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Abstract— A real-time health structural diagnosis system for 

drones is becoming a key factor in developing safe drone 

operations and technologies. This study is dedicated to building 

one. Drone health status can be real-time diagnosed as “non-fault” 

or “potential fault” status. This study adds extra IMU sensors to 

collect the vibration signal of different drone structural faults and 

extracts the time domain and frequency domain features of the 

signal through feature engineering methods. Then, a Support 

Vector Machine (SVM) model is trained with those features. 

Feature selection and hyper-parameter tuning methods have been 

applied during model training to prevent model overfitting. This 

study also integrates a Window Sliding Technique and MAVLink 

to improve the real-time health diagnosis system.    

Keywords—UAV, Structural Health Diagnosis, Real-Time 

Diagnosis, SVM, Machine Learning, Window Sliding Technique. 

I. INTRODUCTION 

Technology advancements and the race by major drone 
companies to launch less-expensive and well-functioning 
Unmanned Aerial Vehicles (UAV) have led to a boom in multi-
axis drones in recent years. However, under this rapid 
development, most users cannot identify the health status of 
drones, so safety concerns have gradually increased. According 
to the research statistics of Gorucu [1], the number of registered 
drones in the United States has exceeded 1.7 million by 2020. 
From 2015 to the end of 2019, about 4,250 people were injured 
in drone-related flight accidents.  

Different damage types or factors affect the flight safety of 
multi-rotor UAVs; Gopi Kandaswamy [2] divided drone faults 
into three types. The first type is electronic glitches, such as 
electromagnetic field interference, remote control or GPS signal 
interference, barometer abnormality, and other temporary fault 
conditions. The second type is electronic faults, such as the 
inertial measurement unit, magnetic compass, additional sensors 
in the flight control system, or the failure of the flight control 
system itself and the battery. And the third type is a structural 
fault, such as the drone body, motor, and propeller failure. Yong 
Keong Yap and others [3,4,6] monitored the fuselage structure 
health of a UAV and divided it into three fault states, loose 
blades, loose screws of the motor base, and damaged blades. In 
addition, he incorporated an IMU next to the motor, collected 
the acceleration under three different fault states and different 
rotational speeds and performed spectrum analysis with Fast 
Fourier transform (FFT), then found out the vibration 

characteristics in different states, and carried out the health 
diagnosis of the power system of the UAV. 

The above literature shows that the existing research on 
damage identification of UAVs takes the power system of the 
UAV as the primary identification focus. It can be found that the 
damage characteristics of the power system of the UAV in the 
fault state can be collected by accelerometer or audio. Then Fast 
Fourier Transform, statistics, and other methods can be used to 
extract and analyze the characteristics of the signal. In terms of 
multi-rotors, Adam Bondyra [8] used the Fast Fourier transform, 
WPD (Wavelet Packet Decomposition), and Band Power, three 
signal processing methods to obtain the characteristics of the 
damaged state of the propeller of a four-axis small UAV. 
Overall, the vibration signal is an important indicator when 
analyzing the rotating mechanism or the body structure of the 
drone, so this study uses the vibration signal as the basis for 
establishing the health diagnosis model. 

The study of UAV health diagnosis can be divided into two 
research directions, real-time health diagnosis and long-term 
health diagnosis [9]. The main characteristic of real-time health 
diagnosis is fast calculation speed, but the diagnostic accuracy 
is lower. In real-time diagnosis, traditional machine learning or 
control theory can be applied to establish a diagnosis model. 
Additionally, long-term health diagnosis characteristics are high 
accuracy and powerful classification performance. Still, the 
calculation time of the diagnosis is long, and the hardware 
demand is higher. However, these characteristics allow the use 
of highly recognizable features and advanced machine learning 
algorithms. 

