
  

 

Abstract— The lightweight of point clouds is an essential issue 
for LiDAR in practical applications. Point clouds collected 
outdoors often have a large number of ground points, reducing the 
data processing speed and affecting the classification and 
identification of targets. The paper develops a ground extraction 
method based on principal component analysis (PCA) and 
self-organizing map (SOM). The sufficient information is selected 
by analyzing the original point cloud features to improve the 
statistical outlier removal filter to achieve the initial cleaning of 
the point cloud. The filtered point cloud is reduced dimension by 
PCA, and overcomes the feature classification difficulty while 
accelerating the subsequent point cloud processing. Furthermore, 
SOM achieves unsupervised learning for the practical point cloud, 
which performs efficient ground extraction at sparse and dense 
locations while not relying on the size of the dataset. Experiments 
on SemanticKitti show that the detection accuracy of the proposed 
method can reach 95%, and it also has the satisfactory real-time 
performance. 

Index Terms—point cloud, ground separation, filter, principal 
component analysis, self-organizing map  

I. INTRODUCTION 

In practical applications, LiDAR mainly works in scenes 
such as factories, urban roads, construction sites, fields, etc. 
There is a huge number of ground points in these scenes, which 
can reduce the data processing speed and affect the classification 
and recognition accuracy of targets. Accurate separation and 
identification of ground points from point cloud data can reduce 
the amount of computing, improve the algorithm’s efficiency, 
and play an essential role in improving the accuracy of 
environmental sensing. 

In addition to the vast amount of data, point cloud has three 
characteristics: disorder, spatiality, and invariance. Disorder 
means that the point cloud consists of a large number of point 
data, and these points are stored in the file without order; 
spatiality signifies that points contain spatial coordinate 
information, which constitutes a set of spatial relationships; 
invariance implies that the target does not change with the 
rotation and translation of the point cloud data. It is necessary to 
overcome the difficulties caused by the above characteristics 
while using them for environmental perception during extracting 
ground information from point clouds. Sithole et al. [1] set the 
optimal slope threshold by a priori knowledge of the 
experimental area based on the principle that the slope values 
between ground points are small, while the slope values between 
ground and non-ground points are large, and achieved simple 
separation of the ground. However, the terrain is usually 
complex and variable, and it is unreasonable to set a uniform 
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slope threshold for the whole experimental area. Susaki [2] 
introduced a rough numerical ground model to address the 
above shortcomings and improved the separation accuracy of 
the algorithm in complex terrain by varying the slope threshold. 
Lin et al. [3] used the region growing method to partition the 
point cloud into different parts, then set the rules to select the 
ground seed points to establish the initial irregular triangular 
network, and obtained the final ground point cloud by iterative 
filtering. Axelsson [4] created a sparse ground seed point at a 
low-relatively set of points and refined the reference ground 
surface by progressive densification of the seed points. Chen [5] 
organized the point cloud through square grids, introduced 
preliminary information to construct the initial sparse triangular 
ground seeds, and extracted all ground points during the density 
interaction. Although the method of presetting ground seed 
points has improved performance compared to classification 
based on slope thresholds, it cannot effectively separate the low 
objects on the ground. Chen et al. [6] used multiscale 
morphology and Z-score to select ground seeds as correctly as 
possible and incorporated residual thresholds for topographic 
adaptation to various terrain features. Bayram et al. [7] proposed 
a ground extraction algorithm based on spectral features to 
achieve high-precision extraction of bridge ground by analyzing 
3D point clouds through weighted spectral maps. 

In particular, it should be noted that point cloud filtering has 
a significant impact on improving the accuracy of feature 
extraction, which is usually combined with ground extraction in 
most cases. Filtering is the representative step in the point cloud 
pre-processing, which needs to remove the noise from the 3D 
point cloud model while maintaining the geometric features of 
the model itself. Zou et al. [8] proposed a wavelet function 
bilateral filtering method, which obtained the distance between 
two points in the optimal neighborhood by particle swarm 
optimization method, then performed wavelet smoothing and 
preserved the edge eigenvalues through the Gaussian function. 
The technique had a denoising accuracy of 96.96% and could 
retain the complete feature points, but the filtering time was too 
long for practical applications. Ren et al. [9] established a 
multiscale noise removal overall filtering algorithm. The filter 
constructed a surface change factor based on the point’s normal 
vector, which can determine whether the sampling points belong 
to the mutation region in the domain. The method removed the 
large-scale noise in the flat region by statistical filtering and 
deleted the small-scale noise in the mutation region by bilateral 
filtering. Li et al. [10] used an adaptive bilateral filter to scale the 
model, which effectively preserved the edge feature values, but 
the adaptive configuration of this method takes too long, and 
some points are lost when scaling the model. Elhoseny et al. [11] 
solved the problem of point clouds contaminated by different 
types of noise through the optimal BF model and MI 
classification denoising method. However, the method is 
computationally intensive, and the filtering process spends too 
much time. This paper aims to develop a ground separation 
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method for real-field point clouds of dimensionality reduction 
based on principal component analysis and self-organizing 
mapping. In order to optimize the separation effect, point cloud 
information analysis and filtering algorithm improvement are 
used for point cloud pre-processing. The proposed method is 
tested on the urban road. 

