
improve the effectiveness of the MOEA/D-FRRMAB 
optimization algorithm. 

The generation of the evaluation criteria matrix in the 
entropy weight-TOPSIS method is improved to make it a 
better measure of the degree of dispersion. Using the 
improved method to choose the optimal solution in the Pareto 
front makes the selection more objective. 

These measures improve the stability of the ORC, and 
help to recover heat generated by electromechanical systems. 
In the future, more influencing factors in the operation of 
hypersonic vehicle will be considered and improve our work. 
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