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Abstract— Cultivated for its ornamental appeal, the Malabar 

chestnut demands precise  planting for optimal growth, 

emphasizing the necessity of downward-facing seed germination 

points. Amidst a scarcity of agricultural labor, there is a growing 

demand for automated planting solutions. This paper presents 

an automatic planting machine for Malabar chestnut, utilizing 
deep learning image recognition to ensure proper seed 

orientation during planting. The machine incorporates a novel 

mechanism, leveraging high-speed pneumatic action and 

mechanical principles to guarantee accurate seed orientation. 

We provide insights into the architecture and training of the 

convolutional neural network-based recognizer, the design and 

analysis of the planting machine, and the system’s performance 

in fie ld tests. Results from field tests affirm an 85% success rate 

in proper seed planting, achieving an average planting speed of 

one seed every 3 seconds. 

I. INTRODUCTION 

Malabar chestnuts (Pachira aquatica) are widely cherished 

as ornamental potted plants (see Fig. 1). Yet the traditional 
manual planting process has presented challenges such as high 
labor intensity, increased costs, and inconsistent quality. A 

crucial aspect of Malabar chestnut cultivation lies in carefully 
considering the germination point’s orientation during 
planting to ensure proper growth. 

In response to these challenges, this study focuses on 

developing an innovative automated seeding system tailored 
for Malabar chestnuts. The proposed system integrates 
advanced technologies, including convolutional neural 

network (ConvNet)-based [1] image recognition and 
pneumatic principles. This combination allows for seamless 

seed recognition and precise planting automation, addressing 
labor-related concerns and enhancing overall planting 
efficiency. 

The design incorporates a holistic vision approach, utilizing 

ConvNet to distinguish between various seed poses. 
Specifically, the model ensures that seeds are planted with 
their germination points facing downward. The planting 

mechanism, employing pneumatic actuation, is designed 
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based on the contact dynamics of the punch head and the seed. 

The results achieved a simple and cost-effective solution for 
pragmatic agricultural applications. The contributions of this 
work include the following: 

1) A ConvNet-based seed orientation classifier for Malabar 
chestnut based on holistic visual recognition. 

2) An automated planting machine for Malabar chestnut, 
comprising seed orientation detection and a novel 
planting mechanism.  

3) Field tests that verify the efficacy of the proposed system. 

II. RELATED WORK 

A.  Agricultural Machinery and Automatic Planting 

The literature study reveals the extensive application of 
agricultural machinery across diverse fields, guided by 
engineering principles such as agricultural mechanization, 
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Fig. 1. Malabar chestnut, an ornamental potted plant, benefits from optimal 
growth when seeds are planted with a downward germination point. This 
study introduces an automated planting machine designed to ensure 
accurate seed orientation during the planting process.  
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power and transmission, mechatronics, and control [2]. 
Sowing and planting, integral agricultural tasks, have been 
addressed through various furrow opener designs, focusing on 
their impact on plant emergence rates and final stand outcomes 
[3]. Automatic garlic planters, developed to alleviate the 
demand for substantial labor [4, 5], feature essential 
components like a seed-taking device, a multi-stage conical 
hopper ensuring precise seed orientation, and a pneumatic 
control system. The optimal design of spoon dimensions and 
spacing enhances the single-seed-taking rate in the seed-taking 
device, while computer vision aids in adjusting garlic clove 
orientation [6]. 

Drawing insights from garlic planter design principles for 
the automatic sowing machine of Malabar chestnut, given the 
similarity in seed sizes, reveals a critical distinction. The half-
moon of garlic cloves allows conical hoppers to orient the 
cloves in point-up positions, which does not apply to the highly 
irregular shape of Malabar chestnut seeds. Therefore, a distinct 
approach must be devised for the automatic planting machine 
of Malabar chestnut.  