This paper aims to present a real-time health diagnosis 
system for UAVs. This system uses real-time vibration signals 
to extract its features and conduct a preliminary health diagnosis 
through an SVM machine learning algorithm so that users can 
instantly identify the presence of a fault. This paper is organized 
as follows. In Section II, time domain and frequency domain 
features are introduced. Section III outlines the equipment 
employed in this study, including the experimental process. In 
Section IV, the process of feature selection, model hyper-
parameter tuning, and model training are explained, and the 
preliminary performance indicators of the model are 
demonstrated. The results are described and discussed in Section 
V, and conclusions are presented in Section VI. 
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II. MATERIALS AND METHODS 

A. Feature Engineering  

As per D.L. Cheng and Muhammad Masood Tahir’s 
literature [10], Feature Engineering is employed to extract time-
domain and frequency-domain features from the sensor’s 
original data through mathematical and statistical methods to 
create a new data set. Then Feature Selection is applied to select 
only those features with high correlation to improve the 
performance of the model.  This study adopts six feature 
extraction methods in the time domain and one feature 
extraction method in the frequency domain. 

1) Time Domain Feature Engineering 

Root Mean Square, Standard Deviation, Variance, 

Skewness, Kurtosis, Sample Entropy. 

2) Frequency Domain Feature Engineering 

Fast Fourier Transform.   

3) Feature Selection 

As the number of features increases, we have more 

information for our model. However, too many features may 

demand high-end hardware and increase the probability of 

model overfitting. Therefore, we need to maintain the features 

that have a high correlation with our target and exclude the ones 

that don’t.  

At present, the main feature selection methods can be 

divided into Filter Methods, Wrapper Methods, and Embedded 

Methods. The feature selection method used in this study is 

based on the Wrapper Method. The purpose of the Wrapper 

Method is to create a variety of possible feature sets, perform 

model training with each set, and then use a set of verification 

data to validate the model performance and continue iterating 

until the best-performing feature set is found. 

III. EXPERIMENTAL PROCESS 

A. Experimental Setup 

This chapter will describe the experimental equipment used 
in this research. The system architecture diagram is shown in 
Fig. 3.1, which comprises the UAV and the embedded computer 
systems. Each system will be introduced in the subsequent 
sections. 

 

Fig. 3.1.  System architecture diagram. 

1) UAV System 
The UAV employed in this experiment is shown in Fig. 3.2. 

The details of its components are listed in Table I. 

 

Fig. 3.2.  UAV employed in the experiment.  

2) Companion Computer System 
The companion computer system integrates a Raspberry Pi 

computer and an external inertial measurement unit (IMU). In 
this study, Raspberry Pi 4 Model B is used to collect 
acceleration data from the external IMU and the airborne 
embedded device that calculates the health status of the UAV.  

 The IMU used in this research is the BerryIMU v3, which is 
a 6-axis IMU based on LSM6DSL. The output frequency of the 
accelerometer was set at 3.33 kHz and transmitted through the 
SPI interface. The measurement range was set at ±8 g with a 
Nyquist Frequency of 1.66 kHz [18], which represents the 
highest frequency observed in the vibration signal. 

B. Definition of Health Status 

1) Potential fault 
  This study divides the UAV faults into three types: 

motor base screw loosening, propeller damage, and 
propeller mount screw loosening, shown in Fig 3.4. 

 Screw loosening is a fault that has a great impact on 
flight safety. The possible reasons for loosening include 
wear of the thread or not properly locking the parts 
during assembly, etc., which may cause the relative 
position of the motor and the arm to change. This can 
lead to a crash due to an unstable flight. In this 
experiment, the tightness of the screws in the motor base 
and the machine arm was changed to simulate the screw 
loosening fault of the motor base. In this state, the motor 
is not able to balance the torque at the bottom, and that 
causes additional vibration, Fig 3.4a.  

 The propeller is one of the most easily damaged parts 
of the drone, and the surface is often scratched or 
damaged due to impact during operation, as shown in Fig 
3.4b. These phenomena cause abnormal vibrations when 
the drone is flying. If it is significant, it will affect flight 
safety; in addition, when users install the propeller, it is 
often prone to accidents because the screw is not fully 
locked, as shown in Fig 3.4c. 

 Since the objective of this research is to diagnose the 
health status of UAVs, the potential fault state will be 
defined as, among the above three types of faults, the 
UAV has at least one, and the severity of the fault can be 
witnessed by human eyes or hands.  

2) Non-fault 
 After defining the potential fault state, this study 
defines the following two conditions as the non-fault 
state. First, the drone does not have the above three 
faults, and second, the drone can fly stable.  
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Fig. 3.4.  Types of drone faults: (a) motor base screw loosening; (b) propeller 
damage; (c) propeller mount screw loosening. 

