
Kinodynamic Motion Planning for Robotic Arms Based on Learned
Motion Primitives from Demonstrations

Joshua A. Ashley, Daniel J. Kennedy and Biyun Xie Member, IEEE

Abstract— Learning from Demonstration (LfD) is a powerful
tool for users to encode information about a task for a robot to
perform. LfD has been used with some success in specific types
of tasks, however very few implementations consider dynamic
features in demonstrations while exploring new environments.
The goal of this paper is to propose a novel motion planning
algorithm that can incorporate the dynamics of a demonstration
and avoid obstacles using learned motion primitives. The
method uses a combination of hidden semi-Markov models
(HSMM) and neural network controllers to classify and encode
motion primitives and their sequences. The encoded motion
primitives and their transition probabilities are then used to
design a discrete sample space to be utilized by a random tree
search algorithm. To evaluate this method, a bar-tending task
that includes important dynamic motions was recorded. The
recorded demonstrations were used in this method to create
the discrete sample space and generate a trajectory for the
task in a new environment. The algorithm was run 100 times
with a randomly selected set of obstacles and found a feasible
trajectory with 91% success.

I. INTRODUCTION

As one of the most intelligent species, human beings
have developed brilliant knowledge and skills to perform
numerous tasks from work to daily life. The field of robot
learning from demonstration (LfD) has the ideal potential
of being able to have a robot accomplish a complicated task
from only observed human demonstration data [1]. In partic-
ular, most LfD solutions involve simply providing kinesthetic
recordings for the robotic system and then deriving policies
and skills of performing the tasks to teach the robot in a
new environment [2]. As a fully implemented design, LfD
can significantly reduce the programming efforts for enabling
a robot to perform various assigned tasks. It can even be
utilized by non-robotics experts to teach a robot to complete a
task with little to no requirement of knowledge about robotic
task and motion planning [3], [4]. The LfD technique plays
a prominent role in broadening the range of the robot end-
users and advancing the progress of bringing robots to our
daily life.

The central problem of LfD is how to correctly extract and
recognize skills of a demonstration to replicate the task in a
unique environment. A variety of methods were developed
to extract the skills and they can be sorted into two major
categories, i.e., kinematic-based skills and dynamic-based

*This work was supported by the National Science Foundation under
Grant #2205292 as well as NASA and the NASA Kentucky EPSCoR
Program under NASA award number 80NSSC22M0034.

J. A. Ashley, D. J. Kennedy and B. Xie are with the Depart-
ment of Electrical and Computer Engineering, University of Ken-
tucky, Lexington, KY 40506 USA Joshua.Ashley@uky.edu,
Daniel.Kennedy@uky.edu, Biyun.Xie@uky.edu

skills. As an example of the first category, a method to learn
hand waving motions is developed in [5], where inflection
points are extracted from the demonstrated motion data and
Gaussian mixture clustering is applied to represent those
spaces. In [6], task parametrized Gaussian mixture models
is introduced to extrapolate the demonstrations of cleaning
a table to different task parameters such as movement loca-
tions, amplitude or orientations. In [7], a novel multi-output
Gaussian process is proposed to encapsulate the variability
retrieved from the demonstrations and efficiently modulate
trajectories towards new start-, via- or end-points defined by
the task.

The LfD technique gets increasingly non-trivial with
the introduction of dynamics, where velocity, acceleration,
and/or force features in demonstrations might also need to
be derived from data. In [8], hidden semi-Markov models
(HSMMs) are used as the high-level symbolic planner to the
task with optimal controllers guiding the low-level motion
primitives in each action. In [9], hidden Markov models
(HMMs) were used where each state was represented by a
stable linear parameter varying (LPV) system. This method
results in an attractive system where the LPVs attract the
current configuration to the demonstrated trajectory while
retaining similar dynamics throughout the movement. A
similar concept uses time-parameterized HMMs where mod-
els are generated for each demonstration using changepoint
detection to differentiate each state [10]. A skill tree is
then formed by merging well-fitting states from each of the
demonstration HMMs. The result is a small, but well defined,
set of possible skill sequences that can be performed for the
robot to complete a task.

