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Abstract— Energy management strategies (EMSs) are crucial
to the fuel economy of hybrid electric vehicles (HEVs). However,
due to the lack of efficient solving approaches, most of existing
EMSs mainly focus on the optimal torque split between the
internal combustion engine (ICE) and the electric motor but
neglect improper ICE on/off switches, and thus usually suffer
degraded fuel economy and even unacceptable drivability in
practice. To tackle this issue, this paper presents a novel EMS
that uses an efficient actor-critic (AC) method to regulate ICE
switches with limited computation resources. While common
AC methods use complex neural networks (NNs) with arbitrary
initialization, the proposed AC uses piecewise cubic polynomials
whose parameters are initialized based on optimized solutions
of dynamic programming (DP). By this means, the AC can
quickly converge with high computation efficiency. The testing
results from processor-in-the-loop (PIL) simulations showcase
that, compared with a rule-based EMS with tabular value
functions, the proposed EMS can greatly improve the equivalent
fuel economy by eliminating improper ICE switches after only
several iterations of adaptive learning and dramatically save
the onboard memory space owing to the concise AC structure.

Index Terms— Hybrid electric vehicle, Energy management
strategy, Engine switch, Actor-critic method, Adaptive learning

I. INTRODUCTION

The pursuit of sustainable development is expediting the
development of electrified vehicles [1], [2]. As a major
representative of electrified vehicles, hybrid electric vehicles
(HEVs) are popular in the automobile market nowadays
[3], [4]. By flexibly allocating the total torque demand to
the internal combustion engine (ICE) and the electric motor
(EM), HEVs can achieve much higher fuel economy and
fewer exhaust emissions than conventional vehicles solely
powered by ICEs. Moreover, they effectively avoid the
common challenges for full-electric vehicles, such as range
anxiety and long-time charging. Nevertheless, due to multiple
onboard power sources, HEVs must rely on efficient energy
management strategies (EMSs) to maximize their economic
and ecological profiles [5].

The currently published EMSs can be generally classified
into three types, namely the rule-based (RB-), optimization-
based (OB-), and learning-based (LB-) EMSs [6], [7]. RB-
EMSs can satisfy the real-time requirement in the online con-
trol with decent performances but cannot ensure near-optimal
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fuel economy and lack adaptivity to various driving scenarios
[8]. According to whether complete prior knowledge is
necessary, OB-EMSs are further divided into offline and
online subgroups. The offline methods, including dynamic
programming (DP) [9], particle swarm optimization [10],
genetic algorithm [11], and simulated annealing [12], can
obtain the non-causal optima in the premise of precise future
driving information. Due to the enormous computation loads,
they cannot be directly implemented as online controllers but
usually serve as benchmarks for other EMSs. By contrast,
the online methods [13], comprising Pontryagin’s minimum
principle (PMP) [14], equivalent consumption minimization
strategy [15], and model predictive control, only require
driving information in a short-term future. Thus, they are
computationally tractable to provide real-time sub-optimal
solutions. Nevertheless, their performances are very sensitive
to accuracies of the system model and predicted infor-
mation. Benefiting from the excellent adaptivity and the
distinctive model-free property, LB-EMSs, containing su-
pervised/unsupervised learning [16], reinforcement learning
[17], and deep reinforcement learning [18], have become a
research hotspot in recent years. However, some inevitable
defects must be well coped with in practice, for instance, the
trade-off between exploitation and exploration, the tedious
training process, and the trap of local optima.

In addition to the torque split between ICE and EM, the
ICE on/off switch is critical to the overall HEV performance
[19], especially to the parallel HEVs, whose wheel speed is
directly coupled with the ICE spinning speed. The proper
switches can indeed reduce fuel consumption and extend
the ICE lifetime; whereas the improper ones, reflected as
frequent and/or rapid switches, will not only waste much
more energy for ICE restart but also destroy the drivability
and even incur severe safety hazards. An effective approach
is to optimize the ICE switch and the torque split simulta-
neously, but the introduction of integer variables will further
complicate the optimal control problem (OCP) due to the
complex non-linear powertrain dynamics and time-varying
driving environment. Thus, the majority of studies adopt
heuristic rules to decide the ICE switches, while a small
number of emerging EMSs depend on complex optimization
algorithms to seek optimal solutions [20], [21]. For this
reason, most researchers merely present improvements in
numeric results achieved by the novel EMSs but do not
analyze the actual consumption of computation resources
when these EMSs are executed in real-time.