B.  Seed Recognition and Visual Classification 

Seed recognition and sorting play a crucial role in several 
agricultural sectors, ensuring the consistency of crop yields, 
e.g., wheat [7], rice [8], and corn [9]. Traditionally, manual 
visual inspection has been the primary method, but its high 
error rate and labor intensity make it less than ideal [10]. The 
advent of machine vision and computer vision has paved the 
way for automated seed recognition and sorting. The visual 
classification relies on various features such as morphology [8, 
11], color [8, 11, 12], and texture [8, 12] of the seeds, 
traditionally extracted through image processing techniques, 
necessitating the careful design of image preprocessing. 

Machine learning and deep learning have facilitated 
human-level accuracy in diverse applications such as plant 
disease detection and classification, weed/crop discrimination, 
fruit counting, land cover classification, and crop/plant 
recognition [1]. The rise of deep learning, exemplified by 
ConvNets of substantial depth, has demonstrated the ability to 
extract abstract features beyond the capabilities of previous 
methods [1, 13, 14]. An illustrative example is the end-to-end 

classification of rain conditions on an automobile windshield, 
where a ConvNet model, trained with extensive data, identifies 
rain conditions amidst diverse backgrounds without the need 
for feature preprocessing [15]. Eliminating this preprocessing 
reduces labor requirements and enhances robustness by 
extending the variable dimension. 

Numerous methods have been employed for seed 
classification, including Euclidean distance [7], artificial 
neural network [9, 10], genetic algorithm [9, 12], support-
vector machine [8, 9, 12], k-nearest-neighbor [8, 9], and 
maximum likelihood [11]. In a study on corn seed variety 
classification, Javanmardi et al. [9] compared various 
frameworks and found artificial neural networks 
outperforming support vector machines, k-nearest-neighbors, 
boosted trees, bagged trees, and linear discriminant analysis, 
particularly when coupled with feature extraction by ConvNet. 
The high feature extraction efficacy and classification 
accuracy of ConvNet motivates the design of our method. 

III. METHOD 

A. Automatic Planting Mechanism 

The Malabar chestnut planting machine proposed in this 
study comprises components such as the seed container, seed 
transmission, seed recognition system, furrow opener, 

planting system, furrow closer, battery, and PC-based control 
system, as illustrated in Fig. 2. The seed transmission employs 
a chain with spoons to extract seeds from the seed container, 

guiding them through the seed chute into the recognition box. 
Customization of spoon size and spacing based on seed 

dimensions ensures single seed-taking, and each seed is 
accurately conveyed into the chute with guidance to land 
within the locating ring. 

The furrow opener adopts a dual-disc structure with a 20° 

opening, effectively turning over the soil as the machine 
advances to maintain looseness during seeding. After 
successful seed planting, optimal seed growth necessitates 

covering the seeds with a specific soil thickness. To achieve 
this, we employ a scraper-type furrow closer. By selecting the 
scraper’s appropriate height, angle, and rigidity, effective 

    

Fig. 2.  Left: Schematic illustration depicting the mechanism design for the automatic planting machine of Malabar chestnuts; right: the prototype. 
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control over soil thickness and uniformity is ensured, 
facilitating proper coverage for the seeds. 

The seed recognition box is a compound device 

encompassing multiple components for image acquisition, 
seed holding, and pneumatic seed planting and flipping. The 

recognition box integrates metal and plastic structures to 
securely house an endoscope, a pneumatic cylinder, a nozzle, 
a seed locating ring, and a rubber pad with a star-sign-shaped 

opening. The locating ring ensures precise seed placement at 
the center of the rubber pad, facilitating clear imaging of seeds 
by the endoscope. The star-sign-shaped opening in the rubber 

pad passively accommodates the seeds during the planting 
process. This straightforward design provides a pragmatic, 
cost-effective solution to fulfill the required functionality. 