To enable a robot to perform a task in a novel environment
after learning from demonstration data, avoiding obstacles
not included in demonstration is another critical problem that
needs to be solved. Most existing methods combined LfD
methods and motion planning methods together to solve this
problem. In [11], configuration motion features (robot joint
angles) and landmark-based motion features (the location
of the points attached to the robot) are first extracted form
demonstrations. A sampling-based motion planner is then
used to compute a motion plan to avoid obstacles and
optimize a learnt cost metric. The method proposed in [12]
is to create a Gaussian mixture model (GMM) to represent
the demonstration and then uses Gaussian mixture regression
(GMR) to traverse the GMM over time optimally. To avoid
obstacles, the method partitions and resamples constraint-
violating components of the motion. In [13], the skills are
modeled as a linear time-varying set of stochastic differential

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 221

equations and a factor graph from one learned skill to another
is constructed to traverse an optimal sequence to the goal
while avoiding obstacles.

As described above, the problem of extracting and preserv-
ing dynamic features in LfD is difficult in its own right. Fur-
thermore, very few existing LfD strategies have considered
the problems of avoiding unforeseen obstacles and preserving
dynamic features at the same time. To solve these limitations,
this study aims to improve on the overall feasibility of LfD
for collaborative robots by utilizing and integrating multiple
concepts. In particular, the main contributions of this study
include: (1) A method of combining the HSMM and neural
network controllers is developed to describe complex tasks
as discrete sequences of learned motion primitives. (2) Based
on the learned motion primitives, a sample space is designed
and a discrete sampling-based motion planner is introduced
to compute a feasible trajectory in environments with novel
obstacles.

The rest of this paper is organized as follows. In the next
section a kinodynamic motion planning method based on
learned motion primitives from demonstrations is presented.
An application example robot bartender and the results are
presented in Section III. Finally, the conclusions of this work
are drawn in Section IV.

II. METHOD

A. Overview

The human arm can be modelled as a seven degrees of
freedom (DOFs) robotic arm, and the joint angles can also be
computed based on the recorded joint positions in the demon-
stration. The demonstration recording consists of logging
joint angles and velocities at consistent time intervals. Given
that each demonstration follows some consistent process, the
problem is then easily described as a hidden Markov process,
where there is an observable output in the joint angles and
velocities that describe a hidden state machine. A state is
multiple time steps long where the transition to a new state
is dependent on the behavior of the motion in that time period
and the length of the time period. Because of this, each state
can be thought of as a type of motion primitive that has a
trajectory distribution over a small duration. Therefore, the
state types correspond directly with the motion primitive
types. The data that the state encapsulates represents the
trajectories of that given motion primitive type.

In order to generate a much larger class of motions to
use them in novel environments with varying goal points,
a learned motion primitive controller is created from deep
neural networks for each motion primitive type. This is possi-
ble because motion primitive types describe some underlying
dynamics problem that can be solved by a controller [14].
These neural network controllers can generate novel motion
primitives that reach over a large distribution of endpoints
from the same starting point while retaining the dynamics of
that motion primitive type.

These generated motion primitives form a discrete space
classified by each motion primitive type and variant of mo-
tion primitives belonging to that type. Using the knowledge

of state transitions and quality of the learned motion primi-
tives from the prior steps, a discrete sampling-based motion
planner is developed to construct a valid trajectory from start
to goal point that contains all of the necessary steps between
the two. The flowchart including the main components of
the proposed kinodynamic motion planning method based
on learned motion primitives from demonstrations is shown
in Fig. 1.

Fig. 1. The flowchart including the main components of the proposed
kinodynamic motion planning method based on learned motion primitives
from demonstrations is shown.