To tackle the aforementioned issues and bridge the re-
search gap, we propose a computationally efficient EMS
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Fig. 1: Parallel HEV Powertrain Architecture

that can simultaneously optimize the ICE switch and torque
split for a parallel HEV with limited computation resources.
Firstly, the ICE switch is controlled by an efficient actor-
critic (AC) method. Unlike the general AC methods with
complex neural networks (NNs) and arbitrary initialization,
both the actor and the critic in this new method are for-
mulated as third-order piecewise polynomials, whose co-
efficients are initialized based on the optimal policy and
value functions (VFs) by offline DP, respectively. If the ICE
is switched on, a value-based PMP controller is employed
to allocate the torque demand on ICE and EM. To seek
optimality, the costate of PMP is derived by the approximated
VF from the critic. The testing results from processor-in-the-
loop (PIL) simulations verify the optimality and computation
efficiency of the proposed EMS. After only several iterations
of adaptive learning, the proposed EMS can effectively avoid
improper ICE switches and thus improve the equivalent fuel
economy to a close-to-optimal level, more than 20% higher
than that by the benchmark, an RB-EMS with tabular VFs.
Moreover, owing to the concise structures of piecewise poly-
nomials in AC, the proposed EMS reduces more than 50%
of the onboard memory space compared to its counterpart.

The remainder of this paper is organized as follows.
Section II establishes the dynamical model of the parallel
HEV under study; Section III formulates the HEV energy
management problem as an OCP; Section IV elaborates the
design process of the proposed EMS; Section V presents the
testing results by PIL simulation; and Section VI draws the
conclusion and raises the future work.

II. PARALLEL HEV POWERTRAIN MODEL

The HEV under study is a lightweight prototype and has a
parallel powertrain, which contains a gasoline-driven ICE in
the fuel path and a brushless direct current EM in the electric
path. Owing to the higher specific power, a supercapacitor
(SC) rather than a battery pack is selected as the electric
energy storage. The architecture of this HEV powertrain
is depicted in Fig. 1, with essential parameters listed in
TABLE I.

The total driving time tf of a driving cycle is uniformly
divided into N steps with identical interval ts = tf/N . At
the kth step, k∈{0, 1, 2, · · · , N−1}, the net tractive torque

TABLE I: Essential Parameters of HEV

Parameter Sign Value Unit
HEV gross mass M 216 kg

Gravitational acceleration g 9.81 kg ·m·s−2

Equivalent mass ratio δ 1.04 /
Tire radius r 0.26 m

Frontal area Af 1.05 m2

Air drag coefficient cd 0.15 kg ·m−3

Rolling resistance coefficient cr 0.011 /
ICE gear ratio Rce 38/31 /
EM gear ratio Rem 38/36 /

Differential gear ratio Rp 10 /
Lumped efficiency in drive shaft ηd 0.9 /

Lumped efficiency to recharge SC ηrc 0.25 /
Average SC efficiency ηsc 0.98 /
SC terminal voltage Vsc 40-50 V

SC Nominal capacitance Csc 107 F
SC Nominal charge capacity Qsc 5350 C

Average auxiliary power Paux 10 W
ICE maximum torque Tmax

ce 3.1 Nm
ICE maximum power Pmax

ce 1.5 kW
EM maximum torque Tmax

em 11 Nm
EM maximum power Pmax

em 3.55 kW

on driving wheels Tt,k is calculated by,

Tt,k =r
[
δMak+Afcdv

2
k/2+Mg(cr cosαk+sinαk)

]
, (1)

ak = (vk+1 − vk)/ts, (2)

where a, v, and α denote the HEV acceleration, speed, and
road slope angle in the longitudinal direction, respectively.