II. POINT CLOUD CAPTURED BY LIDAR 

As shown in Fig. 1, the actuator of LiDAR is usually 
composed of three major parts: the laser transmitter, the 
scanning receiver and the photoreceptor [12]. The laser 
transmitter emits multiple laser beams. The scanning receiver 
receives the return laser after the laser encounters an obstacle 
and records the time and angle for positioning. The 
photoreceptor records the intensity of the returned laser.  

 

 
Fig. 1  The structure of LiDAR 

A majority of LiDAR sensors use time-of-flight (ToF). The 
laser transmitter emits pulses and records the time and direction 
of emission; the pulses reflect part of the energy if encounter 
obstacles in the air. The receiver receives part of the reflected 
energy and records the time and power received. The distance is 
calculated as follows: 

 
2

ct
d   (1) 

where c represents the speed of light and t represents the round 
trip time. TABLE I. lists the resulting point cloud contains the 
following information for each point. 
 

TABLE I.  THE INFORMATION FOR EACH POINT  

Parameter (unit) Implication 

idp The serial number of the point 

X, Y, Z(m) The spatial coordinates of the point 

Aangle(degree) 
The clockwise horizontal azimuth of the 

point with LiDAR as the origin 

Atime The adjusted time of the point 

d(m) The distance from the point to LiDAR 

I The reflection intensity of the point 

idL The laser beam of the point 

T The timestamp of the point 

V(degree) 
The pitch angle of the point with LiDAR 

as the origin 

 
Due to the disorder, the idp of the point cloud’s point is just a 

representation form, which does not have practical significance 

and does not need in the perception. X, Y and Z represent the 
specific location information of points. Aangle, D and V can all be 
calculated by them according to the following equations: 
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Take Velodyne VLY-128E lidar for example, the hardware 
design of LiDAR fixes its beam distribution. Fig. 2 is the beam 
distribution of VLY-128E, the laser ID of each point can be 
queried according to Aangle and V. 

 

 
Fig. 2  The beam distribution of VLY-128E 

 
I is a discrete integer value obtained from the comprehensive 

processing of the return optical power at the receiver. The value 
can be briefly expressed as follows： 

  ( ) ( )I h K f R g     (5) 

where h is the conversion function of the LiDAR signal, and K is 
the product of the target reflection coefficient and other system 
parameters. f(R) is the distance factor to characterize the 
variation of the reflected intensity with distance, ( )g   is the 
angle factor represents the spatial distribution of the reflected 
intensity of the target. 

The generation time of different points in each point cloud is 
different during the scanning process of LiDAR. T records the 
time of each point generation, and Atime can be used to correct the 
distortion generated by the scan time difference. Unlike most 
point cloud processing methods that only pay attention to spatial 
coordinates (X, Y, Z), the paper retains I for point cloud 
pre-processing and feature extraction to fully use the collected 
environmental features. Since this paper does not involve 
distortion correction of the point cloud, T and Atime are not 
processed. 

568



  

III. STATISTICAL OUTLIER REMOVAL FILTER THAT ADDS 
INTENSITY 

Due to the physical limitations of the sensor and the scene 
characteristics, LiDAR is extremely prone to forming noisy and 
discrete points during data acquisition, which contaminates the 
original point cloud. 

Each point in the point cloud carries a certain amount of 
information, and the denser the points in a certain area, the more 
information is available. Statistical outlier removal filter 
calculates the average distance between a point and its k 
neighboring points and denotes it as d. Assuming that the set D 
composed of all d satisfies Gaussian distribution, the points 
whose d is outside the standard range of the sample are defined 
as outliers and should be removed from the point cloud. 