B. Extracting Motion Primitives from Demonstrations

For this method demonstrations are assumed to be given
as joint angles θθθ(t) and joint angle velocities θ̇̇θ̇θ(t) sampled
across time. This temporospatial data serves as the observ-
able input to a HSMM. The HSMM uses Bayesian non-
parametric inference to cluster the demonstration data into
states [15].

The HSMM is an offline regression process that optimizes
a state machine to best fit the observed movement data. The
resulting state machine encodes several important features.
Let S be the state space with ns number of states in the
HSMM. The start state probabilities are given by, π(si) =
P (s0 = si) where an arbitrary state si ∈ S. The transition
probabilities are represented as a matrix, T, and its elements
T(i, j) = P (j|i) is the transition probability from state i
(current state) to state j (next state). The duration distribu-
tions Di(ts) = P (j|t = ts) that describes the probability to
transition to any new state j given the time ts in the current
state i.

The HSMM segments the observations from demonstra-
tions into states. Fig. 2 visualizes the structure of these
state sequences formed from an example demonstration. The
underlying data for each state in the sequence belongs to
the corresponding motion primitive type. Therefore, from
the demonstration data and state sequence, sets of motion
primitives categorized by their type can be collected. Each
set contains discrete sequences of ∆θθθ(ts) = θθθts − θθθ0 that
shows the change since the start of the state when ts = 0.
The set for each motion primitive type is then well defined

222

as Mi = {∆θθθi(t) : 0 < i ≤ n} for n number of occurrences
of that motion primitive type.

To expand the possible dataset for new environments, these
motion primitive sets can be used to train neural network
controllers which will be discussed in the next section. For
better fitting results in training the neural network controllers,
the motion primitives under each type are normalized with
each other with respect to time using dynamic time warping
(DTW) [16]. The duration distribution will be applied in the
final trajectory generation phase to maintain timing.

Fig. 2. The result of the HSMM is a classification of each demonstration
as a state machine. This figure shows the joint angles and state transition
as a function of time throughout the demonstrations. The color corresponds
to the current state type and the lines are the current joint angles.

C. Motion Primitive Learning Using Neural Network Con-
trollers

Each motion primitive type is represented by a neural net-
work controller. This neural network controller is generated
by a variation of the conditional neural movement primitives
(CNMP) framework [14]. The training of these controllers is
an offline process and only needs to be done once for a given
set of demonstrations. It uses Yi ⊆ Mi as the training set
for the motion primitive controller of type i. The results are
checked against the verification set, Vi, for accuracy where
Vi ⊆Mi and Vi ∪ Yi = Mi.

The model iterates over the training sets to create a
neural network controller that most accurately represents the
training and verification sets. Once this controller is found
it is used to generate a set of trajectories. For each motion
primitive type, a normal distribution N(µi, σi) is used to
represent the observed set of endpoints where µi is the mean
and σi is the standard deviation of the endpoints for each set
in Mi. A sampled set of endpoints that is much larger than

the observed set is generated. The neural network controller
is then applied to fit a trajectory from the start point to each
endpoint in the sampled set. These resulting trajectories are
learned motion primitives for each type.

Each of these generated trajectories have a corresponding
loss value L, that shows the controller’s ability to fit that
specific endpoint to the desired motion behaviour. This
loss value is given by the log probability of the generated
trajectory through time, y(t)q , given the expected distribution
of the trajectory N (µq, σq)

L(ρ, φ) = −log(P (y(t)q|µq, softplus(σq))), (1)

where ρ and φ are the current parameters for the Encoder and
Query network. µq and σq are the output of the conditional
neural process (CNP) [14]. Therefore the loss accumulates
throughout the trajectory as y(t)q deviates from the mean.
In order to emphasize areas of very low variance within a
primitives movement, such as reaching the endpoint with
accuracy, softplus(σq) is used in place of σq . This function
zeroes out small variances while being proportional to larger
variances drastically increasing loss for deviation from the
mean trajectory in high variance areas.