In the parallel powertrain, Tt,k can be satisfied individually
by the ICE or the EM, or jointly by both, expressed as,

Tt,k = Rp

(
Tce,kRceηd + Tem,kRemη

sign(Tem,k)
d

)
, (3)

where Tce and Tem are the ICE and EM torque outputs.
To efficiently estimate the accumulated energy consump-

tion on fuel and electric paths, the quasi-static modeling
method is employed to analyze the energy efficiencies of
ICE and EM under stable status. The details of fast dynamics
concerning ICE on/off switches and clutch dis/engagement
are neglected since they have a negligible effect on the total
fuel consumption of long-time driving. For simplification, it
is assumed that one ICE switch can be completed within
one step. Denote by sce∈{0, 1} a binary variable indicating
the current ICE on/off status (“0” means off and “1” means
off), and uce ∈ {0, 1} another one representing the ICE
switch instruction. The dynamics and energy consumption
concerning ICE switches are described as,

sce,k+1 = uce,k, (4)

msw,k =

{
0; sce,k = uce,k

m?; sce,k 6= uce,k
, (5)

where msw is the potential equivalent fuel consumption for
one switch and is equal to either m? or 0.

After the ICE is switched on, the transient fuel consump-
tion during one step, mce, is defined as,

mce,k = ts
Pce,k

Qf
= ts

Tce,kωce,k

ηce(Tce,k, ωce,k)Qf
, (6)

ωce,k = RpRcevk/r, (7)
sce,k =0⇒ Tce,k =0, (8)
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Fig. 2: Actuator Efficiency Maps

sce,k =1⇒ Tce,k∈
[
Tmin
ce (vk), Tmax

ce (vk)
]
, (9)

where Pce, ωce, and ηce(·) represent the ICE power consump-
tion, spinning speed, and net efficiency, respectively. Qf is
the gasoline lower heating value. The admissible range of Tce
is subject to both sce and v. If the ICE is off, i.e., sce = 0,
Tce must be 0; otherwise, its upper and lower limits, Tmax

ce

and Tmin
ce , are determined by ωce, further coupled with v.

Similarly, the transient net power across the SC, Psc, is
described as,

Psc,k =
Pem,k + Paux

η
sign(Pem,k+Paux)
sc

, (10)

Pem,k =
Tem,kωem,k

ηem(Tem,k, ωem,k)sign(Tem,k)
, (11)

ωem = RpRemvk/r, (12)

where Pem, ωem, and ηem(·) indicate the EM power con-
sumption, spinning speed, and net efficiency, respectively.

Therefore, the SC dynamics can be derived as,

Vsc,k+1 = Vsc,k − tsPsc,k/(CscVsc,k), (13)
SOCk = CscVsc,k/Qsc. (14)

In general, the state of charge (SOC) of an SC cannot be
directly measured during HEV driving. Thanks to the linear
relationship between the SOC and Vsc, Vsc serves as the
indicator of SOC in the following EMS design and test.

It is noteworthy that both ηce(·) and ηem(·) are originally
modeled as explicit 2D maps, with their corresponding torque
outputs and spinning speeds, (Tce, ωce) and (Tem, ωem), as
inputs, shown in Fig. 2. However, this method will result in
enormous computation overhead and memory occupation in
online calculation. To tackle this issue, Pce is approximated
as a second-order polynomial of Tce, and similarly, Psc by
Tem, exhibited by Fig. 3 and expressed as,

Pce,k =p2(ωce,k)T 2
ce,k + p1(ωce,k)Tce,k + p0(ωce,k), (15)

Psc,k =q2(ωem,k)T 2
em,k+q1(ωem,k)Tem,k+q0(ωem,k), (16)
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Fig. 3: Power Consumption Approximation

where p2, p1, and p0 are coefficients associated to ωce, while
q2, q1, and q0 are coupled to ωem.

III. OPTIMAL CONTROL PROBLEM FORMULATION

The EMS for this HEV aims to minimize fuel consump-
tion with proper ICE switches over a driving route. More
specially, the ICE is expected to continuously work for a
relatively long period after being switched on instead of
being frequently switched in a short period. Additionally,
the SC charge should be well preserved during driving;
otherwise, it should be recharged by the ICE after driving.

