
Quasi-static state feedback output tracking for a slung load system with
rotor drag compensation: PX4 SITL validation

Zifei Jiang, and Alan F. Lynch

Abstract— This paper presents a quasi-static state feedback
(QSF) for motion control of a Slung Load System (SLS)
which is a flat system consisting of a multirotor drone and
suspended payload. The design exactly linearizes the closed-
loop in new state coordinates. The linearizing feedback has
an important static dependence on state and does not require
a dynamic controller. After linearization, a straightforward
output tracking control ensures that error dynamics in the
design coordinates is linear and exponentially stable. The
control design compensates for rotor drag and is validated in
an open-source PX4 Software-in-the-Loop (SITL) simulation.

I. INTRODUCTION

There has been an increase in interest in using drones
for cargo transport [13]. A popular mode of transport is a
multirotor drone Slung Load System (SLS), where a cable
attached to the drone suspends the load. Benefits of the SLS
include manoeuvrability and a safe distance between the
payload and the vehicle. In addition, SLSs are lightweight
and do not require powered computer control as with gripper-
based solutions. Although SLSs are attractive for cargo
transportation, creating a rigorous high-performance motion
control is difficult due to underactuated nonlinear dynamics.
Drone SLSs are a part of the recent trend of ”unmanned
aerial manipulation,” which studies the interaction of aerial
robots with their environment [13].

The concept of differential flatness was first presented
in [3]. Flatness defines a so-called flat output which dif-
ferentially parameterizes the input and state. Open-loop
motion planning frequently employs this parameterization.
Work [7] used flatness for open-loop trajectory planning for
drone swarms and wheeled mobile robots. The nonlinear
SLS model has been proven flat under common modelling
assumptions in [10]. That paper uses flatness to perform
open-loop motion planning and takes a different approach to
feedback design. For traditional quadrotors, flatness-based
feedback control is developed in [1], in which convincing
experimental results are presented for aggressive trajectory
tracking. Flatness-based control provides high performance
with low computation compared to model predictive con-
trollers (MPC) [12]. Although flatness has been used for
open-loop trajectory planning for SLSs [10], it has not been
used for feedback control. A main benefit of adopting a
flatness-based closed-loop control is exact linearization of
the error dynamics. This provides a simple and immediate

Zifei Jiang, and Alan F. Lynch are with the Department of Electrical
and Computer Engineering, University of Alberta, AB, T6G 2R3, Canada.
Email: {zifei.jiang, alan.lynch}@ualberta.ca

∗ Corresponding author. Email: alan.lynch@ualberta.ca

stability result. This is in contrast to results in [10, 14] where
nonlinear multi-loop dynamics complicate stability analysis.

Compensating for rotor drag force in multirotor motion
control is an important problem [8, 6, 2]. Work [2] proved a
quadrotor dynamics with drag force is still flat and proposed
a flatness-based feedback control with drag compensation.
There are no known results on drag force compensation for
SLSs. Hence, our proposed design makes a contribution in
this regard. Compared to our work [5], this paper extends the
SLS model to include rotor drag. Another major extension
relative to [5] is on the implementation side. We present an
implementation of the proposed QSF in a PX4 software-in-
the-loop (SITL) environment to validate performance. This
is important for proving the developed controller can be
implemented on typical autopilots and is robust to model
error introduced in the SITL simulation environment. For
example, the controller in [11, 10] involves complex expres-
sions which are approximated for implementation. A video
shows the practical performance of the proposed control in a
SITL simulation https://youtu.be/fcOKLIxspCw.

II. SLS MODELLING

The suspended load is modelled as a pendulum attached
to the drone’s Center of Mass (CoM). Two reference frames
are used: a navigation frame N fixed to the earth and a
body frame B attached to the drone. We assume N is
inertial and has an orthonormal basis {n1,n2,n3} of vectors
oriented north, east, and down, respectively. The origin of
B is the drone’s CoM, and its basis {b1,b2,b3} has vectors
oriented forward, right, and down, respectively. We denote
pendulum position pL ∈ R3, pendulum attitude q ∈ S2, and
drone attitude R ∈ SO(3). The SLS configuration variable is
[pL,R,q] ∈ SE(3)×S2. The unit vector q is expressed in N
and parameterized with angles α and β where α is a rotation
about n1 and β is about n2. Load position pL and quadrotor
position pQ are related by

pL = pQ +Lq = pQ +L[sβ ,−sα cβ ,cα cβ]
T (1)

where L is pendulum length. The UAV dynamics is

ṗQ = vQ (2a)

mQv̇Q = mQgn3 −Rūn3 +T q−RDRT vQ (2b)
Ṙ = RS(ω) (2c)