C. Flight Experiment 

1) Flight Environment and Experimental Conditions 
The three following restrictions were set during the 

experiment to ensure the consistency of external conditions 
when collecting flight data. First, the outdoor wind speed was 
below 5.4 m/s (Beaufort wind scale 4), which has a higher 
tolerance for the environment than the 2 m/s set by S.T. Tsai [5], 
and is more in line with reality; second, during the flight, we 
ensured that the voltage of each Li-Po battery cell was not lower 
than 3.7V, to ensure the flight safety of the drone and to prevent 
the data being affected by the battery power; thirdly, all the 
flight experiments in this research were carried out in GPS mode 
(Loiter Mode). This mode automatically attempts to maintain 
the current position, heading, and altitude of the drone, which is 
very user-friendly for general flight tasks. 

2) Flight Experiment Process 
The flight experiment is conducted as follows: first, set one 

of the UAV health statuses described in Table I which also lists 
the flight time ratio for each health status; second, manually 
unlock the UAV, switch it to Waypoint mode, and execute the 
planned flight path. The UAV automatically takes off to a 
position 5 meters above the ground and continues to fly to the 
next waypoint. After the set time is completed, it will 
automatically switch to Land mode and perform landing; 
following the above steps, the user only needs to change the 
health status of the drone in step one to complete the data 
collection. 

TABLE I.  UAV HEALTH STATUS FLIGHT TIME RATIO 

Health Status Definition Flight Time 

Ratio 

Non-fault There are no faults, and it can 

fly stably 

50% 

Motor base screw 
loosening 

The two screws of the motor 
base are loose 

10% 

Broken propeller The propeller is slightly 

damaged 

10% 

Propeller mount screw 
loosening 

A single screw of the 
propeller is loose 

10% 

Hybrid fault Three states of random 

mixing faults 

20% 

 

D. Feature Extraction 

1) Data Preprocessing 
The general flight record file (Log) stores plenty of data 

during the flight, including altitude, altitude change, throttle 
values, etc., this log file is stored in the SD card of the flight 
control board, but unfortunately, even though we can access 
measurements from the flight controller’s IMU via 
programming, the sampling rate is still around 1400 Hz due to 
high computational cost, which is still not adequate for 
classifying. For that reason, an external IMU connected to a 
Raspberry Pi was placed at the center of the drone. This will 

provide a more symmetrical measurement of the overall 
vibration levels, taking into account the vibrations from all four 
rotors and the drone's frame.  The IMU acceleration 
measurements will then be the raw data that can be used to 
extract the relevant features to train the model.  

This research focuses on extracting features from the 
acceleration data, but in the collection process, in addition to 
collecting the vibration signal of the UAV fuselage, the 
acceleration data of the UAV altitude changes during flight is 
also captured. Therefore, the signal captured before the 
propeller of the UAV starts rotating must be removed. This 
study uses the Python high-pass filter function to remove the 
vibration signals below 5Hz, and only retains the vibration 
signals of the drone body. 

2) Feature Processing 
Following data pre-processing, the seven feature 

engineering methods introduced in Section II of this article were 
applied to the processed vibration signal in the XYZ directions. 
There are three features per feature extraction method. A total 
of 21 features were obtained. After feature extraction is 
completed, it is necessary to use the standard score (Z-score) 
method to standardize the 21 types of features respectively, and 
then complete all feature processing steps, which will be 
followed in the next section. 

IV. MODEL BUILDING AND ANALYSIS 

This study uses the SVM machine learning algorithm to 
build the classification model. After the vibration signal runs 
through the feature extraction methods described in previous 
sections, data can be divided into 80% of the data set for training 
the model and 20% to test the performance of the model. 

When building a model, in addition to the final performance 
of the model, whether the model is overfitting or underfitting is 
also an essential factor to consider. Therefore, k-Fold Cross 
Validation was used during model training to reduce the 
possibility of overfitting and, at the same time, have a more 
realistic model performance. 

