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Abstract—To successfully adhere to flight plans, aerial vehicles
must keep track of their location in 3D space, which is usually
reliant on external references such as GNSS which are suscep-
tible to interference. To develop self-reliant onboard positional
localization, a workflow using 360-degree panoramic images in
an image-based localization system using a Deep Convolutional
Neural Network is proposed. 360-degree panoramic images have
the advantage that they take into account visual information from
all angles. Model performance is also enhanced by generating
synthetic data from a 3D model of the region of interest created
via photogrammetry techniques. The performances of different
training configurations are compared, and the configuration with
mixed real and synthetic data exhibits the highest performance,
an approximately 10 to 15 percent improvement over using solely
real data. Additional image augmentations also further reduce
the localization error by 8 to 15 percent.

I. INTRODUCTION

Aerial vehicles (both manned and unmanned) navigate via
a suite of sensors, mainly the combination of an Inertial
Measurement Unit (IMU) and the Global Navigation Satellite
System (GNSS) for positional reference. However, with the
vulnerability of satellite-based localization (GNSS) (or any
other radio-wave based localization methods) to interference,
be it natural (weather, multi-pathing from objects) or artificial
(jamming and spoofing), there is a growing need for an
absolute localization system in 3D space without reliance
on an external system. A possible solution for a self-reliant
onboard localization method is to use image-based methods.

The idea of using a single image for localization has been
quite attractive, and has been studied in numerous works such
as [1], and also [2], [3] and [4], which uses Convolutional
Neural Networks (CNNs) as a feature extractor and additional
hidden layers for pose regression. Captured images are also
automatically labelled using a Structure-from-Motion (SfM)-
based workflow. Also, PoseNet [2] was one of the first few
works to propose using CNNs for visual localization to solve
the kidnapped robot problem. A more portable version of
PoseNet for mobile devices was proposed in [5]. In the
aerial domain, the use of satellite imagery as reference has
also been explored. The authors in [6] proposed a similar
solution to PoseNet but used high altitude satellite imagery
as the training data, which allowed large-scale absolute visual
localization for aerial vehicles. The work in [7] involves the
development of a cross-view geolocalization method with the
aid of georeferenced satellite imagery.

With the increase in availability of 360-degree cameras,
several works have leveraged on this, for example [8], which

proposed using 360-degree cameras for indoor localization
using feature matching. The authors in [9] proposed using
the native 360 images from Google Maps as a dataset for
localization. Another work in [10] used 360-images matched
with satellite imagery for crosswalk localization for visually
impaired pedestrians. Other uses of panoramic images com-
bined deep learning include depth perception [11], as well as
more specific cases such as fire detection [12]. In our work,
we extend and explore the use of panoramic images for aerial
localization. Most of the works mentioned above focus on
ground-based datasets with rich urban features.
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Fig. 1. Summary of the workflow proposed in this work.

Using deep neural networks for visual localization requires a
rather dense sampling of the region of interest. Creating image
datasets has always been a challenge, which is why there is an
increasing trend towards using synthetic data to enhance model
performance. In the realm of semantic segmentation, there are
works such as [13] that prove its viability. Data generation
for autonomous car use has also been explored in [14]. The
notion of capturing reality and converting real-life environ-
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ments into digital twins has also become increasingly popular
and accessible. Photogrammetry has been widely used for
architectural preservation and also for creating in-game assets.
Photogrammetric reconstruction to generate realistic images
to enhance model training has also been explored in [15].
For geolocalization purposes, the authors in [16] proposed
a scalable localization method using multimodal synthetic
data. The advantage of using photogrammetric methods is that
existing data and non-360 images of the area of interest can be
leveraged. An example of such data is the Virtual Singapore
project, which includes a textured 3D digital map of Singapore
[17].

In this work we propose a workflow that combines the use
of panoramic 360-degree images for image-based localization,
and enhancing the training process using synthetic images
generated from a photogrammetric 3D model. Our method can
take advantage of the recent advances in 360-degree cameras
which boasts real-time image stabilization and stitching of
images, and output a standard equirectangular image (2:1
aspect ratio). Unlike the 6-DOF relocalization used in the
PoseNet papers, we only focus on the 3D XYZ cartesian
position for this work due to the nature of the panoramic image
representation.