Jω̇ =−ω × Jω + τ (2d)

where J = diag(J1,J2,J3)∈R3×3 is the inertia matrix for the
drone, ω ∈R3 is drone angular velocity, T ∈R≥0 is internal
force in the pendulum, ū ∈R≥0 is total thrust from the four

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 241

pL

mL,JL

mQ,J

pQ

L

b1

b2

b3

n1

n2
n3

β

α

Fig. 1: SLS Modelling

rotors, τ ∈R3 is body torque, g is the acceleration of gravity,
and mQ is UAV body mass. Matrix D = diag(dx,dy,dz) ∈
R3×3 includes mass-normalized rotor drag coefficients. The
rotor drag model assumes zero wind velocity. For details
on rotor drag modelling see [8, 2, 6]. A ZYX Euler angle
parameterization is used. We define η = [φ ,θ ,ψ]T ∈R3 and
have

η̇ =W (η)ω, with W (η) =

1 sφ tθ cφ tθ
0 cφ −sφ

0 sφ/cθ cφ/cθ

 (3)

where tθ = tanθ ,sθ = sinθ ,cθ = cosθ . The pendulum’s
dynamics is

ṗL = vL (4a)
mLv̇L =−T q+mLgn3 (4b)

q̇ = ωL ×q (4c)
JLω̇L =−ωL × JLωL +Lq× (mLgn3 −mLv̇Q) (4d)

where ωL ∈ R3 is angular velocity of load in N , and JL is
the load inertia matrix about the UAV CoM. For simplicity,
we have assumed a pendulum with massless rod and point
mass payload mL. We can express JL as

JL = mLL2(I −qqT) (5)

Substituting for T in (4b) and (2b), we have

mQv̇Q +mLv̇L = (mQ +mL)gn3 −Rūn3 −RDRT vQ (6)

Eliminating v̇Q in (6) using (1), we have

(mL +mQ)v̇L = (mL +mQ)gn3 −Rūn3 +mQLq̈−RDRT vQ
(7)

where q̈ = ω̇L×q+ωL× q̇ from (4c) is used. Combining (7)
and (1) yields

v̇Q =− mL

mQ +mL
Lq̈+gn3 −

Rūn3 +RDRT vQ

mQ +mL
(8)

Substituting (5), and (8) into (4d), the load rotational dynam-
ics in N is

mQL(I −qqT)ω̇L = q× (Rūn3 +RDRT vQ)−mLL(qT
ωL)q̇

+(mQ +mL)L(qT
ωL)ωL ×q

(9)

Angular velocity ωL can be written in terms of [γα ,γβ] =

[α̇, β̇]:

ωL =

1
0
0

γα +

 0
cα

sα

γβ , ω̇L =

1 0 0
0 cα −sα

0 sα cα

 γ̇α

γ̇β

γα γβ

(10)

Substituting (10) into (7) and (9), and solving for v̇L, γ̇α , γ̇β ,
we obtain a state space form for the SLS dynamics

ẋ = f1(x)+ f2(x)+g(x)u (11)

where

f1(x) =

v

γα

γβ

W (η)ω

−
sβ (γ

2
α c2

β
+γ2

β
)LmQ

mQ+mL

sα cβ (γ
2
α c2

β
+γ2

β
)LmQ

mQ+mL

g−
cα cβ (γ

2
α c2

β
+γ2

β
)LmQ

mQ+mL

2γα γβ tβ
−γ2

α cβ sβ

−J−1ω × Jω

, g(x) =

08×1 08×3

ḡ(x) 05×3

03×1 J−1

(12)

f2(x) = [08, f̄2(x),03×1]
T ∈ R16

x = [pT
L ,α,β ,ηT ,vT

L ,γα ,γβ ,ω
T]T ∈ R16

u = [ū,τT]T ∈ R4

and the expression for ḡ is given in [5]. Rotor drag is
modelled by f̄2 whose expression is too large to present here.
The drift vector field of (11) has singularities at cβ = cθ = 0
due to parametrizations used for the orientation of the drone
and pendulum.

