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Abstract—SSRMS-type Manipulator is a typical type of space
manipulator featuring 7-degree-of-freedom offset configuration
with redundancy characteristic. It is challenging to solve inverse
kinematics in high efficiency, make the upmost of redundancy
characteristic, and select optimal redundant parameter. This
paper proposes an analytical inverse kinematic method, named
three-continuous-parallel-Link Direction Vector Parameterization
(LDVP), in the theory of Conformal Geometric Algebra. This
method employs the direction vector of the axis of parallel Joint
3, Joint 4, and Joint 5 as the parameter, and selects the optimal
parameter according to context plan-points in a given trajectory.
The process of solving inverse kinematics is divided into two steps,
including solving joint positions and joint variables. The average
solution time of forward and inverse kinematics is 9.79 us and 0.25
ms respectively. The continuous path tracking experiment verifies
that all seven joints changing to pursue the optimal configuration,
which makes full use of redundancy characteristic.

Index Terms—inverse kinematics, SSRMS-type Manipulator,
conformal geometric algebra

I. INTRODUCTION

Space manipulators are commonly utilized in orbit services
[1]. Most of them share the same configuration with Space
Station Remote Manipulator System (SSRMS), featuring a
7-degree-of-freedom (7-DOF) offset manipulator with redun-
dancy characteristic, and the Experimental Module Manip-
ulator (EMM) [2], as shown in Fig. 1, is a typical case.
Redundancy characteristic contributes to advantages such as
obstacle avoidance and a flexible working space [4], but also
brings challenges to the solution of inverse kinematics (IK)
[5]. Moreover, SSRMS-type manipulator has offset at shoulder,
wrist and elbow. Compared with the non-offset SRS (Spherical-
Roll-Spherical) configuration commonly used in 7-DOF hu-
manoid arms, the SSRMS-type with offset further increases
the difficulty of solving the inverse kinematics [6].

In recent decades, scholars have carried out a lot of research
on the IK solution of SSRMS-type manipulator, and meth-
ods are divided into velocity-level methods and position-level
methods. The velocity-level methods mainly includes Jacobian
transpose and pseudoinverse [7], which give numerical solu-
tions and have the advantage of real-time efficiency, but may
produce several numerical errors [6]. Other numerical methods
such as KDL [8] and TRAC-IK [9] are applied to obtaining the
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Fig. 1. The Experimental Module Manipulator. [3]

single IK solution, but there exists problems of low efficiency
and uncertainty caused by iteration. The position-level method
such as arm angle parameterization method [10] [11] [12]
solved the IK solution of the SRS manipulator and generalized
the results to SSRMS-type manipulator in accordance with the
relationship of joint angles between two types of manipulator.
However, this method contributes to uncontrollable errors [6].
Another method named joint angle parameterization (JAP)
method [13] is broadly used to yield closed-form solutions and
has the advantage of high accuracy. However, it is difficult to
determine the optimized parameter. Meanwhile, the redundant
characteristic is limited because one of the seven joint angles
is fixed, meaning the manipulator operates as a 6-DOF robot.

The contributions of this paper are:
(1) Applying the theory of Conformal Geometric Algebra

(CGA) into the kinematic analysis of SSRMS-type manipula-
tor, and the efficiency of both Forward Kinematics (FK) and
IK is increased.

(2) Proposing an efficient IK strategy, named three-
continuous-parallel-Link Direction Vector Parameterization
(LDVP), which provides an analytical solution in high ef-
ficiency, and fully utilize the redundancy characteristic of
SSRMS-type manipulator.

The remainder of this paper is organized as follows. In
Section II, the basic theory of CGA is introduced to establish
the kinematic model of SSRMS-type manipulator, and the
parameter of LDVP is defined. In Section III, the procedure of
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TABLE I
GEOMETRY REPRESENTATIONS IN CGA

Geometry Representation Remark

Point P = e0 + p + 0.5p2e∞
P: point in the conformal space
p: point in the Euclidean space

Sphere S = P − 0.5R2e∞ P: circle center, R: radius

Plane π = ∗(P · n) π passes through P
and takes n as the normal vector.

inverse kinematic solution using LDVP is described in detail. In
Section IV, the validity and efficiency of this method is verified
in simulation by cases. In Section V, this paper is concluded
with final remarks.