If the HEV can strictly follow the speed trajectory of a
specific driving cycle, v(k), k∈{0, 1, · · · , N−1}, then ak and
Tt,k at each time step can be calculated by (1) and (2). Thus,
the formulated OCP concerning HEV energy management
can be derived as below.

argmin
uk

N−1∑
k=0

[
mce(xk,uk)+msw,k(xk,uk)

]
+mrc(xN ) (17)

subject to (3)-(9), (12), (13), (15), (16) and the following,

xk = [Vsc,k, sce,k]T , (17a)

uk = [Tce,k, uce,k]T , (17b)

x0 = [Vsc,0, 0]T , (17c)

Vsc,k ∈
[
V min
sc , V max

sc

]T
, (17d)

Tem,k ∈
[
Tmin
em (vk), Tmax

em (vk)
]T
, (17e)

mrc(xN ) = Csc

(
V 2
sc,0 − V 2

sc,N

)
/ (2ηrcQf ) , (17f)

where x and u are the state and control vectors, and mrc is
the extra fuel consumption to recharge the SC after driving.
Due to the mutual restraint in (3), Tem is not an independent
control variable anymore, but its upper and lower limits,
Tmin
em and Tmax

em , should be considered.
The OCP (17) is a mixed integer nonlinear programming

problem and is firstly solved offline by DP. The optimized
solutions, including the optimal control policy on ICE switch
u∗ce,k = π(xk, tk), the tabular VF Y (x, t), and the optimal
ICE on/off status profile s◦ce(tk), are employed to design the
online EMS.
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IV. ONLINE EMS DESIGN

To satisfy the real-time requirement and attain near-
optimal fuel economy in online applications, a computa-
tionally efficient EMS of hierarchical structure and adaptive
learning is designed to successively determine the optimal
ICE on/off status and calculate the torque split solution.
The ICE switch control is implemented by an efficient AC
method, wherein the actor and critic are designed based on
the policy π(·) and the VF Y (·) from offline DP. The torque
split control is realized by a value-based PMP method, which
also relies on Y (·) to estimate its optimal costate.

A. ICE Switch Rules Derived by DP

Although DP cannot directly provide real-time solutions,
it is generally treated as the most effective approach to
the global optimum and widely utilized to design or refine
other online EMSs. Thus, effective ICE switch rules u∗ce,k =
π(xk, tk) can be derived from DP solutions. Examining the
values of π(xk, tk) at any fixed pair of sce,k and tk, one
can find that u∗ce,k is determined by a threshold value of
Vsc,k corresponding to sce,k. If sce = 1 or 0, then the
threshold value is V 1

sc(tk) or V 0
sc(tk). Consequently, u∗ce,k

is determined by the following inequality rules:
when sce,k =0,

u∗ce,k =

{
0; Vsc,k ≥ V 0

sc(tk)

1; Vsc,k < V 0
sc(tk)

; (18)

when sce,k =1,

u∗ce,k =

{
0; Vsc,k > V 1

sc(tk)

1; Vsc,k ≤ V 1
sc(tk)

. (19)

The rationale of the rules is that at each time step k when
the actual SC voltage is larger than its threshold value, the
ICE should be off, i.e., u∗ce,k =0; otherwise, the ICE should
be on, i.e., u∗ce,k = 1. For online usage, the two threshold
vectors, V 0

sc(tk) and V 1
sc(tk), should be pre-stored into the

onboard processor.
These ICE switch rules enjoy the advantage of rapid

execution but suffer from two deficiencies, namely poten-
tial risks to huge memory overhead and unstable control
performance. Since V 1

sc(tk) and V 0
sc(tk) are two time-based

vectors, their sizes will linearly go up as the driving time
increases. More importantly, DP solutions are non-causal
and thus cannot ensure a robust performance when the
prior knowledge cannot match the real driving scenario.
As a consequence, an adaptive method for ICE switches is
designed in Subsection IV-B to overcome the two issues.

B. AC Method for Adaptive ICE Switch Control

Iteratively upgrading the control policies through the in-
formation interaction with the environment, LB-EMSs can
effectively eliminate the adverse impact from the deviation
between prior knowledge and real driving scenarios, and
finally attain close-to-optimal performances. As a typical
LB-EMS, the AC method employs two NNs. The actor NN
generates the control actions at each step, while the critic NN

estimates the state-action value (Q value) for the coefficient
update of two NNs. Compared to other prevalent LB-EMSs,
such as Q-learning, deep Q-network, and deep deterministic
policy gradient, the AC method can provide continuous
control actions with only two NNs, inferring its superior
computation power with a limited memory occupation.