D. Designing a Discrete Sampling Space based on Learned
Motion Primitives

All the generated motion primitives create a discrete
sample space from motion types and variants that represent
possible motions that can be taken during a trajectory. Using
collected information from the demonstrations processed by
the HSMM and neural network motion primitives, a set of
probabilities describing the transition relationship between
all generated motion primitives can be formed. These sets
of motion primitives store their trajectory in joint-space so
that information about the manipulator configuration is not
lost during planning. This results in an additional benefit
of maintaining a differentiable and continuous joint-space
trajectory without requiring an inverse kinematics solver to
command the manipulator.

If nm is the number of motion primitive types, the number
of states ns is equal to nm. Let ne be the number of
endpoints that will be created for each motion type. The
matrix E ∈ Rnm×ne represents the set of all sampled
endpoints where the element E(k, j) corresponds to the
endpoint of motion primitive type k and variant j. The
transition probability matrix T for the HSMM is the prob-
ability of transition from state i to state l, P (l|i), where
each state represents a motion primitive. By definition of the
conditional probability, each row of the transition matrix is
a unit row vector.

Let Lk,j represent the calculated loss of generating the
motion with the neural network controller for endpoint j
and motion primitive type k. A score is used to evaluate this
motion primitive’s quality. A higher score corresponds to a
better fitting motion primitive. Based on the loss value for a
motion primitive, its score can be defined as Sk,j = 1/Lk,j

223

and the normalized score as:

Ŝk,j =
Sk,j

nm∑
i=0

Sk,j

. (2)

Combining the motion primitive’s quality and transition
probabilities, the probability of picking motion primitive type
k of endpoint variant j given the current state i can be
computed as,

P (k, j|i) = Ŝk,j ∗T(i, k). (3)

The discrete sampler will pick a node in the tree and its
state will be used as the current state i. The probabilities
P (k, j|i) for all possible k and j form a probability mass
function (PMF) for current state i that the sampler can use
to extend from this node.

Particle filtering is used in the sampler to reduce unin-
tended state transitions. It works simply by selecting a lower
bound of probability Pmin and for any combination of k and
j, if P (k, j|i) ≤ Pmin, then that probability of taking that
motion primitive type and variant is set to zero. The resulting
PMF is then re-scaled to have the probabilities sum to 1. It is
important to note that the value Pmin should be dependent on
number of motion types nm and variants ne. This is because
the larger nm and ne are, the lower the average probability
will be.

E. Motion Planning in the Discrete Sampling Space

After the discrete sampling space is formed, a new random
tree search algorithm is designed in this subsection to find
a feasible trajectory through this discrete space of motion
primitives from the start to goal point.

Algorithm 1 shows the main loop sampling, checking, and
adding a node to the tree. At the start of each iteration,
an existing node in the tree is randomly selected to extend
from. Nodes are constrained to have a maximum depth
in the tree and maximum number of children. If a node
violates these constraints, it is removed from the sampling
pool. Once the current node is selected, it is extend from
using a motion primitive determined by the discrete sampling
space. The discrete sampling space utilizes the probability
P (j, k|i) described in the previous subsection. When given
the state of the currently select node, the resulting prob-
ability is a PMF that can be sampled over. The function
“SELECT CHILD” represents this process. In practice, “SE-
LECT CHILD” samples each node with removal in order to
increase efficiency. The function “IN COLLISION” checks
whether the corresponding sampled node is colliding with
an obstacle. If the node is collision-free, it is then added
to the tree. The algorithm will search until a reasonable
goal configuration qgoal is found or a predefined maximum
number of iterations Nmax is reached. All motion planning
is performed in a discrete space of motion primitives which
encode their trajectories in joint space. When comparing
points on the trajectory to obstacles and goal states each
point in the motion primitive is converted to task space using
forward kinematics.