II. PRELIMINARIES

In this section, the basic theory of CGA is introduced, the
parameter vector of LDVP is defined, and the kinematic model
of SSRMS-type manipulator is established.

A. Basic Theory of Conformal Geometric Algebra

Conformal Geometric Algebra extends Euclidean space to
the conformal space by introducing two additional basis vectors
e0 and e∞ based on the basis vectors of Euclidean space [14].
This extension allows for the representation of various geomet-
ric objects in the conformal space as shown in I. Additionally,
information like relative positional relationships and distances
of geometric objects can be obtained by performing positional
or mathematical operations [15] as shown in TABLE II.

Geometric operators in conformal space can represent rota-
tion, translation, and general motion. Robot kinematic equa-
tions can be obtained by multiplying geometric operators. The
rotor R, translator T, motor M are represented as:

R = cos(θ/2)− sin(θ/2)I (1)

T = 1− 0.5te∞ (2)

M = TR (3)

where I denotes the direction vector of rotation axis, θ de-
notes the rotation angle, and t denotes the direction vector of
translation, with its value is the translation distance.

The geometry after transformation represents as:

Oi+1 = MOiM̃ (4)

where Oi and Oi+1 respectively denotes the presentation of the
geometry before and after transformation.

TABLE II
FORMULA OF CALCULATIONS IN CGA

Calculation Inner
Product

Outer
Product Intersection Dual Reverse

Formula A ·B A ∧B A&B ∗A Ã
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Fig. 2. CGA model of SSRMS-type manipulator.
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B. Establishing the kinematic model of SSRMS manipulator

Establishing the world coordinate with e1, e2, e3, and
establishing the geometric algebra model of SSRMS-type ma-
nipulator in the conformal space, as depicted in Fig. 2.

To establish the kinematic equation of SSRMS-type ma-
nipulator, information should be given as shown in TA-
BLE III.Bring the information into (1), (2), (3) and (4), and the
forward kinematic equation of the SSRMS-type manipulator
can be expressed as (5).

C. Definition of parameter vector

The typical characteristic of SSRMS-type manipulator is that
the elbow joint is always parallel with Joint 3 and Joint 5,
and we name them as three-continuous-parallel-link. Define the
direction vector of these three joints as the parameter vector
para vec, which is the core parameter of LDVP method.

The SSRMS-type manipulator exhibits two additional char-
acteristics: the base position is fixed, and the adjacent links
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Fig. 4. Definition of the parameter vector para vec.

TABLE III
INFORMATION TO BE USED IN THE FORWARD KINEMATICS.

Information Label

Link lengths ai(i = 0, 1, . . . , 8)
Joint variables θi(i = 1, . . . , 7)

Initial axis Ii(i = 1, . . . , 7)=
e2, −e1, e2, e2, e2, −e1, e2

Initial direction vectors tj(j = 0,. . . , 8)=
e2, −e1, e2, −e1, e2, −e1, e2, −e1, e2, −e1
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Fig. 5. Algorithm diagram of efficient inverse kinematic method LDVP.
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Fig. 6. Solving for the optimized parameter vector.

are always perpendicular to each other. Based on above three
characteristics, joint positions can be solved in theory of CGA.

First of all, fixing the base position of the manipulator at the
origin of the conformal space, as shown in Fig. 2. Constructing
sphere SP1 = P1− 0.5R2

1e∞ (R1 = a2 + a4 + a6) and SP8 =

P8−0.5R2
8e∞ (R8 =

√
|P1P8|2 −R2

1), which intersect to get a
circle Cir1 8 = SP1&SP8. Selecting a point Ppara p randomly
on the circle Cir1 8. The unit vector in the direction of the line
connecting Joint 1 and Ppara p is the defined parameter vector
para vec. The process of this description is shown in Fig. 3
and Fig. 4.

III. EFFICIENT INVERSE KINEMATIC METHOD

In this section, an efficient inverse kinematic method is
proposed to rapidly solve the exact closed-form solution while
making the upmost of the redundancy characteristic of the
SSRMS-type manipulator. The algorithm diagram of this strat-
egy is shown in Fig. 5.

A. Select appropriate parameter point Ppara p

Section II-C has discussed that in order to determine the
parameter vector para vec, the parameter point Ppara p should
be determined first.