However, general AC methods have two drawbacks caused
by the usage of NNs. The first one is the lengthy training
time and the possible divergence due to the “cold start” at
the initial training stage. The second one is the enormous
computation overheads when NNs have complex structures.
To solve these issues, this proposed AC method employs
piecewise polynomials of simple structures to replace NNs
and exploits DP solutions to initialize their parameters before
online learning.

Among DP solutions from Section III, π(·) and Y (·) are
used to formulate and initialize the actor and critic, and
s◦ce(tk) serves as the basis to divide the entire driving cycle
into several segments since sce has the most critical effect
on the evolution of x and Y (·). Our investigation shows
that the functions of π(·) and Y (·) are too complex to be
approximated by simple polynomials, but are more suitable
to piecewise polynomials. The segments along the timeline
are correlated with s◦ce(tk). Note that although s◦ce(tk) is
subject to the initial value of Vsc, similar segments of Y (·)
can be defined and the fitting errors are very small [22].
Since sce is a binary variable, Y (·) can be divided into 2
parts Y 1(Vsc, t) and Y 0(Vsc, t) concerning ICE on and off
for easy usage. Denote by Nsw the number of ICE switches
in s◦ce(tk) and WWW = [www1;www2; · · · ;wwwNmd+1] the coefficient
matrix. The approximated VFs, parameterized by WWW , Ỹ 1

WWW (·)
and Ỹ 0

WWW (·), can be expressed as piecewise cubic polynomials,

Ỹ 1
WWW (Vsc, t)=wn

1V
3
sc+wn

2V
2
sct+w

n
3Vsct

2+wn
4 t

3+

wn
5V

2
sc+ wn

6Vsct+w
n
7 t

2+wn
8Vsc+wn

9 t+w
n
10,

(20)

Ỹ 0
WWW(Vsc, t)=wn

11V
3
sc+wn

12V
2
sct+w

n
13Vsct

2+wn
14t

3+

wn
15V

2
sc+w

n
16Vsct+w

n
17t

2+wn
18Vsc+wn

19t+w
n
20,

(21)

where wwwn = [wn
1 , w

n
2 , · · · , wn

20] is the coefficient vector for
the nth section. Hence, the explicit VF Y (·) in the critic can
be replaced by its approximations Ỹ 1

WWW (·) and Ỹ 0
WWW (·), which

only require 20 (Nmd+1) coefficients.
Since the output of the actor should be continuous and

differentiable but uce is binary, the AC method cannot
directly implement π(·) illustrated by (18) and (19). To solve
this issue, we reformulate π(·)∈(0, 1) as a logistic function,

π(xk, tk) =


1− 1

1 + e−
(
Vsc,k−V 0

sc(tk)
) ; sce,k =0

1− 1

1 + e−
(
Vsc,k−V 1

sc(tk)
) ; sce,k =1

. (22)

The value of π(·) depends on the difference between Vsc
and its reference V 1

sc(tk) or V 0
sc(tk). If Vsc is larger than its

reference, π(·) is smaller than 0.5; if Vsc is smaller, π(·) is
larger than 0.5; otherwise, if they are identical, π(·) is exactly
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equal to 0.5. The actual control decision u∗ce is determined
by the value of π(·), written as,

u∗ce,k =


1; π(xk, tk) > 0.5

0; π(xk, tk) < 0.5

sce,k; otherwise

. (23)

V 1
sc(tk) and V 0

sc(tk) are approximated by piecewise cubic
polynomials as well. Their approximations parameterized by
the coefficient matrix FFF = [fff1;fff2; · · · ;fffNmd+1], Ṽ 1

sc,FFF (tk)

and Ṽ 0
sc,FFF (tk), are written as,

Ṽ 1
sc,FFF (tk) = fn1 t

3
k + fn2 t

2
k + fn3 tk + fn4 (24)

Ṽ 0
sc,FFF (tk) = fn5 t

3
k + fn6 t

2
k + fn7 tk + fn8 (25)

where fffn =[fn1 , f
n
2 , · · · , fn8 ] is the coefficient vector for the

nth section. Since Ṽ 1
sc,FFF (tk) and Ṽ 0

sc,FFF (tk) have only 1 free
variable tk, fffn is composed of 8 coefficients, less than wwwn,
and FFF contains 8 (Nmd+1) coefficients totally.