The pneumatic cylinder facilitates swift and precise seed 

planting into the soil. The 3D-printed housing of the cylinder 
head combines strength with lightweight characteristics, 

while the silicone punch head ensures an even distribution of 
contact pressure on the seeds. This prevents seed damage and 
enhances friction, allowing seeds to be planted rapidly 

without altering their orientation. Within the recognition box, 
a strategically positioned nozzle directs air towards the seed. 
When the seed orientation is deemed undesirable, an air 

stream is released from the nozzle to flip the seed until its 
orientation aligns with the desirable condition, confirmed by 

the visual recognition system. Fig. 3 provides a detailed 
depiction of the recognition box design. 

The free-body diagram of the pneumatic cylinder and the 
seed is shown in Fig. 4. The pneumatic pressure acting on the 

cylinder applies a contact force 𝑁 on the seed and pushes it 
downward. The forces and the acceleration of the components 
follow Newton’s laws in the vertical direction, 

𝑀𝑔+𝐹 −𝑓 − 𝑁= 𝑀𝑎,                           (1) 

𝑁+𝑚𝑔 = 𝑚𝑎,                                (2) 

where 𝐹  denotes the pneumatic force, and 𝑓 is the friction 

force. By combining (1) and (2), one obtains 𝑁 as 

 𝑁 =
𝑚(𝐹−𝑓)

𝑀+𝑚
.                                  (3) 

The normal force on the seed provides a locking effect 
through the contact friction between the surfaces of the punch 

and the seed. Denoting the maximum static friction 

coefficient as 𝜇𝑠, the maximum static friction 𝑓𝑠 is 

𝑓𝑠 =𝑁𝜇𝑠.                                   (4) 

Such static friction can provide a stabilization effect to 
prevent the seed from rotating during the planting stroke. 
Assuming the seed as a perfect sphere with a radius of 𝑏. The 

moment around the sphere center can be regarded as 
generating a resistance to a perturbation defined as an angular 

acceleration 𝛼. By seeking the force equilibrium, 

𝛼 =
𝑓𝑠𝑏
2

5
𝑚𝑏2

.                                   (5) 

Table I lists the parameters used in our prototype. The 
average radius of the Malabar chestnut is around 7.5 mm. 

Assuming a static friction coefficient of 0.4 for the silicone 
punch head, the maximum static friction was derived as 0.95 
N. Based on (5), the maximum 𝛼 was obtained at 1.8e5 rad/s2. 

The planting distance is approximately 3 cm; thus, it only 
takes around 0.0067 s for the seed to be planted on the earth. 

The field test results detailed below confirmed the 
stabilization effect of the design.  

B.  ConvNet-Based Visual Detection  

We employed a holistic vision approach for seed 
orientation classification, utilizing ConvNet to develop a 
model capable of distinguishing different conditions of 
Malabar chestnut seeds based on the entire image without any 
preprocessing. This image recognition model ensures that 
seeds are planted in the soil with their germination point facing 
downwards. In cases where the germination point is not facing 
downward, the machine autonomously takes corrective actions 

 
Fig. 4. The Free-Body Diagram of the pneumatic planting mechanism. 
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until the ConvNet detection confirms a downward germination 
point.  

The model categorizes the input image into three classes: 
germination point up, down, and no seed present. We 
downsize the input RGB images to 64× 64  pixels for 
efficient online recognition speed. Seeds were placed in the 
recognition box for training data collection, using an 
endoscope camera to capture images. The endoscope’s built-
in light source ensured consistent lighting conditions among 
training and working images. The recognition box prevents 
external illumination interference and maintains consistent 
lighting. The training set comprises 18,000 images, with 6000 
images per category. A breakdown of the training image 
composition is provided in Fig. 5. To evaluate the model’s 
performance, a separate test set of 300 images was collected, 
with 100 images for each category.  