When the manipulator performs a continuous path tracking
task, the redundant parameter vector corresponding to the i-th
path point can be inferred from the inverse kinematic solving
procedure of the (i-1)-th path point. As shown in Fig. 6, the
parameter point selected during the inverse kinematic solution
of the (i-1)-th path point is named as Ppara 1. Project Ppara 1

onto the plane where Cir1 8 corresponding to the i-th path
point is located. Connect the center of circle Cir1 8 and the
projected point, and the connecting line intersects Cir1 8 at
Ppara 2, then Ppara 2 becomes the parameter point selected
for the i-th path point. The unit vector of P1Ppara 2 is the
vector that changes slightly compared to the parameter vector
P1Ppara 1 corresponding to the (i-1)-th path point among
the infinite sets of candidate vectors, which is the required
redundant parameter vector named by para vec2.

In cases where there is no adjacent path point to determine
current parameter point Ppara p, such as solving IK of the first
path point of the continuous path when there is only a set of
end effector pose given, setting every joint variable to zero, and
taking the vector of parallel joints as para vec. Then project
Ppara p on the plane where Cir1 8 is located, as depicted in
the previous paragraph, to determine the responding redundant
parameter vector para vec2.

B. Solution of Joint Positions

This section primarily analyzes the process of solving for
joint positions using given information, including the position
of the end effector pe, approaching vector a, orientation vector
o, and the determined parameter point Ppara p.

According to the conformal geography, the position of Joint
7 denoted by P9, Joint 6 denoted by P8, and Joint 1 denoted
by P1 can be calculated respectively as:

P9 = e0 + pe + 0.5pe
2e∞. (6)

P8 = e0 + (P9 − a8a) + 0.5(P9 − a8a)2e∞. (7)

P1 = e0 + (a0e2) + 0.5(a0e2)2e∞. (8)

With the obtained redundant parameter vector, we can con-
tinue to solve positions of the remaining joint points.

Constructing a sphere SP7 = P8 − 0.5a27e∞, and a
plane plane P8P9 = ∗(P8 · a), which interact at the circle
Cir P7 = SP7&plane P8P9. Similarly, construct the plane
plane P7P8 = ∗(P8 · para vec2), which intersects with
Cir P7 at point pair Pp7. The two points of the point pair Pp7

represent the positions of Joint 7 P7 with different manipulator
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configurations. The solution process is shown in Fig. 7. P7 can
be calculated as:

P7 =
Pp7 ±

√
Pp7

2

−e∞ · Pp7
=

Pp7 + k7

√
Pp7

2

−e∞ · Pp7
(9)

It should be noticed that, if θ6 to be solved occurs to be
zero, Cir P7 will lie on plane P8P9 as shown in Fig. 8, thus
there will be no solution of P7. The same is true for P2 if θ2
to be solved occurs to be zero.

Similarly, P2 can be obtained by geometric calculations of
corresponding geometries including spheres and planes, and P2

can be calculated as:

P2 =
Pp2 ±

√
Pp2

2

−e∞ · Pp2
=

Pp2 + k2

√
Pp2

2

−e∞ · Pp2
(10)

Constructing a sphere SP3 = P3 − 0.5a23e∞, and another
sphere SP6 = P6 − 0.5(a24 + a25)e∞. SP3 and SP6 interact
at circle Cir P4. Construct the plane plane P4P5 = ∗(P3 ·
para vec2). plane P4P5 and Cir P4 intersect at point pair
Pp4. Two points of point pair Pp4, which represents the posi-
tions of Joint 4 P4 with different manipulator configurations.
The solution process is shown in Fig. 9. P4 can be calculated
as:

P4 =
Pp4 ±

√
Pp4

2

−e∞ · Pp4
=

Pp4 + k2

√
Pp4

2

−e∞ · Pp4
(11)

The position P3, P6, and P4 can be obtained by respectively
translating P2, P7, and P5 along the direction of parameter
vector, and the moving distance is respectively a2, a6, and a4.

When the method above is used to solve for joint point
positions, 8 sets of solutions will be generated. This is because
in formula (9) (10) (11), the points P2, P4 and P7 are presented
by point pairs, and k2 = ±1, k4 = ±1, k7 = ±1 corresponding
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Fig. 9. The solution process of Joint-4 position.

to different robot arm poses will generate different joint point
positions.

C. Solution of Joint Variables

The obtained joint point positions are connected in sequence
to obtain the link information, and the rotation angle of each
joint is calculated based on the changes in these links.