II. DATA COLLECTION AND PREPARATION

In this section, we present the workflow used for obtaining
the training data, for both real aerial images and the generated
synthetic data.

A. UAV-mounted Camera

Fig. 2. DJI Air 2 with INSTA360 Sphere Camera. Top View (Left) and Side
View while flying (Right).

To obtain the required 360-degree images, we opt to use a
DJI AIR 2 together with an INSTA360 Sphere camera. The
benefit of the INSTA360 Sphere system is that it provides
an unobstructed 360-degree view, as the drone is sandwiched
between the two lenses, essentially hiding it from view. The
advantage of this setup is the ability to simultaneously capture
normal non-360 images to enhance the 3D reconstruction for
the synthetic data generation.

To obtain the image-position correspondence, the flight log
was downloaded and the GPS location of the UAV is extracted.
As the images are time-stamped, we can then match them with
the corresponding flight data. The data used in this work was

collected over two days, both around late afternoon and was
relatively overcast. To represent the full 360-degree image in a
2D space, we would use the popular equirectangular projection
throughout this work.

B. 3D Model Reconstruction

As normal non-360 images are also captured via the DJI
drone camera, we can reconstruct a 3D model of the scene
via photogrammetry techniques. A total of 223 12-Megapixel
geotagged images were used for the reconstruction.

RealityCapture was the software used for the reconstruction.
We used a ground control point in the middle of the scene
to act as the reference for the rest of this work. The GPS
coordinates are also converted to XYZ-coordinates with the
reference point being in the middle of the environment.

Fig. 3. Image Alignment and 3D Reconstruction.

C. Generating Sample Points and Synthetic Data

To generate the synthetic data, we position virtual 360
cameras in the reconstructed 3D scene and render the images.
In our workflow, the 3D model is imported into a Digital
Content Creation (DCC) software, in our case we chose
Houdini by SideFX for its procedural workflow. The positions
of the virtual 360 cameras are randomized following a uniform
distribution within a specified bounding box, which we can
define as the operating area of the UAV. The number of images
to generate is also set beforehand.

A panoramic sky background is also added in the virtual
scene to make the data more realistic. A randomized rotation
of the skies is also applied with each synthetic image.

Fig. 4. Examples of the rendered synthetic data with different skies in
equirectangular format.
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III. LOCALIZATION NETWORK AND TRAINING

A. Localization Network

Input 360 Image

299x299x3

2048x1

3x1

CNN Feature 
Extractor 

(Incep�onV3)

Output Loca�on

FC Layers

Fig. 5. Localization Network Flow.

The network consists of a main image feature extractor,
which condenses the input image into a 2048-size vector,
and feeds into 2 fully connected layers for the position
regression, similar to the PoseNet architecture mentioned in
the introduction. InceptionV3 [18] pretrained on ImageNet was
used for the CNN, with a global max pooling layer added.

B. Training

We use Mean Square Error (MSE) as the loss function for
training:

L =
1

N

N∑
i=1

(xi − yi)
2 (1)

The NAdam optimizer [19] was used with a low learning
rate of 0.0001 and β1 = 0.9, β2 = 0.999, ϵ = 1e−8. The
images in the training datasets are also randomly shuffled be-
tween each epoch, and are fed into the training as minibatches
of 24 images. Weights in the CNN feature extractor were also
enabled for fine-tuning.

C. Data Augmentation

Several image augmentation techniques are employed to
prevent the network from overfitting given the limited number
of images. We used the Albumentations [20] library to im-
plement the augmentations into our workflow. The parameters
of the augmentation techniques are determined heuristically.
Standard rotation and affine transform augmentations which
are usually applied for classification and segmentation net-
works were not used here.

1) Hue Saturation Value: The hue, saturation and value
of the input image are randomly varied to help the network
generalize better.