The policy used in the actor is denoted by πFFF (·). It follows
the principle by (22) but replace V 1

sc(tk) and V 0
sc(tk) by their

approximations Ṽ 1
sc,FFF (tk) and Ṽ 0

sc,FFF (tk).
During online control, the temporal difference (TD) learn-

ing [23] is employed to update the critic coefficient matrix
WWW . More specially, the TD error eWWW is defined as,

eWWW,k =mce,k+msw,k+ỸWWW (xk+1, tk+1)−ỸWWW (xk, tk), (26)

where ỸWWW (·) is the approximation of Y (·).
The loss function l based on an individual sample and its

gradient ∆c∈R20 are written as,

lk = e2
WWW,k/2, (27)

∆c,k =
∂lk
∂wwwn

. (28)

Accordingly, the update of actor coefficient matrix FFF
aims to minimize the cumulative fuel consumption. Hence,
gradient descent is performed to update FFF in the direction
of reducing the Q value, Q(xk,uk, tk), written as,

∆a,k =
∂Q(xk,uk, tk)

∂u∗ce,k
· ∂πFFF (xk, tk)

∂fffn
(29)

where ∆a∈R8 is the gradient of Q(·) in terms of fffn.
Because u∗ce is binary and the critic can only provide Ỹ (·)

rather than Q(·), ∆a cannot be directly calculated by (29).
To tackle this issue, we make use of the system dynamics
to estimate Q(·) and adopt difference operation referring to
different values of uce to replace the first partial differential
operation on the right-hand side of (29). Denote by ǔ∗ce
the opposite value of u∗ce, and then this partial differential
operation can be rewritten as (30).

To ensure the training robustness with limited onboard
computation resources, batch gradient descent [24] is em-
ployed to update WWW and FFF . A batch of maximum size K
samples sk ={xk,uk,mce,k,msw,k} is initialized as empty
before an episode starts. At each step, if the batch is not
full, the new sample will be appended to the batch, but the
coefficient update will not be performed; otherwise, WWW and
FFF will be updated immediately based on the existing samples

in the batch, and then the batch will be reset to empty for
accommodating new samples. The expressions for updating
WWW and FFF are given below.

WWW ′ ←WWW − βc
∑
k∈K

∆c,k, (31)

FFF ′ ← FFF − βa
∑
k∈K

∆a,k, (32)

where βc and βa are the learning rates of the critic and actor,
respectively; and for distinction, WWW ′ and FFF ′ are denoted to
indicate the newly updated coefficient matrices.

C. Torque Split Control

When the ICE is switched on, i.e., sce =1, the torque split
control is responsible for calculating T ∗ce and T ∗em to satisfy
Tt. Since the main contribution of this paper is the efficient
ICE switch control, we directly employ a value-based PMP
controller from our previous work to perform this task [22].
Above all, the Hamiltonian H is defined as,

Hk = Pce,k/Qf − λkPsc,k/(Csc ·Vsc,k), (33)
T ∗ce,k = argmin

Tce,k

Hk (34)

where λ is the costate.
The PMP performance is dominated by the optimality of

λ. Thanks to the essential equivalence between DP and PMP,
the optimal costate λ∗ can be quickly derived from Y 1(·),

λ∗k =
∂Y 1(Vsc,k, tk)

∂Vsc,k
. (35)

Since Y 1(·) can be obtained from offline DP solutions
in the format of a 2-dimension lookup table, it is directly
utilized to design the benchmark EMS without adaptivity. By
contrast, the proposed EMS makes use of a costate estimator
to always receive the up-to-date Ỹ 1

WWW (·) from the critic for
estimating λ∗ in online usage, expressed as,

λ∗k ≈
∂Ỹ 1

WWW (Vsc,k, tk)

∂Vsc,k
. (36)

Next, T ∗ce can be solved by (34) and T ∗em by (3) thereafter.
To summarize, the complete framework of the proposed

EMS containing two modules is shown in Fig. 4.