Define x and y as two vectors respectively, and the rotation
plane represented by the binary unit vector is expressed as:

N̂ =
x̂ ∧ ŷ
∥x̂ ∧ ŷ∥

(12)

x̂ and ŷ respectively represents the unit vector of x and y.
The angle between x and y is expressed as:

θ(x, y) = atan2(x̂ · ŷ, (x̂ ∧ ŷ)N̂−1) (13)

The rotation axes of seven joints of the SSRMS-type ma-
nipulator are P0P1, P1P2, P2P3, P3P4, P4P5, P5P6, P6P7 in
sequence, and the rotation angle is determined by the rotation
reference vectors P1P2, P2P3, P3P4, P5P6, P7P8, P8P9, o.

When none of the joints rotates, the configuration of the
robotic arm in the conformal space is shown in Fig. 2. The
initial rotation reference vectors of Joint 1 to Joint 7 are e2,
−e1, e2, e2, e2, −e1, e2 in sequence. After the movement
occurs, the joint variable θ1 can be calculated with the joint
point position P1 and P2 as:

θ1 = θ(−e1,P1P2) (14)

Then the rotation reference vector of Joint 2 is l2 =
M1M0e2M̃0M̃1, the joint variable can be calculated as:

θ2 = θ(l2,P2P3) (15)

By analogy, the values of each joint variable θ3, θ4, θ5, θ6,
θ7 can be obtained.

If the rotor in (1) can be represented as:

ROobjectR̃ = Oobject.rotate(I, θ) (16)

the procedure of solving for joint variables can be represented
by the following algorithm 1.

As described in III-B, eight sets of inverse kinematic solu-
tions are obtained for each given pose. In order to select the
optimal solution, solutions that do not meet the joint angle
restrictions will be first screened, and then the principle of
minimizing joint motion is used, thus the absolute sum of joint
rotations is minimized.
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Algorithm 1 Calculating joint variables.
Require: ref axis: {−e1, e2, −e1, −e1, −e1, e2, −e1},

current vector: {P0P1, P1P2, P2P3, P3P4, P4P5, P5P6,
P6P7}, rot axis: {P1P2, P2P3, P3P4, P5P6, P7P8, P8P9,
o}.

1: θ1=θ(−e1,P1P2)
2: for i = 1 to 7 do
3: for j = 1 to i do
4: ref axis[j]← ref axis[j].rotate(rot axis[j], θj)
5: end for
6: θi ← θ(ref axis[i], current vector[i])
7: end for

IV. CASE ANALYSIS

This section takes EMM, as shown in Fig. 1, as the example
to verify the validity and efficiency of the LDVP method. All
trials are implemented in C++, utilizing a computer (Intel(R)
Core(TM) i3-4160 CPU @ 3.60GHz RAM8.00GB Ubuntu
20.04) to execute them.

A. FK simulation of 10,000 random poses

In the D-H method, each link is fixedly connected to a coor-
dinate system and different individuals may establish different
coordinate systems and provide different D-H parameter tables
when solving for FK of the same manipulator. In contrast,
in CGA method, all geometric objects are described in the
same world coordinate system, and the kinematic equation
is derived with continuous product of geometric operators,
avoiding complex matrix operations.

Based on the Monte Carlo method, use Stantard D-H (SDH)
method, Modified D-H (MDH) method and CGA to solve for
FK of EMM. When randomly set 10,000 sets of joint variables,
the average calculation time for each interpolation point by
three methods is shown in Fig. 10.

It can be seen from the results that CGA method has great
advantage in the computation speed of forward kinematics,
which is about 1.6 times that of D-H method.

B. IK simulation of single random pose in workspace

Set pose of the end effector as pe = (−3.67, 1.62, 0.17), a =
(−0.23, 0.557, 0.798), o = (−0.187, 0.779,−0.598), and the
reference point is selected as Ppara = (−0.374, 1.19, 0.796),
then eight sets of inverse solutions are shown in TABLE IV,
and corresponding poses are shown in Fig. 11 respectively.