2) Equirectangular Image Translation: Transforming and
wrapping an equirectangular image horizontally is equal to
rotating the 360 image sphere about the vertical axis. In this
way we try to get the network to not overfit to a certain
orientation.

3) Random Rain: Random Rain applies slight blurring and
random raindrops to add noise to the image, essentially at-
tempting to simulate different environmental conditions with-
out doing so physically. This augmentation technique has been
used in autonomous vehicle scenarios. [21].

4) Coarse Dropout (Blackout): This augmentation tech-
nique randomly ’blocks’ part of the image by setting the
area to black, as described in [22]. This can be thought of
as simulating a partial obstruction of the 360 image.

Examples of the augmentations listed above are individually
presented in Fig. 6.

Coarse Dropout

Random Rain Horizontal Translate

Random HSV

Original

Fig. 6. Image Augmentation Examples.

IV. EXPERIMENTS

We conducted two main experiments using our workflow.
The first is in an indoor lab environment, and the second is
an outdoor field.

A. Results (Indoor)

For this work, we started with a small proof-of-concept in
a controlled indoor environment with an abundance of visual
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features. For this case, we went with full synthetic data for the
training (around 400 images). The indoor lab reconstruction,
and examples of the respective synthetic and real test images
used are presented in Fig. 7.

Synthe�c Image Real Image

Indoor Reconstructed 3D Model (Clip Sec�on)

Fig. 7. Top: The reconstructed 3D model of the indoor lab environment. Left:
An example of a synthetic image. Right: The real images used for testing.

The real 360-image data for the indoor environment was
captured with an INSTA360 One X mounted on a selfie stick
with motion capture markers mounted on it to obtain the
ground truth. The coordinate systems of the 3D reconstuction
and the motion capture system are synchronized using ground
control points.
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Fig. 8. Plots of the vision localization data against the ground truth motion
capture data for all three axes. (Results are from the training set with data
augmentation.)

Similar image augmentation was applied for the indoor
dataset except for the RandomRain function. From the results

0
2

0.5

1

1 2

1.5

Overall Error: 0.36252 m

10

2

2.5

0-1
-1

-2
-2

Vision
Ground Truth

Fig. 9. 3D Plot of the indoor test of the vision data against the ground truth.
This result is from the configuration with data augmentation.

Med.
X err.

Med.
Y err.

Med.
Z err.

Med.
distance err.

No augmentation 0.3648 0.4880 0.1744 0.7063
With augmentation 0.1503 0.1639 0.2047 0.3625

TABLE I
MEDIAN ERRORS FOR THE INDOOR TESTS.

presented in Fig. 8, we can observe that predicted values track
the ground truth quite closely. There is also a large offset for
the first 5 seconds in the X- and Z-axis. We suspect this is
due to the obstruction caused by the human operator and part
of the motion capture marker mount. A 3D plot of the testing
space and the trajectories are presented in Fig. 9. As displayed
in Table I, augmenting the dataset reduces the error by at least
half.

B. Results (Outdoor)

For the outdoor part, we chose an open space in the southern
part of Singapore (Tuas South Avenue 16) as the testbed for
our workflow. The environment is mostly empty field with a
sparse collection of low-lying buildings and spans an area of
around 250 m by 220 m (5.5 Ha). It can be noted that this
area is rather featureless and thus can pose quite a challenge
to image-based methods.

The respective outdoor dataset is separated into Train and
Validation (80-20) split. An additional independent test set
is also prepared and only contains real images. This will be
used as the benchmark for comparing the performance of the
different training configurations.

C. Performance Comparisons and Discussion

We quantitatively compare the results between the different
training configurations, as displayed in Table II. Across the
three different combinations of real and synthetic data, adding
the image augmentations help to reduce the median error by
at least 8 to 15 percent. The configuration with the mixed
synthetic and real data outperformed configurations with only
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Fig. 10. XY Plot (equivalant to a top view) of each of the different training configurations on the test dataset. The test dataset is uniformly sampled from
the initial images to cover the entire volume of interest. The top row are the results from training without augmentation, and the bottom row are from the
configurations with augmentation.