V. PIL SIMULATION RESULTS

To demonstrate the advantages in computational efficiency
and adaptivity of the proposed EMS, PIL simulations are
conducted based on a resource-constrained microprocessor
to compare the proposed LB-EMS with a benchmark EMS
that employs the same ICE switch rules defined in Subsection
IV-A but neither approximates the tabular VF by piecewise
polynomials nor updates the VF online. The comparison
includes not only the control performances, such as SC
charge sustain, ICE switches, and equivalent fuel efficiency,
but also the computation efficiencies, represented by CPU
utilization and memory occupation.
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∂Q(xk,uk, tk)

∂u∗ce,k
≈
mce,k|u∗

ce,k
+msw,k|u∗

ce,k
+ Ỹ

(
xk+1|u∗ce,k, tk+1

)
−mce,k|ǔ∗

ce,k
−msw,k|ǔ∗

ce,k
− Ỹ

(
xk+1|ǔ∗ce,k, tk+1

)
u∗ce,k−ǔ∗ce,k

(30)

Fig. 4: EMS Architecture

A. Driving Route

To obtain the reliable estimation of control performances
in realistic operating conditions, an actual driving cycle
containing several steep uphills and downhills instead of the
standard ones is selected to design and test the proposed
and benchmark EMSs. Shown in Fig 5(a), this cycle is
extracted from the university campus of KTH Royal Institute
of Technology and provided by the project AD-EYE1. The
overall length of this cycle is roughly 2300 m, and the total
driving time is 345 s. The profiles of road slope angle and
HEV speed&acceleration are illustrated in Figs 5(b) and (c).
It is noteworthy that there are two slope angle curves in
Fig. 5(b). The solid purple one is milder and represents a low-
fidelity estimation of reality, depicted by the dashed green
one. The former is used to design EMSs, whereas the latter
is to test EMSs.

B. PIL Simulation Platform

As exhibited in Fig. 6, the PIL simulation platform consists
of three modules, namely an onboard processor for executing
the online EMS, a host computer for running the HEV model,
and a USB cable for real-time communication. To indicate
the outstanding computation efficiency of the proposed EMS,
a microprocessor of very limited computation resources,
STM32L476RGT6 2 (up to only 80MHz frequency with
maximal 1Mbyte flash memory and 128Kbyte SRAM), is
selected to store and run the EMS, which is converted into
C code by MATLAB/Simulink.

To balance the control performance and computation over-
head, the sampling periods for the ICE switch control and
toque split control are set as 1 s and 0.1 s, respectively.
Additionally, Vsc,0 is set as 48 V , a value close to but lower
than the upper limit for flexible operation at the start.

C. Initialization of Actor and Critic

Figs. 7 - 9 present the approximation results by converting
the explicit DP results into piecewise polynomials. The red

1https://www.adeye.se/open-kth
2https://www.st.com/en/microcontrollers-microprocessors/stm32l476rg.html
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Fig. 5: Driving Route Information

Fig. 6: PIL Simulation Platform

dashed line in Fig. 7 implies that the ICE is switched 4
times by offline DP; thus, the complete driving cycle is
divided into 5 sections. As a result, The approximations of
V 1
sc(tk) and V 0

sc(tk), Ṽ 1
sc,FFF (tk) and Ṽ 0

sc,FFF (tk), are represented
by 5 independent polynomials for actor initialization and
illustrated by the purple curves in Fig. 7(a) and (b). It can
be seen that the approximations can capture the decisive
characteristics of the original curves, with the normalized
root mean square error (NRMSE) smaller than 4%. Similarly,
two tabular VFs, Y 1

sc(·) and Y 0
sc(·) shown in Figs. 8(a) and

9(a), are also approximated by piecewise polynomials at
corresponding sections for critic initialization. The fitting
errors are shown in Figs. 8(b) and 9(b), with NRMSE smaller
than 2.5%.

D. Control Performances

The PIL simulation results from the proposed and bench-
mark EMSs are summarized in Fig. 10 and TABLE II. As
displayed in Fig. 10(a), the equivalent fuel efficiency by
the proposed EMS is merely 161.5 km/L before online
learning, indeed lower than that by the benchmark EMS of
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Fig. 7: Threshold Vectors Approximation
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162.9 km/L; however, it surges to 196.7 km/L after less
than 10 iterations of adaptive learning, reaching 94.5% of the
DP optimum of 208 km/L and thus exceeding 20% higher
than that by the benchmark EMS. Moreover, it can be seen
from Fig. 10(b) that the final SC voltage variation by the
proposed EMS is only −0.39 V , implying a much better
charge sustain during driving in contrast to the one by the
benchmark EMS of nearly −2 V .