1 0.212165 0.220014 0.13667
2 0.150014 0.143282 0.093085
3 0.148898 0.141017 0.096168
4 0.149445 0.13854 0.092762
5 0.148543 0.140482 0.093894
6 0.151271 0.138816 0.092019
7 0.150567 0.1382130.092558
8 0.148674 0.140165 0.093556
9 0.148909 0.13849 0.095372
10 0.150427 0.138359 0.092921
11 0.154686 0.13868 0.093446
0.155782 0.147785 0.097989
SDH MDH CGA

15.58 14.78 9.79

15.58 14.78

9.79

0
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Fig. 10. Solution time for each interpolation point in the workspace.

TABLE IV
EIGHT INVERSE KINEMATIC SOLUTIONS A RANDOM GIVEN POSE

n θ1(°) θ2(°) θ3(°) θ4(°) θ5(°) θ6(°) θ7(°)

1 154.85 61.68 159.31 69.03 -100.62 9.53 -12.82
2 154.85 61.68 -131.66 -69.03 -31.59 9.53 -12.82
3 154.85 61.68 160.06 44.00 103.66 -9.53 167.18
4 154.85 61.68 -155.94 -44.00 147.66 -9.53 167.18
5 -25.15 -61.68 -32.95 102.61 -121.94 9.53 -12.82
6 -25.15 -61.68 69.66 -102.61 -19.33 9.53 -12.82
7 -25.15 -61.68 -41.24 87.79 81.17 -9.53 167.81
8 -25.15 -61.68 46.55 -87.79 168.96 -9.53 167.81

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 11. The corresponding configurations of eight sets of solutions.

The LDVP method enables the direct solving of both the
positions of each joint point and each link, thus enhancing the
visibility of geometric characteristics and making this method
more effective in obstacle avoidance.

C. IK simulation of 10,000 random poses in workspace

We challenged the proposed LDVP method against other
four IK methods [16]. The trials involved 10,000 random poses
in the workspace obtained in IV-A utilized as the desired poses,
and results are shown in TABLE V.

Results reveals that the LDVP method outperforms all com-
petitors considering the solution rate, which firmly guarantees
stability and reliable task execution. Although the average time
of LDVP is not the shortest, the computational burden is still
competitive given the high solution rate, and it is much more
faster than iterative methods. Moreover, there is no solving
error since the LDVP method solves analytical solutions rather

TABLE V
A COMPARISON OF PERFORMANCES OF FIVE IK METHODS [16].

Joint
Locking

Position
Error(m)

Solve
Rate(%)

Average
Time(ms)

Multiple
Solutions

CCD No 10−6 96.85 17.64 No
JAP Yes No Error 92.12 0.05 Yes
KDL No 10−6 87.74 1.13 No

TRAC-IK No 10−6 99.26 0.69 No
LDVP No No Error 100 0.25 Yes
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Fig. 13. End track of manipulator in trajectory tracking tasks.

than numerical solutions. The simulation results indicate that
the proposed LDVP method is an efficient IK method.

It should be further noted that although the possibility of no
solution is proposed in III-B, it is difficult to precisely meet the
condition of no solution when the pose is randomly selected
in the workspace, so the solution success rate is usually 100%.

D. Continuous path tracking experiment

We employed the LDVP method to perform the path tracking
task. Two paths, each consisted of 1,000 interpolation points,
were planned respectively, namely a circle with (-3, 2) as the
center and 1 m as the radius on the plane parallel to y=3, and
a square on the x-z plane parallel to y=1.62 with x limited in
(-4, -2) and y limited in (-2, 0). Change curves of each joint
angle are shown in Fig. 12. Use the joint angle obtained from
the solution to solve the end point position through forward
kinematics and depict the end point trajectories in Fig. 13.

Considering that the LDVP method can dynamically select
the optimal parameter vector based on the context plan-point,
ensuring minimal changes in the manipulator and minimiz-
ing energy waste during movement along a given path, the
proposed method guarantees that seven joints all changing
to pursue the optimal configuration to make full use of the
redundancy characteristic.

V. CONCLUSION

This paper proposes a method named LDVP to solve for
analytical IK solution of SSRMS-type manipulator, which takes
the direction vector of three-continuous-parallel-link as the
parameter. The efficiency of kinematic solution was obviously
enhanced by applying conformal geometric theory to avoid
complex matrix calculation as well as iterative process. The
optimization problem of redundant parameter was solved by

selecting parameter vector according to context plan-point in a
given trajectory. Redundancy characteristic was fully utilized
by adjusting all seven joints to pursue the optimal solution
without locking the configuration of the manipulator.