Train Config. X-Median Err. (m) Y-Median Err. (m) Z (Altitude)-Median Err. (m) Median Distance Err. (m)

Full Real 7.616 9.250 2.784 16.334
Full Synthetic 19.526 22.617 9.522 39.209
Mixed 50% 7.025 9.112 1.583 15.235

Augmented Real 8.846 9.411 2.398 17.724
Augmented Synthetic 11.852 20.539 6.488 32.556
Augmented Mixed 50% 7.102 7.787 2.167 13.641

TABLE II
COMPARISON OF THE MEDIAN ERROR REPORTED FOR EACH CONFIGURATION.

real or synthetic data, and the ones with only synthetic data
performing much worse. We suspect that the reconstruction
alone might not possess enough detailed features for the net-
work to localize on, but it is able to help the network generalize
better when mixed with the real images. The seemingly high
error might also stem from the location being rather featureless
with little to no buildings surrounding the area, compared
to the indoor environment discussed in the previous section,
which possess features from top to bottom. We also suspect
that while the real data contain more detailed images, mixing
synthetic data helps improve performance as the network is
further exposed to image location correspondences that are
not present in the real image dataset.

Focusing on the XY position as presented in Fig. 10, we
can qualitatively observe that the configuration with image
augmentation and mixed data performs better, with the pre-
dictions being closer to the ground truth point. Also, we can
notice that the error lines generally increase on the right side

of the graph, which corresponds to the location with lots of
similar-looking trees away from the main building on the left
side, and we suspect that the lack of color difference might
contribute to the larger error on the right side.

When looking at the top ten worst images across all the
training configurations, (visualized in Fig. 11 with the cor-
responding ground truth location), we can see a few trends
which we suspect might cause the localization to fail. The first
is the distortion in the images, the more obvious ones being
test image number 79 and 13. This distortion comes the built-
in stabilization of the 360-camera that we use, most probably
from the high acceleration that the drone experiences, which
might cause an issue with the stabilization. As our workflow
relies on the built-in stabilization, these stabilization failures
would cause an issue with the localization performance, and
thus would have to be resolved if it were to be implemented
in real-time.

Other images also include the lack of ground features which
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Fig. 11. Ten images with the highest error across all training configurations. Notice the large image distortions and the lack of features in some images.

might confuse the localization network. For example in test
images 30 and 78, most of the image is just grass. Also, the
resolution of 299x299 being fed into the network might not
be enough to discern the small buildings in the background.
As 360-degree images encompass the entire surrounding view,
more data are packed into the same resolution compared to
an image with a narrower field of view. A possible way to
mitigate this is to crop out the sky and stretch out the bottom
half of the image to give more resolution to the more important
features on the ground. The possibility of exploring other 360-
degree projections can also be considered, for example, using
a stereographic instead of an equirectangular projection.

We also ran the localization network on a sample continuous
UAV flight representative of a typical operation in the area.
The results are presented in Fig. 12, with a top view XY plot
as well as the Z-altitude plot. It can be observed that the offset
(error) is more pronounced on the extreme left of the plot,
which might be due to the limitations mentioned earlier.

V. CONCLUSION

We have demonstrated the viability of using 360-degree
panoramic images for end-to-end aerial visual localization, and
the possibility to utilize 3D reconstruction data to enhance
the localization performance, in both indoor and outdoor
environments, achieving a median distance error of 0.3625 m
and 13.641 m respectively. In the future, we plan to explore
different panoramic image representations, and also deploy it
on an actual drone to perform real-time inference and closed-
loop control. We also plan to experiment with different loss
functions/feature extractors during training, and evaluate their
performance. Additionally, different network architectures can
also be explored.

-20 0 20 40 60
m

-100

-50

0

50

m

XY Plot (Top View)

Vision
Ground Truth

0 20 40 60 80 100 120
sec

0

10

20

30

40

50

60

m

Altitude

Vision
Ground Truth

Fig. 12. XY Plot (equivalant to a top view) and Altitude (Z) of a sample
continous UAV flight, representative of a typical UAV flight through the area.
(Using Mixed and Augmented data configuration).
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