The ConvNet model is composed of four convolutional 
layers, four pooling layers, a flattening layer, and additional 
drop-out layers before the output layer. Convolutional layers 
extract local features from input data through convolution 
operations while pooling layers reduce dimensionality and 
sample the input image, enhancing computational efficiency 
and robustness. Drop-out layers reduce the risk of overfitting. 
The architecture includes 16 3 × 3 convolutional kernels in 
the first layer, 32 in the second layer, 64 in the third layer, and 
128 in the fourth layer. Pooling layers progressively reduce the 
image size: the first layer from 64× 64  to 32× 32 , the 
second from 32× 32 to 16 × 16, the third from 16 × 16 to 
8 ×8 , and the fourth from 8 ×8  to 4 ×4 . All activation 
functions for these layers are ReLU. The model uses 
categorical_crossentropy as the loss function and employs the 

Adam optimizer with a fixed learning rate of 0.001. The 
flattening layer comprises 2048 neurons, connected to the final 
output layer with three neurons. This architecture has 360,099 
trainable parameters; Fig. 6 shows a schematic diagram of the 
ConvNet architecture. During training, epochs are set to 10, 
with 1133 batches, each containing 16 sample sets. The 
performance of the trained model is detailed in Section IVA.  

C.  Control  

Recognition of the seed orientation involves an onboard 
computation by a Raspberry Pi; the results are transmitted to 
the relay and electromagnetic valves, controlling the 
pneumatic cylinder and nozzle for seed planting and flipping. 
Fig. 7 provides an overview of the entire machine’s electronic 
control system, comprising a computing unit (Raspberry Pi) 
with intelligent recognition software, sensors (endoscope), and 
actuation components (transmission motor, pneumatic 
cylinder, and nozzle). The logic control program is detailed in 
Fig. 8. 

Initially, the seed transmission motor driver receives an 
activation signal, instructing the stepper motor to set the chain 
of seed transmission in motion. The spoons affixed to the chain 
guide the seeds into the chute, covering a specific distance 
before descending into the recognition box. Subsequently, the 
program triggers the endoscope camera for recognition, 
categorizing outcomes into three cases: Case A, signifying 
seeds with downward-facing germination points; Case B, 

 
Fig. 6. Architecture of the ConvNet-based seed orientation classifier. 
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Fig. 7.  Schematic diagram of the electronic control system. 
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indicating seeds with upward-facing germination points; and 
Case C, denoting an empty recognition box with no seed 
present. 

In Case A, the switch status dictates the course of action. 
Activating the switch initiates the pneumatic cylinder, 
facilitating seed planting; deactivating the switch reverts the 
process to image recognition. The switch pauses the planting 
action when the machine’s movement requires attention. For 
Case B, the nozzle directs air onto the seed, adjusting its 
orientation, followed by a subsequent round of visual 
recognition. In Case C, the program resets to the program’s 
beginning, activating the spoon to feed a seed into the 
recognition box. 

The control logic is handled by a Python program running 
on the Raspberry Pi, enabling the autonomous operation of 
each mechanism. This design allows for the independent 
functioning of multiple assembled mechanisms, ensuring 
control programs can execute without interference. However, 
a status check is conducted for each mechanism to verify the 
completion of seed planting before advancing the planting 
machine to the next position for subsequent seed planting.    

IV. EXPERIMENTS 

A. Visual Detection Accuracy 

In this experimental assessment of the visual detection 
model, we obtained 300 images online for testing, and the 
confusion matrix results are presented in Fig. 9. Notably, 
among the 300 test images, the model exhibited flawless 
performance, achieving 100% correctness across all three 
classes. These findings emphasize the model’s robust and 
accurate classification capabilities.  

B. System Tests 

The automatic planting process was subjected to rigorous 
testing on the proposed machine to assess its performance. Out 
of over 100 planting attempts, the machine successfully 
deposited the seeds onto the soil and none of the seeds incurred 
damage from the punching force. Evaluation metrics 
encompassed the overall success rate, planting error rate, 
speed of visual classification, and the average planting 
duration per seed. The overall success rate is calculated as the 
ratio of correctly planted seeds to the total planting attempts. 
The planting error rate identifies instances where Case A was 
detected, but the outcome was an upward germination point. 