III. QUASI-STATIC FEEDBACK (QSF) LINEARIZATION

The goal of QSF is to statically linearize flat systems
that do not satisfy the conditions for static state feedback
linearization. Compared with dynamic state feedback, QSF
is a static function of the state, i.e., it requires no state aug-
mentation. Having a simpler controller structure is practically
important when implementing onboard the autopilot where
computing resources are limited.

The QSF begins with a flat output y = [pT
L ,ψ]T and

dynamics (11). During the design we approximate the drag
force by taking RDRT vQ ≈ DvQ, this approximation is valid
when dx ≈ dy ≈ dz. Below, variables with superscript ⟨i⟩

represent the step number of the QSF design. Each step of

242

the QSF design defines components of an auxiliary input
ν ∈R4. Components of input ν are constructed in steps using
Lie derivatives of the output so that an invertible relation
between v and original system input u is obtained.
Step 0. In Step 0 we verify D⟨0⟩ =D has a constant rank less
than 4 (the number of SLS inputs) in some neighbourhood
of x0 = 0, where ÿ = a0(x)+D⟨0⟩u. We have

D⟨0⟩ =

d⟨0⟩

11 0 0 0

d⟨0⟩
21 0 0 0

d⟨0⟩
31 0 0 0

0 0 sφ

J2cθ

cφ

J3cθ

 (13)

where d⟨0⟩
11 ,d⟨0⟩

21 ,d⟨0⟩
31 are functions of state, and rank(D⟨0⟩) =

2 about x0 where

d⟨0⟩
31 (x) =−

[sβ ,−sα cβ ,cα cβ] ·Rn3

mQ +mL
̸= 0 (14)

We decompose y⟨0⟩ = ÿ into independent ỹ⟨0⟩ = [ÿ3, ÿ4]
T ,

and dependent ŷ⟨0⟩ = [ÿ1, ÿ2]
T components. We introduce

auxiliary input v1 = [ÿ3, ÿ4]
T so that

v1 = ỹ⟨0⟩ = ã0(x)+ b̃0(x)u (15)

Then, ŷ⟨0⟩ can be written in terms of v1 and state:

ŷ⟨0⟩ =
[(
[1,0]T v1 −g

)
tβ/cα(

g− [1,0]T v1
)

tα

]
(16)

Step 1. Now that we have computed ν1, Step 1 computes
additional independent auxiliary inputs from higher order Lie
derivative of the output. The time derivative of ŷ⟨0⟩ is

˙̂y⟨0⟩ =

 v̇1sβ

cβ c2
α

− γβ (g−v1)

c2
β

cα

− γα sα sβ (g−v1)

cβ cα

γα (g−v1)

c2
α

− v̇1tα

 (17)

Since the input does not appear in (17), we take another time
derivative of ŷ⟨0⟩ to get

¨̂y⟨0⟩ = a1(x,v1, v̇1, v̈1)+b1(x,v1, v̇1)u (18)

where a1(x,v1, v̇1, v̈1)∈R2×1, b1(x,v1, v̇1)∈R2×4. Matrix b1
has the structure

b1(x,v1, v̇1) =

[
b11 0 0 0
b21 0 0 0

]
(19)

We observe that both rows of (19) are linearly dependent on
the third row of D⟨0⟩. Hence, ¨̂y⟨0⟩ can be expressed in terms of
v1. As a result, (18) can be written as ¨̂y⟨0⟩ = ¨̂y⟨0⟩(x,v1, v̇1, v̈1)

with u eliminated. Similarly we eliminate u in
(
ŷ⟨0⟩

)(3)
to obtain a function

(
ŷ⟨0⟩

)(3)
(x,v1, v̇1, v̈1,v

(3)
1). Calculating(

ŷ⟨0⟩
)(4)

we obtain(
ŷ⟨0⟩

)(4)
= ã1(x, v̇1, . . . ,v(4))+D⟨1⟩u (20)

where

D⟨1⟩ =

[
d⟨1⟩

11 d⟨1⟩
12 d⟨1⟩

13 0

d⟨1⟩
21 d⟨1⟩

22 d⟨1⟩
23 0

]
(21)

where d⟨1⟩
i j are functions of (x,v1, v̇1, . . . ,v

(3)
1) with

rank(D⟨1⟩) = 2 and its rows are linearly independent of all
rows of D⟨0⟩. We define auxiliary input

v2 =
(

ŷ⟨0⟩
)(4)

(22)

Combining (15), (22), we have an invertible relation between
u and v

v = ã(x,v1, v̇1, . . . ,v
(4)
1)+D◦u (23)

where

ã =

[
ã0(x)

ã1(x,v1, v̇1, . . . ,v
(4)
1)

]
,D◦ =

d⟨0⟩

31 0 0 0

0 0 sφ

J2cθ

cφ

J3cθ

d⟨1⟩
11 d⟨1⟩

12 d⟨1⟩
13 0

d⟨1⟩
21 d⟨1⟩

22 d⟨1⟩
23 0

and D◦ is a nonsingular decoupling matrix.