The essential reasons for the better performances of the
proposed EMS are twofold. First and foremost, the low-
fidelity estimate of road slope angle deceives the offline
DP, which provides suboptimal coefficients to the bench-
mark EMS and the proposed EMS at the initializing stage.
However, through adaptive learning, the AC method can
efficiently upgrade their coefficients and effectively eliminate
those improper ICE switches thereafter. This argument can
be adequately verified by the results in Fig. 10(c). Although
the ICE driven by the proposed EMS works roughly 20 s
longer than that driven by the benchmark EMS in total, it
is only ignited once, meaning that it continuously works
for a long time and provides power to propel the HEV
or recharge the SC. On the contrary, the benchmark EMS
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Fig. 10: PIL Simulation Results

TABLE II: Results Comparison

Control Strategy Benchmark EMS Proposed EMS
Final Voltage Variation (V) -1.95 -0.39

Total Fuel Consumption (mL) 14.08 11.68
ICE On/off Switch (pair) 10 1

Average ICE Efficiency (%) 29.8 30.6
Equivalent Fuel Efficiency (km/L) 162.9 196.7

Flash Memory Occupation (Kbyte) 173.25 84.19
RAM Occupation (Kbyte) 42.17 46.88
Max. CPU Utilization (%) 5.02 24.70
Avg. CPU Utilization (%) 2.41 3.69

switches the ICE 20 times within 3 min, incurring a great
deal amount of energy loss for multiple ICE restarts and
clutch dis/engagement. In the second place, the performance
of the PMP controller highly relies on the optimality of the
costate, and the optimal costate is estimated by the VFs in the
critic. After adaptive learning, the refine VFs enable close-
to-optimal costate and thus improved PMP performance. The
average ICE efficiency of the proposed EMS is 30.6%, higher
than that of the benchmark EMS, 29.8%.

E. Computation Efficiency

The computation efficiency refers to the usage of onboard
computation resources for running tested EMSs in a real-time
context, and relevant results are listed in TABLE II. Mainly
because the AC method has an adaptive learning mechanism
and is more complex than the RB method, the RAM occu-
pation and CPU utilization of the proposed EMS are higher
than that of the benchmark EMS. However, the increment in
average CPU utilization is only about 1.3%, and the extra
RAM demand is less than 5 Kyte, inferring the excellent
computation efficiency of the AC method in both decision-
making and coefficient updates. However, by virtue of the
utilization of the piecewise polynomials for approximating
the threshold vectors and VFs, the proposed EMS only needs
to save several tens of parameters rather than the long vectors
or large lookup tables containing several tens of thousands of
explicit values. Therefore, it requires only 84.19 Kbyte flash
memory space and saves more than 50% compared with its
counterpart of 173.25 Kbyte.
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VI. CONCLUSION AND FUTURE WORK

This paper presents a novel EMS that contains an efficient
AC method to optimize ICE switches and improve the fuel
economy for a parallel HEV. On the one hand, both the
actor and critic are formulated as piecewise cubic polyno-
mials to reduce the computation and memory overheads in
online control; on the other hand, the coefficients of these
polynomials are initialized based on the offline DP solutions
for a rapid convergence. The superiority of this proposed
EMS over the RB-EMS with tabular VFs is verified through
the PIL simulations. The testing results reveal that only after
several iterations of adaptive learning, the proposed EMS
can eliminate improper ICE switches and obviously improve
the fuel economy, 20% better than that of its counterpart. In
addition, owing to the concise structures of the polynomials
in AC, this new EMS saves more than 50% of the onboard
memory space.

Due to the limitation of the research scope, the proposed
EMS is only designed for parallel HEVs and tested on a
specific driving route. In future studies, this method will
be applied to various types of HEVs on diverse driving
cycles. Moreover, apart from solely pursuing the compelling
fuel economy, computationally efficient EMSs for multiple-
objective optimization, including exhaust emission and com-
ponent aging, ought to be explored for improving the HEV
comprehensive performance.
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