In addition, if the model-building steps are simplified, it can 
significantly affect the model performance. There are two 
blocks: first, the data used to build the model, and second, 
setting the parameters of the model; this paper uses a Sequential 
Feature Selector algorithm to select the data that will eventually 
be used to train the model. 

A. Cross-validation 

In this study, k-Fold Cross Validation (CV) was used for 
evaluating the model performance, the training data set is 
divided into k sets (k=5 for our model), leaving one of the k sets 
as the validation data set, the remaining k - 1 sets are used as 
training data. After the model training is completed, the 
validation data set is used to test the model’s performance and 
obtain a performance value. Finally, the above steps are repeated 
in k splits, and all the performance values obtained in each split 
are averaged; the averaged model performance will be able to 
show the actual performance of the model more 
comprehensively and will not be misled by extreme values due 
to the factor of data partitioning. 
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B. Feature Selection 

In Machine Learning, selecting the most important and 
highly relevant features and excluding the less relevant ones can 
reduce the probability of overfitting, shorten the training time, 
and even improve the performance of the model. Therefore, 
Python’s sklearn SequentialFeatureSelector function was used 
for feature selection. 

As mentioned in previous sections, 21 features were 
extracted from the original vibration signal. After using the 
feature selection method mentioned above, 12 features were 
selected as the final feature set for this study, shown in Table II. 

TABLE II.  FEATURE SELECTION RESULTS 

No. Direction Feature No. Direction Feature 

1 X 
Root mean 

square 
7 X Kurtosis 

2 X 
Standard 

deviation 
8 Y Kurtosis 

3 Y 
Standard 

deviation 
9 Z Kurtosis 

4 Z 
Standard 
deviation 

10 X 
Fast Fourier 
Transform 

5 X Variation 11 Y 
Fast Fourier 

Transform 

6 Z Variation 12 Z 
Fast Fourier 

Transform 

C. SVM Parameter Selection 

There are 32 possible permutations and combinations of 
model parameters, as shown in Table III. In this part, the 
GridSearchCV function from the sklearn Python library was 
used to select the SVM model parameters. 

TABLE III.  SVM MODEL PARAMETER LIST 

 

Variable 
Possible testing values 

Kernel Function Polynomial RBF   

Penalty Coefficient C 1 10 100 1000 

Gamma Scale 0.1 0.01 0.001 

 

 After parameter selection, the Radial Basis Function (RBF) 
was selected, with a penalty coefficient C of 100 and Gamma 
set to Scale, which means that the model judges the value by 
itself according to the training data set. 

D. SVM Model Results 

This section analyzes the final performance of the model. 
After using 80% of the data set to train the model, 20% of the 
data set was used to let the model predict, then a confusion 
matrix was employed for analysis, as shown in Table IV. Table 
V lists the performance indicators of the SVM model, and this 
study uses the recall rate as the primary performance indicator.  

TABLE IV.  HEALTH DIAGNOSIS MODEL CONFUSION MATRIX 

Predict  

Actual 
Non-fault Potential fault Recall rate 

Non-fault 734 288 72% 

Potential fault 159 1754 92% 

 

 

TABLE V.  HEALTH DIAGNOSIS MODEL PERFORMANCE INDICATORS 

Accuracy 85% 

Precision 86% 

Recall 92% 

F1 score 89% 

 

 It can be seen from Table IV that the model has a high recall 
rate of 92% for the potential fault state but only 72% for the non-
fault state. This might occur because the potential fault state 
features are not only hardly observable faults but also slightly 
similar to the non-fault state ones, resulting in more non-fault 
states that the model judges as potential fault states. However, 
this result is still in line with the set goal, which is to have a 
higher recall rate for the potential fault state.  

V. EXPERIMENTAL RESULTS AND ANALYSIS 

To achieve the purpose of this research, which is to detect 
UAV potential faults in real-time, the performance of the health 
diagnosis model in predicting new data and the sliding window 
method application to actual flight missions will be examined. 