By setting v = [v1,v2]
T = [y(2)3 ,y(2)4 ,y(6)1 ,y(6)2]T and us-

ing (23), a linearizing QSF is obtained. The tracking error is
defined as

z̃ = [z̃1, . . . , z̃16]
T

= [y1 − yd1, . . . ,y
(5)
1 − y(5)d1 ,y2 − yd2, . . . ,y

(5)
2 − y(5)d2 ,

y3 − yd3, ẏ3 − ẏd3,y4 − yd4, ẏ4 − ẏd4]
T (24)

where ydi,1 ≤ i ≤ 4 are desired outputs. Applying the
linearizing control u = D◦−1(Kz̃ − ã + y(r̄)d) with y(r̄)d =

[y(6)d1 ,y
(6)
d2 ,y

(2)
d3 ,y

(2)
d4]

T we obtain

˙̃z = (Ac +BcK)z̃ (25)

where Ac ∈ R16×16,Bc ∈ R16×4 are in Brunovsky Controller
form, and K ∈ R4×16 is a control gain chosen so that
Ac +BcK is Hurwitz and the closed-loop system has appro-
priate transient performance. Because v̇1, . . . ,v

(4)
1 in (23) are

calculated using y3 −yd3, ẏ3 − ẏd3,y4 −yd4, ẏ4 − ẏd4 and their
time derivatives, the controller depends only on x and the
reference trajectory. Hence, it is a static state feedback. The
expressions for v1, v̇1, v̈1 are

v1 = [ÿd3, ÿd4]
T − k1[z̃13, z̃15]

T − k2[z̃14, z̃16]
T

v̇1 = [y(3)d3 ,y
(3)
d4]

T − k1[z̃14, z̃16]
T − k2(v1 − [ÿd3, ÿd4]

T)

v̈1 = [y(4)d3 ,y
(4)
d4]

T − k1(v1 − [ÿd3, ÿd4]
T)− k2(v̇1 − [y(3)d3 ,y

(3)
d4]

T)

where k1,k2 are control gains from K. Similar expressions
can be obtained for v(3)1 ,v(4)1 . The set of point where the QSF
is singular is discussed in [5].

IV. MATLAB SIMULATION

In this section, the QSF is validated using Matlab sim-
ulation. We consider output tracking and stabilization. Our
simulations compare QSF with and without drag force com-
pensation. The system parameters used in the model and
controller are mQ = 1.6kg,mL = 0.16kg,L = 1m,J1 = J2 =
0.03kg ·m2,J3 = 0.05kg ·m2,dx = 0.5s−1,dy = 0.4s−1,dz =
0.4s−1.

243

Stabilization: This section considers stabilization of the
SLS at x = 0. We take initial position pL(0) = [2,2,2]T m and
the remaining states are set to zero. Figs. 2 and 3 show the
configuration variables and control input, respectively. For
the stabilization task, the QSF performance with and with-
out drag compensation (labelled “QSF Drag” and “QSF”,
respectively) is similar. Both controller show good transient
convergence to the setpoint. This is to be expected as linear
velocity and rotor drag converge to zero.

0 2 4 6 8

time (s)

0

0.5

1
QSF

QSF Drag

0 2 4 6 8

time (s)

0

0.5

1

0 2 4 6 8

time (s)

-1

0

1
10

-3

0 2 4 6 8

time (s)

-0.1

0

0.1

0 2 4 6 8

time (s)

-0.1

0

0.1

0 2 4 6 8

time (s)

-0.1

-0.05

0

0.05

0 2 4 6 8

time (s)

-0.05

0

0.05

0 2 4 6 8

time (s)

-20

-10

0
10

-7

Fig. 2: System states pL,α,β ,η .