Statistical outlier removal filter [13] merely takes advantage 
of X, Y and Z information, ignoring intensity information. The 
paper introduces intensity to calculate d, which further improves 
the filtering effect by considering the spatial distribution while 
combining the scene object surface information. The improved d 
and its threshold value dthresh can be calculated as follows: 

 2 2 2 2( ) ( ) ( ) ( )
j j j ji k i k i k i kd X X Y Y Z Z I I         (6) 

 threshd a        (7) 

where Xi, Yi, Zi, Ii and 
jkX , 

jkY , 
jkZ , 

jkI  respectively represent 

the coordinate and intensity of the i-th point and the j-th point in 
its k neighborhood,   is the average distance,   is the 
standard deviation of the distribution, and a is the 
proportionality constant, which can be adjusted during use. 

Fig. 3 shows the effect of the two filters. From the white 
circle-3 and circle-4, it can be seen that the improved filter can 
effectively improve the discrete point removal at dense point 
clouds. The performance at sparse point clouds is slightly 
degraded, which is reflected in white circle-1 and circle-2. 

IV. DIMENSION REDUCTION BASED ON PRINCIPAL 
COMPONENT ANALYSIS 

The filtered point cloud removes unnecessary outlier points, 
which lays the foundation for efficient and accurate point cloud 
feature extraction. However, due to the large amount of data, the 
filtered point cloud still faces the problems of excessive 
computational pressure and poor real-time performance during 
processing. The paper uses 43552 point clouds of SemanticKitti 
[14], which the University of Bonn developed, to perform 
correlation analysis on the variables (X, Y, Z, I) screened in the 
previous section. The correlation coefficients between the 
variables are shown in Fig. 4, which shows that although the 
correlation between each variable is small, it is still not 
completely eliminated and provides overlapping information. 
Principal component analysis [15] is a multivariate statistical 
analysis method that transforms multiple correlated variables to 
a few linearly uncorrelated variables by rotating the axes of the 
original data onto orthogonal axes, which can be used to reduce 
the dimensionality of data and improve the efficiency of point 
cloud feature extraction. 

 
Fig. 3  The effects of different filters 

 

 
Fig. 4  The correlation coefficients between X, Y, Z, I 

 

A. Mathematical Model of PCA 

There are n samples, X1, X2, …, Xp are characteristic 
parameters of each sample without restriction on the unit. Each 
parameter may be correlated with others parameters. These 
parameters constitute the original data array as follows:  
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Linearly combining the p column vectors X1, X2, …, Xp of X 
to obtain the integrated feature vectors as follows: 
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where the coefficient ai
T=(a1i, a2i, …, api) satisfies ai

Tai=1(i=1, 
2, …, p), Fi is independent of each other (Cov(Fi, Fj)=0, (i≠j)), 
and Var(F1)≥Var(F2)≥…≥Var(Fp). Denote the covariance 
matrix of X as ∑. λ1, λ2, …, λp are the eigenvalues of ∑, and 
λ1≥λ2≥…≥λp. The standard orthogonal vectors corresponding to 
the eigenvalues are γ1, γ2, …, γp. The maximum value of Var(Fi) 
under the constraints of the above conditions can be calculated 
as follows: 
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Obviously, ai=γ1. Similarly, the integrated feature vectors as 
formulated in (11): 
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The variance contribution of Fi as formulated in (12): 
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B. Dimensionality Reduction of Point Cloud 

The paper analyzes the XYZI data of the point cloud with 
PCA. The statistics of the cumulative contribution of each 
principal component factor are shown in Fig. 5, which illustrates 
that retaining 2-dimensional data can effectively represent the 
point cloud. 

 
Fig. 5  Cumulative contribution statistics of each parameter 

The correlation analysis of the compressed features shows 
that the correlation between different variables is zero, which 
greatly removes the redundant features, as seen in Fig. 6. 

 

 
Fig. 6  The correlation coefficients of the compressed features 

 

V. GROUND EXTRACTION METHOD BASED ON 
SELF-ORGANIZING MAPS 

The data after PCA is the condensed feature of the original 
point cloud, which still cannot directly distinguish whether the 
sample belongs to the ground. Self-organizing map [16] is an 
unsupervised artificial neural network that optimizes itself 
through competitive learning. The network maintains the 
topology of the input relies on the competition between neurons 
and the nearest neighbor relation function, and extracts features 
while eliminating the problem of over-dependence on data sets 
in most neural networks. The paper introduces SOM to roughly 
cluster the dimension-reduced 2D data and feature classification, 
which can efficiently achieve the final ground extraction. 