The speed of visual classification quantifies the frame rate per 
second for executing a single ConvNet classification. Finally, 
the average planting duration represents the mean time 
required to plant a single seed. 

Table II presents the test results, revealing an 85% overall 
success rate in 100 planting attempts and a corresponding 15% 
planting error rate. This outcome highlights the nearly flawless 
performance of visual detection, while errors are attributed to 
the pneumatic planting process. Upon a comprehensive 
analysis of the planting video, two primary failure mechanisms 
were identified. The first arises from the punch head’s 
detachment at the process’s conclusion. Although the silicone 
punch head’s adhesive properties aid seed stabilization during 
planting, excessive adhesion can cause seed lifting during the 
cylinder retraction, leading to disorientation upon falling back 
onto the soil. The second issue stems from seeds tilting against 
the side wall of the locating ring. This, coupled with the 
irregular seed shape, may induce an imbalance of forces, 
resulting in rotation during the punching process. 

The planting time for each seed is crucial in determining 
the efficiency and practicality of this machine. The test results 
indicate that the average planting duration for a seed is 
approximately 3 seconds. A detailed analysis of the planting 
time reveals that ConvNet detection is not the bottleneck, as it 
operates at an average framerate of 5.8 fps, and the inspection 
time is a mere 0.17 seconds. The rapid punching action also 
contributes minimally to the overall time. The predominant 
duration is allocated to flipping a disoriented seed 
(approximately 1 second), transporting the seed to the 
recognition box (1 second), and waiting for the seed to settle 
after planting (0.5 seconds).  

Malabar chestnut seeds are typically egg-shaped, 
asymmetric with one end slightly protruding and the other flat, 
usually housing the germination point. About 70% of seeds 
naturally align within the recognition box with their 
germination points facing downwards, while the remaining 
30% require flipping, some needing multiple attempts. The 
machine demonstrates that a single mechanism can efficiently 
plant one seed every 3 seconds. By incorporating three or more 
mechanisms into the setup, the machine can achieve a planting 
rate equal to or higher than one seed per second, surpassing the 
efficiency of manual planting.   

V. CONCLUSION  

In conclusion, developing and evaluating the automated 
planting machine for Malabar chestnuts marks a significant 
advancement in addressing the complexities of seed 
orientation during planting. The integration of ConvNet image 
recognition and a novel planting mechanism has proven to be 
a promising solution, as evidenced by the machine’s 
remarkable efficiency in achieving a planting speed of one 

 
Fig. 9. Confusion matrix for online seed orientation detection. 
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seed every 3 seconds. Despite a 15% planting error rate 
identified during testing, critical insights into potential failure 
mechanisms, such as punch head detachment and seed tilting, 
provide valuable feedback for future refinement. 

The independent operation of each mechanism, managed 
by a Python program on the Raspberry Pi, ensures flexible and 
interference-free execution, laying the groundwork for the 
scalable implementation of multiple mechanisms. While 
challenges persist, the overall success of the machine and its 
efficiency in comparison to manual planting showcase its 
potential to revolutionize Malabar chestnut planting. Our 
subsequent research objective entails endowing the 
autonomous capability of self-navigation to the machine 
within agricultural environments. A video demonstrating the 
planting machine’s operation is available at: 
https://www.youtube.com/watch?v=PS5_63MCsnQ. 
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Fig. 10. Field Test Photographs: upper left: Malabar chestnuts in the seed container and seed transmission; upper center: receiving end of the seed chute; 

upper right: top view of the recognition box; lower left: online image of the seed inside the locating ring; lower center: seed being punched onto the earth; 
lower right: planting result showing the germination point facing downwards. The white star-shaped traces in the image result from the built-in light 

source shining through a star-shaped opening in the rubber pad. 
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