0 2 4 6 8

time (s)

17.4

17.5

17.6

17.7

17.8

17.9

QSF

QSF Drag

0 2 4 6 8

time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 2 4 6 8

time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8

time (s)

-5

0

5

10
10

-3

Fig. 3: Inputs ū,τ .

Trajectory Tracking: The tracking error for complex ref-
erence trajectories is exponentially stable with QSF control.
A “figure-8” reference is given as

yd(t) = [3sin(πt/4),1.5sin(πt/2),0.5sin(πt/4)−9,0.02t]T

(26)
Fig. 4 and Fig. 5 show the tracking errors and configu-
ration variables, respectively. The input trajectories are in
Fig. 6. When drag is compensated, the tracking error shows
exponential convergence with good transient performance.
The trajectories of inputs remain within a feasible range.
The gain for the designs were obtained using LQR with
Q= blockdiag(Q1,Q2,Q3,Q4),R= 0.1 ·I4, where Q1 =Q2 =
diag(100,100,100,1,1,1),Q3 =Q4 = I2. As shown in Fig. 4,
the tracking errors of QSF without drag compensation do not
converge to 0 in the x and y directions.

0 2 4 6 8 10 12

time (s)

-1

-0.5

0

0.5

QSF

QSF Drag

0 2 4 6 8 10 12

time (s)

-1

-0.5

0

0.5

0 2 4 6 8 10 12

time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8 10 12

time (s)

-2.5

-2

-1.5

-1

-0.5

0
10

-3

Fig. 4: Output tracking error y− yd .

0 10 20 30

time (s)

-2

0

2

0 10 20 30

time (s)

-2

0

2

0 10 20 30

time (s)

-10

-9.5

-9

0 2 4 6 8 10 12

time (s)

-0.2

0

0.2

0 2 4 6 8 10 12

time (s)

-0.2

0

0.2

0 2 4 6 8 10 12

time (s)

-0.2

-0.1

0

0.1

0 2 4 6 8 10 12

time (s)

-0.2

0

0.2

0 2 4 6 8 10 12

time (s)

0

0.1

0.2

Fig. 5: System states p,α,β ,η . The red line is QSF, the blue line
is QSF with rotor drag compensation, and the green dotted line is
the reference.

V. PX4 SITL SIMULATION

This section presents Software-In-The-Loop (SITL) sim-
ulation of the QSF. SITL emulates a real autopilot en-
vironment so that performance can be validated close to
flight conditions. SITL ensures robustness to unmodeled
effects such as controller saturation, multi-rate sampling,
and computational delay. We choose the open source PX4
SITL framework [9] with the Gazebo simulator using the
open dynamics engine (ODE) as the physics engine. Unlike
the Matlab simulation in Section III where the SLS model
directly uses the differential equations (DEs) (11), a Gazebo
model requires no DE model, but rather based on the geom-
etry and inertial properties of the system’s bodies. The PX4-
Gazebo SITL simulation leverages the RotorS simulation
plugins for UAV modelling [4].

A. QSF SITL Simulation Pipeline

Model-based controllers such as the QSF benefit from
precise theoretical statements about their stability and per-
formance. Their mathematical derivation means they can be
extended systematically to different applications. However,
they can suffer from complex expressions. The QSF proposed
in this paper uses Maple to compute the high-order Lie

244

0 2 4 6 8 10 12

time (s)

0

5

10

15

20

QSF

QSF Drag

0 2 4 6 8 10 12

time (s)

-5

0

5

10

15

20

0 2 4 6 8 10 12

time (s)

-25

-20

-15

-10

-5

0

5

0 2 4 6 8 10 12

time (s)

-0.02

0

0.02

0.04

0.06

0.08

Fig. 6: Inputs ū,τ .

derivatives required. The resulting controller expression is
complex and must be automatically moved from Maple to
C++ to avoid errors and streamline debugging. Therefore, we
developed a Maple-Matlab-SITL pipeline for controller de-
velopment. First, we do all symbolic calculations, including
system modelling and the QSFA in Maple. Next, the resulting
symbolic expression for the system model and controller
are exported to Matlab for efficient simulation. Finally, the
Matlab controller is exported to C++ for SITL using Matlab’s
Coder Toolbox.