Compared to conventional sampling-based motion plan-
ning, this algorithm is specifically suitable for this problem
for multiple reasons. Firstly, depending on the task, it might
not be advantageous to proceed towards the goal point
and therefore the intermittent goal-point progression is not
implemented. Secondly, the extension operation is strictly an
extension to one of the endpoints of the motion primitives
and not just linearly in a random direction in order to
preserve dynamics. Lastly, maximum values for the number
of children that a node can have and depth of the tree are
pre-determined to reduce the complexity of the sample space.

Algorithm 1 Sampling-based motion planing using learned
motion primitives

. Input: Initial configuration q0, goal configuration
qgoal, number of children K, maximum tree depth D,
max iterations Nmax, goal tolerance δ, start state set π
. Output: Joint trajectory θ(t)θ(t)θ(t)

1: k = U(π)
2: j = PMF (P (j|k))(k)
3: node = N.init(q0, k, j)
4: G.init(node)
5: SELECT CHILD = PMF (P (k, j|i))
6: while Nmax > n & currentN.q − qgoal > δ do
7: parentN = U(G)
8: if parentN.children.length < K &
parentN.depth < D then

9: k, j = SELECT CHILD(parentN.state)
10: ∆q = E(k, j)
11: if IN COLLISION(parentN.q + ∆q) then
12: else
13: currentN = N.init(parentN.q + ∆q, k, j)
14: currentN.depth = parentN.depth+ 1
15: currentN.parent = parentN
16: parentN.children.append(currentN)
17: G.append(currentN)
18: end if
19: else
20: G.remove(parentN)
21: end if
22: n = n+ 1
23: end while
24: θ(t)θ(t)θ(t).append(currentN)
25: while ∃ currentN.parent do
26: currentN = currentN.parent
27: θ(t)θ(t)θ(t).append(currentN)
28: end while

III. RESULTS

A. An Application Example: Robot Bartender

In order to test the developed kinodynamic motion planner,
a bar-tending task is employed in this work as an application
example. The bar-tending task includes a sequence of sub-
tasks, i.e., picking a bottle from a natural posture, shaking
the bottle, placing the bottle into a tray, and resetting back

224

to the initial posture, as shown in Fig. 3. Among these sub-
tasks, the shaking sub-task would give intermediate dynamic
requirements between the two goals, so the dynamic features
extracted from the demonstration need to be well preserved.
A volunteer demonstrated this bar-tending task five times,
and each demonstration is approximately 30 seconds long.
An IMU-based Perception Neuron motion capture system
(shown in Fig. 1) is used to record these demonstrations.

(a) (b) (c)

(d) (e) (f)

Fig. 3. The bar-tending actor started from a rest posture in (a), picked up
the bottle in (b), shook the bottle in (c), placed the bottle in a tray in (d),
and finally reset in (e). The demonstration was recorded using a Perception
Neuron motion capture system, and (f) shows the recorded reset posture in
the Axis Studio.

The robot arm that will learn from demonstration is a
Kinova Gen3 robot arm. It is a 7-DOF anthropomorphic
robot arm (shown in Fig. 1) and its kinematic structure is
shown in Fig. 4. The human arm can be modeled as a
kinematic chain with seven rotational joints, where the first
three intersected joints model a spherical shoulder joint, one
joint at the elbow and the last three intersected joints model
a spherical wrist joint. To map human arm motion to the
Kinova robot arm directly, the human arm was modeled to
have the same kinematic structure as the Kinova robot arm
with scale conversion between the link lengths.