A. Principle of SOM 

SOM consists of an input layer and a competing layer 
(output layer), where the input layer organizes the input data. 
The dimensionality of the input vector determines the number 
of neurons. The competition layer completes the competition, 
collaboration and adaptation of the model. Competition means 
that when the data is fed into the competition layer, the model 
calculates the similarity between the sample αi and each node to 
select the node with the highest similarity as the winner node. 
Collaboration implies that the neighborhood radius determines 
the winning neighborhood of the winning node, and the 
neighborhood function updates the weights of the 
neighborhood nodes. Adaptation makes the winning node and 
the neighboring nodes more sensitive to the specific input value 
by the activation function and the update of node weights. 
Typically, the adjustment size of the adaptation weights is 
controlled by the learning rate, which decays with the learning 
time and plays a decreasing role in the convergence rate of the 
model. Fig. 7 is the network structure of SOM. 

 
Fig. 7  The network structure of SOM 
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B. The ground extraction of point cloud based on SOM 

According to the characteristics of the compressed data, the 
neurons’ number of the input layer is two, and the competitive 
layer is 30×30 (obtained by experiment). The similarity is 
calculated according to the Euclidean distance. The 
neighborhood is delimited by a triangular region with a radius 
of 2 from the winning point. Learning rate (the initial value is 
0.5), neighborhood radius (the initial value is 2) and the weights 
of neurons (set the initial value randomly) would decay 
gradually with iterating, and they can be obtained as: 

 
0.5
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where T is the total number of samples (similar to the epochs in 
supervised learning), t denotes the current training count, lr(t), 
r(t), w(t), and win(t) are the learning rate, the neighborhood 
radius, the weight of the updated nodes and the weight of the 
winner node of the t-th sample respectively. 

After obtaining the 30×30 mapping results generated by the 
SOM during testing, the labels of a frame point cloud of the 
training set are used to annotate classification for the obtained 
mapping nodes and complete the separation of ground and other 
points. The model is tested with 23201 labeled data from the 
first 11 sequences of SemanticKitti to validate the performance 
of the proposed method. Each sequence is divided into the 
training set and the test set according to 6:4. 

The paper uses precision(P), recall(R), F1 and 
accuracy(acc) to describe the model performance, which as 
formulated in (16) to (19):  

 TP

TP FP

n
P =

n + n
 (16) 
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n
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n + n
 (17) 
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where nTP represents the number of positive samples predicted 
to be positive, nFP represents the number of negative samples 
predicted to be positive, nTN represents the number of negative 
samples predicted to be positive, and nFN represents the number 
of positive samples predicted to be negative. 

Precision describes how many positive samples in the 
prediction result are truly positive samples; recall describes 
how many positive samples are detected in the prediction. F1 is 
a weighted average of precision and recall, which can make an 
efficient evaluation of the detection results for datasets with the 
uneven class distribution. Accuracy is more suitable for the 
detection of datasets with balanced category distribution. 

TABLE II. shows the detection parameters of different models, 
and Fig. 8 shows the detection results of the corresponding 
models. It can be seen that the basic SOM network can basically 
complete the ground extraction at sparse point clouds, but the 
recognition ability at dense places is poor; the introduction of 
PCA dimensionality reduction not only effectively improves 
the real-time ground extraction but also further improves the 
extraction ability of the model at dense point clouds, which is 
because PCA reduces the feature dimensionality, as well as 
enhances the data discrepancy through orthogonal 
transformation to reduce the difficulty of feature identification; 
the addition of the improved statistical outlier removal filter 
algorithm can further improve the detection accuracy and make 
the final pavement extraction effect meet the practical 
application.  

 

 
Fig. 8  The detection results 
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TABLE II.  THE DETECTION RESULTS  

Model Labels Precision Recall F1 Accuracy Time/s 

SOM 
Ground 0.86 0.75 0.80 

0.81 1.337 
Others 0.77 0.87 0.82 

PCA- 
SOM 

Ground 0.96 0.91 0.94 
0.94 0.876 

Others 0.91 0.96 0.94 

Filter-
PCA- 
SOM 

Ground 0.97 0.93 0.95 
0.95 1.036 

Others 0.93 0.97 0.95 

     

VI. CONCLUSION 

With improved performance and reduced cost, LiDAR has 
become a common perception for various scenarios. The 
collected point cloud data is commonly used for environmental 
perception and high-precision mapping. However, data 
redundancy and high computational pressure on the system are 
currently limiting the further application of point clouds. The 
paper analyzes the effectiveness of different information in the 
original point cloud and selects the briefest feature 
representation to filter, reduce dimension and extract ground 
points, which lays the foundation for further extraction of object 
features in the scene. Compared with SOM and PCA-SOM, the 
proposed method can improve the accuracy and speed of 
ground extraction. In the future, we will conduct research on the 
perception of driving objects on the road. 
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