B. Gazebo Simulator for Drones

The output of the QSF is total thrust ū and torque τ in
units of N and N ·m, respectively. The relation between [ū,τ]
and rotor speed Ω is

[
ū
τ

]
=CT

1 1 1 1

−ℓ1 ℓ3 ℓ1 −ℓ3
ℓ2 −ℓ4 ℓ2 −ℓ4

CM CM −CM −CM

Ω2
1

Ω2
2

Ω2
3

Ω2
4

 (27)

where Ωi,1 ≤ i ≤ 4 is the ith rotor speed, CT is the rotor
thrust constant, and CD is the torque constant. We take CT =
5× 10−6 N · s2 and CM = 0.05m. In this paper, we choose
a 3DR Iris quadrotor whose geometry is described by ℓ =
[0.22,0.13,0.2,0.13] m.

The PX4 expects a normalized thrust ũ ∈ [0,1] and torque
τ̃ ∈ [−1,1]. PX4 converts ũ, τ̃ with its Mixer into normal-
ized rotor speed commands Ω̃i,1 ≤ i ≤ 4, using parameters
describing the geometry of the multirotor’s frame. Gazebo
receives a normalized rotor speed command [Ω̃1,Ω̃2,Ω̃3,Ω̃4]
which it scales to obtain a rotor speed command Ωi =
CΩΩ̃i,1 ≤ i ≤ 4, where CΩ = 1000 rad/s is the scaling
constant. Assuming that modelling is known exactly, we
can scale the QSF output before feeding it to PX4 so that
Gazebo applies the desired values of ū and τ . Given ū,τ =
[τ1,τ2,τ3]

T output from the QSF in (23) we scale [ũ, τ̃T] as
[ū/S1,τ1/S2,τ2/S3,τ3/S4], where S1 = 20,S2 = 1.8383,S3 =
1.8383,S4 = 0.9546, so that the Gazebo simulation receives
the correct control command from PX4.

C. Simulation Results

A video of the stabilization and time-varying tracking
discussed in this subsection is at https://youtu.be/
fcOKLIxspCw. All simulations compensate for rotor drag.
Wind velocity is set to zero in the simulator.

Stabilization: Stabilization is performed with the set point
yd = [0,0,−10,0]T m. The quadrotor takes off with the built-
in PX4 motion controller and commanded to a position away
from the set point. The QSF is activated once the SLS is
at rest. The configuration variables are in Fig. 7 with the
QSF activated at t = 138s. Good stabilization performance
is achieved with a well-damped transition to the setpoint in
about 4 s. This performance is similar to the stabilization of
“QSF Drag” in Matlab given in Section IV. Corresponding
input trajectories are given in Fig. 8 which are physically
realizable and unsaturated.

136 138 140 142 144 146 148 150

time (s)

0

0.5

1

1.5

2

136 138 140 142 144 146 148 150

time (s)

0

0.5

1

136 138 140 142 144 146 148 150

time (s)

-10

-9.5

-9

136 138 140 142 144 146 148 150

time (s)

-0.05

0

0.05

136 138 140 142 144 146 148 150

time (s)

-0.1

-0.05

0

0.05

0.1

136 138 140 142 144 146 148 150

time (s)

-0.1

-0.05

0

0.05

136 138 140 142 144 146 148 150

time (s)

-0.05

0

0.05

0.1

0.15

136 138 140 142 144 146 148 150

time (s)

-2

0

2

4

6
10

-3

Fig. 7: Stabilization SITL simulation: system states p,α,β ,η .

140 145 150

time (s)

15

20

25

30

140 145 150

time (s)

-0.2

-0.1

0

0.1

0.2

140 145 150

time (s)

-0.2

0

0.2

0.4

140 145 150

time (s)

-0.02

-0.01

0

0.01

0.02

Fig. 8: Stabilization SITL simulation: inputs ū,τ .

Trajectory Tracking: One of the advantages of the QSF is
its guaranteed tracking performance for any smooth bounded
reference trajectory. We reuse trajectory (26). As shown in
Fig. 9 and Fig. 10, the tracking error converges to zero
exponentially with a good transient performance. The control
input remains unsaturated as shown in Fig. 11.

245

200 210 220

time (s)

0

0.2

0.4

0.6

0.8

1

200 210 220

time (s)

-2

-1.5

-1

-0.5

0

200 210 220

time (s)

0

0.05

0.1

0.15

0.2

200 210 220

time (s)

0.008

0.01

0.012

0.014

Fig. 9: Output tracking SITL simulation: tracking error e = y− yd .