B. Experiments

After the demonstrations are recorded, first the joint angels
are computed based on the positions of the elbow joint,
wrist joint and key points on the palm by using inverse
kinematics. Then, based on the significant goal points of the
demonstration, i.e., the bottle position and the tray position,
the demonstrations are segmented into three slices: picking,
placing, and resetting. The HSMM was given 20 potential
states for each segment of the motion to optimize a state
machine over the demonstrations. For this experiment 5-
12 states were typically utilized for each segment of the
demonstration. These extracted motion primitives are used
to train the neural network controllers to generate learned
motion primitives for 20 new endpoints. Fig. 5 shows four

Fig. 4. The kinematic structure of the Kinova Gen3 robot and its
dimensions are shown.

examples of different types of learned motion primitives
plotted in the workspace by using forward kinematics, where
(a), (b), (c), and (d) are the learned motion primitives
during the picking, shaking, placing and resetting movement,
respectively. For comparison, the same type of extracted mo-
tion primitives were plotted in cyan alongside the generated
motion primitives.

Figs. 5(a), 5(c), and 5(d) represent some intermediate
motion where the manipulator is trying to reach a new point
in the workspace, while Fig. 5(b) is trying to carry out a
shaking motion with more specific dynamic requirements.
It can be seen from each figure that the motions are very
consistent with one another. This shows that the HSMM
generated well associated clusters of data in the form of
motion primitives that the neural network controllers were
able to learn a well-fitting trajectory over. For example, in
Fig. 5(c) the HSMM found a similar movement from multiple
demonstrations that takes an indirect trajectory from the start
to end point and the neural network controller was able to
follow this trajectory instead of using a simpler and more
direct trajectory.

Furthermore, it can be seen from each figure that the gen-
erated trajectory preserves dynamic features that are present
in the extracted motion primitives. Motions with different
dynamic features were chosen to show the algorithms ability
to fit controllers to a diverse set of motion primitives. In
particular, dynamic constraints to each motion are associated
by the HSMM such that Fig. 5(b) represents the shaking
motion taken in all of the demonstrations. In this case,
the neural network controller was also able to generate
trajectories very similar to the extracted shaking motions.

After the motion primitives are learned, the developed
discrete sampling motion planning algorithm was tested 100
times on the set of goal points. For each test, two obstacles
are randomly selected among a set of obstacles created to
interfere with the demonstrated trajectory. Fig. 6 shows four
example trajectories from these tests alongside the original
demonstrated trajectories. To evaluate the algorithm, the

225

(a) (b)

(c) (d)

Fig. 5. The learned motion primitives from the neural network controllers
for (a) picking, (b) shaking, (c) placing and (d) resetting are shown in the
workspace.

success of each experiment is defined by reaching the goal
point with some tolerance while also avoiding obstacles and
being in a valid finishing state defined by the HSMM. The
success rate of the algorithm to do so within a set number of
iterations is 91 percent over 100 runs. As shown in Fig. 6,
the algorithm takes a path in the state machine such that it
always accomplishes significant dynamic motions conveyed
in the demonstrations, namely the ”shaking” portion of the
demonstrations is replicated by the motion planner consis-
tently. Each of these trajectories also follow a similar path
to the demonstrations while being able to avoid the new
obstacles.

The result of the trajectory was simulated in ROS Gazebo
on the Kinova Gen3 7-DOF robotic arm. Fig. 7 shows the
simulation results at different times in the trajectory. Visually,
the trajectory completes all of the major steps of the task
in correct sequence while maintaining natural arm postures
which should be derived from the human demonstrator.

IV. CONCLUSIONS

The problem of robot learning from human demonstration
with the ability of preserving dynamic features and avoiding
unforeseen obstacles in new environments is studied in this
paper. HSMMs and neural network controllers are used in
combination to generate a discrete sample space of motion
primitive types and variants that is able to be explored
by a sampling-based motion planner. A bar-tending task
conducted by a human demonstrator and applied to a Kinova
robot arm was used as a potential application of this proposed
algorithm. Results show that the HSMM is able to categorize
clusters of demonstration data as states that can then be
represented accurately by neural network controllers. Finally,
the resulting discrete sampling-based motion planner is able
to construct a trajectory for new environments that replicate
the sequence of motions within the bar-tending task.