It should be noted that although singular configurations do
not appear in most cases, it will cause great danger when it is
encountered in orbit service, so future work will optimize the
LDVP to avoid singular configurations. Moreover, the obstacle
avoidance function is not considered in the process of selecting
the parameter vector, thus the superiority of CGA in geometric
calculation will be utilized to reflect the obstacle avoidance
advantages of redundant manipulators in future work.

ACKNOWLEDGMENT

This work was supported the Key Lab. of Science and
Technology on Space Flight Dynamics [Project Number:
XTB6142210210303], and the National Natural Science Foun-
dation of China [Project Number: 92148203 and T2388101].

REFERENCES

[1] F. Angel, O. Ma, K. Pham, and U. Steve, “A review of space robotics
technologies for on-orbit servicing,” Progress in Aerospace Sciences Phil.
vol. 68, no. 8, pp. 1–26, 2014.

[2] Zhang Y, Liu Y, Cao B, Liu Y, Ma Y and Xie Z, “Joint Limit Optimal
Inverse Kinematics of the 7-DoF Manipulator with Link Offset based
on Semi-analytical Solution,” 2021 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pp. 483-489, 2021.

[3] Liu H. “An Overview of the Space Robotics Progress in China,” 2014.
[4] Zhao J, Zhao Z , Yang G, Yang X, and Liu H, “Inverse Kinematics of a

Novel SSRMS-Type Reconfigurable Manipulator with Lockable Passive
Telescopic Links,” Mechanism and Machine Theory, vol. 180, Feb. 2023.

[5] Ma B, Xie Z, Jiang Z, Liu Y and Wang Z, “An Efficient Inverse Kine-
matic Strategy for the 7-DOF Offset Space Manipulator with Arm Angle
Parameterization,” 2022 IEEE International Conference on Mechatronics
and Automation (ICMA), pp. 1732-1737, 2022.

[6] Ma B, Xie Z, Jiang Z, and Liu H, “Precise semi-analytical inverse
kinematic solution for 7-DOF offset manipulator with arm angle opti-
mization,” Frontiers of Mechanical Engineering, vol. 16, pp. 435-450,
2021.

[7] S. Buss, “Introduction to Inverse Kinematics with Jacobian Transpose,”
Pseudoinverse and Damped Least Squares methods, 2004.

[8] R. Smits. (2022). KDL: kinematics and dynamics library [Online].
Available: http://www.orocos.org/kdl.

[9] P. Beeson, B. Ames, “TRAC-IK: An open-source library for improved
solving of generic inverse kinematics,” Proceedings of the IEEE-RAS
15th International Conference on Humanoid Robots (Humanoids), pp.
928–935, 2015.

[10] Xu W, Yan L, Mu Z, and Wang Z, “Dual arm-angle parameterisation and
its applications for analytical inverse kinematics of redundant manipula-
tors,” Robotica, vol. 34, pp. 2669 - 2688, 2015.

[11] Yang X, Zhao Z, Xu Z, Li Y, Zhao J, and Liu H, “General inverse
kinematics method for 7-DOF offset manipulators based on arm angle
parameterization,” Acta Astronautica, vol. 202, pp. 263-277, 2023.

[12] Yan L, Mu Z, and Xu W, “Analytical inverse kinematics of a class
of redundant manipulator based on dual arm-angle parameterization,”
2014 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), pp. 3744-3749, 2014.

[13] Xu W, Zhang J, Yan L, and Wang Z, “A parametric method for
solving inverse kinematics of biased redundant space manipulator,” Acta
astronautica, vol. 36, no. 1, pp. 33–39, 2015. (in Chinese)

[14] Li H, “Geometric interpretation of graded nilpotent monomial in confor-
mal geometric algebra,” Chinese science: Mathematics, vol. 51, no. 1,
pp. 30, 2020. (in Chinese)

[15] Feng C, Wu H, Xia R, Xu Q, and Dai D, “Inverse kinematics of 6-
DOF robot based on conformal geometric algebra,” Machine Design and
Research, vol. 34, no. 1, pp. 7, 2018. (in Chinese)

[16] Zhao J, Zhao Z, Yang X, Zhao L, Yang G, and Liu H, “Inverse kinematics
and workspace analysis of a novel SSRMS-type reconfigurable space
manipulator with two lockable passive telescopic links,” Mechanism and
Machine Theory, Vol. 180, 2023.

466