200 205 210 215 220

time (s)

-4

-2

0

2

4

Real Trajectory

Trajectory Reference

200 205 210 215 220

time (s)

-2

-1

0

1

2

200 205 210 215 220

time (s)

-10.5

-10

-9.5

200 205 210 215 220

time (s)

-0.2

-0.1

0

0.1

0.2

200 205 210 215 220

time (s)

-0.1

-0.05

0

0.05

200 205 210 215 220

time (s)

-0.1

-0.05

0

0.05

0.1

200 205 210 215 220

time (s)

-0.05

0

0.05

200 205 210 215 220

time (s)

0

0.005

0.01

0.015

Fig. 10: Output tracking SITL simulation: SLS states p,α,β ,η .

VI. CONCLUSIONS

This paper presented a QSF for the SLS which compen-
sates for rotor drag force. The QSF achieves LTI exponen-
tially stable tracking error dynamics on a well-defined and
practical region of state space. Matlab simulation shows the
importance of compensating rotor drag in order to achieve
output tracking. In order to demonstrate the proposed QSF
can be implemented on a real autopilot, we present a software
pipeline for implementing a PX4/Gazebo SITL simulation.
SITL simulation is important for developing flyable con-
trollers as it proves the design is robust to unmodelled effects
and can be implemented on autopilot hardware.

REFERENCES

[1] M. Faessler, A. Franchi, and D. Scaramuzza. Differen-
tial flatness of quadrotor dynamics subject to rotor drag
for accurate tracking of high-speed trajectories. IEEE
Robot. Autom. Lett., 3(2):620–626, 2017.

[2] M. Faessler, A. Franchi, and D. Scaramuzza. Differen-
tial flatness of quadrotor dynamics subject to rotor drag
for accurate tracking of high-speed trajectories. IEEE
Robot. Autom. Lett., 3(2):620–626, 2017.

[3] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flat-
ness and defect of non-linear systems: introductory

200 210 220

time (s)

15

15.5

16

16.5

200 210 220

time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

200 210 220

time (s)

-0.02

-0.01

0

0.01

0.02

0.03

200 210 220

time (s)

-10

-5

0

5
10

-4

Fig. 11: Output tracking SITL simulation: inputs ū,τ .

theory and examples. Int. J. Control, 61(6):1327–1361,
1995.

[4] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart.
Robot Operating System (ROS), chapter RotorS—A
Modular Gazebo MAV Simulator Framework, pages
595–625. Springer, 2016.

[5] Z. Jiang, M. Al Lawati, A. Mohammadhasani, and A. F.
Lynch. Flatness-based motion control of a uav slung
load system using quasi-static feedback linearization.
In Proc. ICUAS, pages 361–368, 2022.

[6] J.-M. Kai, G. Allibert, M.-D. Hua, and T. Hamel. Non-
linear feedback control of quadrotors exploiting first-
order drag effects. IFAC-PapersOnLine, 50(1):8189–
8195, 2017.

[7] S. M. LaValle. Planning algorithms. Cambridge
University Press, 2006.

[8] R. Mahony, V. Kumar, and P. Corke. Multirotor
aerial vehicles: Modeling, estimation, and control of
quadrotor. IEEE Robot. Autom. Mag., 19(3):20–32,
2012.

[9] L. Meier. Px4/px4-autopilot: Stable release v1.13.0,
June 2022.

[10] K. Sreenath, T. Lee, and V. Kumar. Geometric control
and differential flatness of a quadrotor UAV with a
cable-suspended load. In Proc. IEEE CDC, pages
2269–2274, 2013.

[11] K. Sreenath, N. Michael, and V. Kumar. Trajectory
generation and control of a quadrotor with a cable-
suspended load - a differentially-flat hybrid system. In
Proc. IEEE ICRA, pages 4888–4895, 2013.

[12] S. Sun, A. Romero, P. Foehn, E. Kaufmann, and
D. Scaramuzza. A comparative study of nonlinear MPC
and differential-flatness-based control for quadrotor ag-
ile flight. IEEE Trans. Robot., 2022.

[13] D. K. D. Villa, A. S. Brandão, and M. Sarcinelli-Filho.
A survey on load transportation using multirotor UAVs.
J. Intell. Robot. Syst., 98(2):267–296, 2020.

[14] S. Yang and B. Xian. Exponential regulation control
of a quadrotor unmanned aerial vehicle with a sus-
pended payload. IEEE Trans. Contr. Syst. Technol.,
28(6):2762–2769, 2020.

246