(a) (b)

(c) (d)

Fig. 6. Four experiments with varying environments are shown. The red
circles represent obstacles, and the cross symbols represents the goals points
for picking, shaking, placing and resetting. The demonstration trajectory and
the generated trajectory are shown in green and blue, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 7. The simulation for the experiment shown in Fig. 6(b) is conducted
in ROS Gazebo. Fig. (a) is the initial posture, (b) occurs during picking,
(c), (d), and (e) occur during shaking, and (f) occurs during placing.

Although the motion planner is able to find a feasible
trajectory, observation of the generated trajectories show
more work is needed in the areas of enable trajectory
optimization and informed sampling of the discrete sampler.
A potential optimization algorithm would need to take into
account multiple aspects of the trajectory: (1) progress of
a given trajectory towards a goal state in the HSMM and
goal configuration; (2) a metric evaluating how ”well” the
trajectory traversed the state machine and motion primitive
space as a whole. These problems will be studied in our
future work.

226

REFERENCES

[1] S. Ekvall and D. Kragic, “Robot learning from demonstration: a task-
level planning approach,” International Journal of Advanced Robotic
Systems, vol. 5, no. 3, p. 33, 2008.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[3] C. Mueller, J. Venicx, and B. Hayes, “Robust robot learning from
demonstration and skill repair using conceptual constraints,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2018, pp. 6029–6036.

[4] A. Sena and M. Howard, “Quantifying teaching behavior in robot
learning from demonstration,” The International Journal of Robotics
Research, vol. 39, no. 1, pp. 54–72, 2020.

[5] J.-H. Seo, J.-Y. Yang, and D.-S. Kwon, “Generation of various hand-
waving motion of a humanoid robot in a greeting situation,” in 2014
11th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI). IEEE, 2014, pp. 374–378.

[6] J. Kim, N. Cauli, P. Vicente, B. Damas, F. Cavallo, and J. Santos-
Victor, ““icub, clean the table!” a robot learning from demonstra-
tion approach using deep neural networks,” in 2018 IEEE Interna-
tional Conference on Autonomous Robot Systems and Competitions
(ICARSC). IEEE, 2018, pp. 3–9.

[7] N. Jaquier, D. Ginsbourger, and S. Calinon, “Learning from demon-
stration with model-based gaussian process,” in Conference on Robot
Learning. PMLR, 2020, pp. 247–257.

[8] G. Canal, E. Pignat, G. Alenyà, S. Calinon, and C. Torras, “Join-
ing high-level symbolic planning with low-level motion primitives

in adaptive hri: Application to dressing assistance,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 3273–3278.

[9] J. R. Medina and A. Billard, “Learning stable task sequences from
demonstration with linear parameter varying systems and hidden
markov models,” in Conference on Robot Learning. PMLR, 2017,
pp. 175–184.

[10] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-
ing from demonstration by constructing skill trees,” The International
Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[11] G. Ye and R. Alterovitz, “Demonstration-guided motion planning,” in
Robotics research. Springer, 2017, pp. 291–307.

[12] X. Li, H. Cheng, and X. Liang, “Adaptive motion planning framework
by learning from demonstration,” Industrial Robot: the international
journal of robotics research and application, 2019.

[13] M. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and
B. Boots, “Towards robust skill generalization: Unifying learning from
demonstration and motion planning,” in Intelligent robots and systems,
2018.

[14] M. Y. Seker, M. Imre, J. H. Piater, and E. Ugur, “Conditional neural
movement primitives.” in Robotics: Science and Systems, vol. 10,
2019.

[15] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden
semi-markov models,” Journal of Machine Learning Research, vol. 14,
pp. 673–701, February 2013.

[16] M. Müller, “Dynamic time warping,” Information retrieval for music
and motion, pp. 69–84, 2007.

227