A. Predicting with New Data 

In the experiment of predicting new data, we re-collected a 
relatively similar amount of flight data with non-fault and 
potential fault status, and its confusion matrix is shown in Table 
VI. The recall rate was still 86%, while the non-fault recall rate 
was reduced to 65%. The overall trend is still the same as the 
results in Table IV. It had a good recall rate performance with a 
potential fault status but a slightly lower recall rate with non-
fault status; if we compare the prediction results of the SVM 
health diagnosis model with original and new data, as shown in 
Fig. 5.1, it can be found that the recall rate of the model for new 
data is reduced by about 7%. A possible reason is that the flight 
environment was different when collecting new data, which led 
to a slight decrease in the recall rate.  

TABLE VI.  CONFUSION MATRIX OF HEALTH DIAGNOSIS MODEL 

PREDICTING WITH NEW DATA 

Predict  

Actual 
Non-fault Potential fault Recall rate 

 Non-fault 1388 752 65% 

Potential fault 210 1262 86% 

 

 

Fig. 5.1.  Original and new data health diagnosis prediction recall rate 
comparison.  

B. Individual Fault assessment 

 To understand the prediction performance of the health 
diagnosis model for individual types of faults, the prediction 
results of four different health states will be listed separately. 
Table VII defines the four different health states. For 
comparison, see Fig. 5.2; according to the results in part A of 
Section V, the recall rate of new data is slightly lower than that 
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of the original data, but it can be found in Fig. 5.2 that when the 
health status of the drone is motor base and propeller mount 
screws loosening, the recall rate increases significantly. The 
possible reason for this phenomenon is that on the day of 
collecting new data, the ambient wind speed was significantly 
higher, which caused the drone to increase the motor speed and 
vibration to maintain the posture of the drone, leading to a higher 
recall rate for some damage states. 

TABLE VII.  INDIVIDUAL HEALTH STATUSES DESCRIPTION 

No. Health Status Definition 

1 Non-fault There are no faults, and it can fly 

stably 

2 Motor base screw loosening The two screws of the motor base 
are loose 

3 Broken propeller The propeller is slightly damaged 

4 Propeller mount screw 

loosening 

A single screw of the propeller is 

loose 

 

 

Fig. 5.2.  Health diagnosis model recall rate comparison for the prediction 
of individual health statuses.  

C. Sliding Window Application 

 The system for monitoring UAV fault state must 
continuously evaluate for potential faults. However, if the 
system has a relatively low recall rate for non-fault conditions, 
users may be troubled by excessive warnings while flying in 
complex conditions. To address this issue, the non-fault recall 
rate must be improved. One approach is to use a sliding window, 
which allows for a more comprehensive analysis of data. In this 
method, all outputs within the window must indicate a potential 
fault to identify a likely fault state. Otherwise, the state will be 
considered non-fault. Table VIII illustrates that increasing the 
sliding window range results in a requirement for more 
consecutive equal outputs, leading to a decrease in potential 
fault state recall rate but a significant improvement in non-fault 
state recall rate. 

TABLE VIII.  APPLICATION OF THE SLIDING WINDOW RANGE TO THE 

CHANGE OF THE RECALL RATE  

No. 
Health 

Status 

Sliding window range 

1 2 3 4 5 6 7 

1 Non-fault 65% 78% 84% 88% 91% 94% 95% 

2 
Potential 

fault 
86% 75% 66% 60% 59% 49% 45% 

 

 The application of a sliding window method aligns more 
closely with the two key requirements of the UAV instant 
diagnosis system. It must accurately detect potential faults while 
also avoiding the constant output of false positives when the 
UAV is in a non-fault state. From Table VIII, we can see that a 
sliding window size of 6 achieves a non-fault state recall rate 

close to 95% and a potential fault state recall rate close to 50%. 
Therefore, this study sets the sliding window range to 6. 
Although the potential fault recall rate of 49% may seem low, 
Table VI shows that when the UAV has a potential fault, the 
recall rate is 86%. This indicates that the model can accurately 
judge a fault condition continuously, which could serve as an 
early indicator for the user. 

 The method proposed by [6] shares some similarities with 
the method presented in this study, but also differs in several key 
aspects. While both methods focus on structural health 
diagnosis, Cheng’s method relies on post-flight analysis, which 
may not be convenient for early fault detection. In contrast, the 
method proposed in this study can perform real-time diagnosis, 
enabling early detection and prevention of potential accidents. 
While the accuracy of the other author's method is higher than 
the approach presented in this study, the real-time diagnosis 
capability of our method offers a significant advantage over 
post-flight analysis, as it allows for quick and effective detection 
of structural faults during UAV flight. 

D. UAV Real-Time Health Diagnosis System 

 After completing all the building steps, this study 
incorporates the health diagnosis model into the UAV to achieve 
a real-time structural health diagnosis system. After the system 
starts to execute and connects with the flight controller through 
the MAVLink communication protocol, it will first detect 
whether the drone is unlocked, which means that the propeller 
of the drone is rotating, then the accelerometer will collect 3200 
samples per second. These data are normalized and passed 
through feature extraction, then imported into the model, and the 
model defines the current health status of the drone. If the drone 
status is healthy, the drone is in a non-fault state, and the steps 
of data collection and diagnosis are repeated continuously. If the 
drone status is unhealthy, it means that the UAV might have a 
potential fault, and the variable F in the system that continuously 
determines the UAV’s potential fault state will be increased by 
1. If the number of consecutive potential fault outputs reaches 6 
times, follow-up actions will be executed at the end.  

E. Flight Tests 

  In the actual flight test, because the health status of the UAV 
cannot be changed during flight, the experimental procedure 
was as follows: first, the health status of the UAV is preset as no 
fault or potential fault before take-off; The drone takes off 
automatically using the waypoint mode, and automatically 
executes the waypoint task for about 1 minute. Third, 
immediately after the drone takes off, the real-time health 
diagnosis system starts diagnosing the health status of the drone; 
if the diagnosis is a potential fault state, then it will display a 
message on the embedded system terminal to notify the user and 
will automatically switch to landing mode to perform automatic 
landing, otherwise, it will automatically land after completing 
all waypoint tasks. 

1) Non-Fault State Test 
In this test, the health status of the UAV before take-off was 

a non-fault state. The yellow box in Fig. 5.3 shows that the 
embedded system and the flight controller are successfully 
connected. The picture also shows how the system begins to 
diagnose and the number of times the system has continuously 
diagnosed the potential fault in the UAV. Still, because the 
system did not diagnose potential faults more than six times to 
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the waypoint, the UAV automatically followed the waypoint 
until it normally landed and then shut off.  

2) Potential Fault State Test 
In this test, the health status of the UAV before take-off was 

a potential fault state. The red box in Fig. 5.3 portrays how the 
system continuously diagnosed that the UAV had a potential 
fault six consecutive times. Therefore, the UAV real-time health 
diagnosis system actively changed the flight mode of the UAV 
to Land mode, performed automatic landing, and then shut off.  

 

Fig. 5.3.  UAV real-time health diagnosis system running screen.   

F. Limitations 

One of the main limitations of this method is the potential 
cost associated with using a single-board computer, such as the 
Raspberry Pi, for data collection and analysis. While these 
devices have become increasingly affordable in recent years, 
they may still represent a significant expense for some users. 
Additionally, the use of external sensors, such as the IMU used 
in this study, is restricted to compatibility with the Raspberry Pi 
computer. This may limit the availability of alternative or 
superior sensors that could provide more accurate or 
comprehensive data for UAV health monitoring. These 
limitations highlight the need for further research to develop 
more cost-effective and versatile methods for UAV health 
monitoring that can accommodate a wider range of sensors and 
data collection methods. 

VI. CONCLUSIONS 

This study successfully established a near real-time 
structural health diagnosis system for drones based on vibration 
analysis. Experiments demonstrated that the system could reach 
a potential fault prediction recall rate of 86% when predicting 
with new data. It has been revealed that the sliding window 
technique can accommodate the wind disturbance conditions 
captured by the sensors, increasing the prediction recall rate of 
the model. The connection between the embedded system and 
the flight controller through MAVLink improves the health 
diagnosis by not only alerting the user about fault occurrence 
but also performing an emergency landing. 

Based on the conducted research, we address the accuracy 
of the model to the sampling rate of the sensors. Therefore, our 
future goal is to employ higher sampling rate sensors to achieve 
greater structural diagnosis accuracy. The scope selection and 
diversity of training data could have also been factors that 
influenced wind resilience and accuracy. We will also delve into 
this subject in the future. 
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