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Abstract—Wiring harnesses, i.e. a collection of electrical cables
organized into branches, are vastly present in the automotive
industry. Moreover, the number of wires and overall weight of
automotive wiring harnesses are steadily increasing over time.
Deformable wiring harness bags were introduced by manufac-
turers to simplify assembly operations. However, this task is still
entirely performed manually by human labor. Despite the efforts,
the degree of automation in wiring harness assembly is still close
to zero. Due to the lack of task-specific datasets, modern state-of-
the-art computer vision approaches are not commonly employed
in the wiring harness industrial processes. In this work, we
propose an approach to generate a dataset of a specific object
of interest, i.e. deformable wiring harness bags, with minimal
effort employing the copy and paste technique. The obtained
dataset is validated on the semantic segmentation task in a real-
world test setup, consisting of laboratory and automotive factory
environments. An overall IoU of 53.8% and Dice score of 65.6%
is obtained, demonstrating the capability of the proposed method.

Index Terms—Deformable Objects, Segmentation, Data Aug-
mentation, Industrial Manufacturing

I. INTRODUCTION

According to a recent report by the European Environment
Agency (EEA), passenger cars account for more than 60% of
road transportation emissions [1]. Hence, to meet the climate
targets set by the European Green Deal [2], an increase in the
share of electric vehicles used in road transportation is needed
[1]. However, the production of electric vehicles encounters a
hard-to-tackle bottleneck, namely, the still manual manufac-
turing of wiring harnesses. Therefore, the production process
of automotive wiring harnesses requires a drastic increase in
automation.

A wiring harness is a collection of electrical cables or-
ganized into branches, where single wires and cables are
grouped together with adhesive tape, cable ties, straps, or cable
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Fig. 1: Example of an automotive cockpit wiring harness.
Subsections of the wiring harness are grouped and put into
bags to ease the handling during the assembly process.

ducts [3]. Wiring harnesses are vastly present especially in
the automotive sector, with a single car containing several
wiring harnesses each devoted to specific functionalities, e.g.
interior electronics, dashboard, and engine [3]. Nowadays, the
number of wires and total weights of wiring harnesses in the
car industry has steadily increased over time. Aiming at sim-
plifying the assembly operations, manufacturers are starting to
organize sub-sections of the wiring harness into bags, like the
ones depicted in Fig. 1. Despite the manufacturing process
of wiring harnesses has achieved some level of automation,
the assembly operation during the production cycle of a car
is still performed manually [3]. Indeed, difficulties in both
manipulation and perception of these objects are affecting the
introduction of a higher degree of automation [4], [5].

From the perception point of view, deploying a state-of-the-
art detection system in a novel environment still consists of
many impeding aspects, the major one being the lack of an
annotated dataset consisting of specific objects of interest. This
problem is usually addressed by either manually annotating the
images and expanding the dataset with standard augmentation
techniques [6], or by relying on synthetic environments and
CAD data [7], [8]. However, when dealing with deformable
objects, such solutions are less practical due to the problem of
simulating effectively the deformability. Moreover, synthetic
setups suffer from the sim2real gap, particularly affecting
dense prediction settings, like semantic and instance segmen-
tation tasks [9].

The lack of available datasets of deformable objects, like
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wiring harness bags, is heavily affecting the introduction
of automation in the assembly and manufacturing processes
[10]. Even though there are few research works addressing
deformable objects in industrial settings [11], [12], however,
the perception problem is still present and far from being
solved [13].

In this work, we propose a method to obtain with minimal
effort a dataset composed of instances of deformable bags
commonly found in automotive wiring harnesses, as shown
in Fig. 1. We employ a copy-and-paste technique to generate
training samples where the deformable bag instances are
previously collected and annotated, and the backgrounds are
taken from publicly available datasets [14], [15]. We validate
the dataset on the semantic segmentation task [16] employing
real-world test sets consisting of laboratory and automotive
factory scenes.

Our key contributions are as follows:
• Deformable wiring harness bags dataset, which is gen-

erated using the copy-and-paste technique and image
augmentations.

• Semantic segmentation validation of different state-of-
the-art backbone architectures on the deformable wiring
harness bags dataset.

• Extensive quantitative and qualitative evaluation in a real-
world factory environment using different background
styles.

II. RELATED WORKS

A. Data Augmentation

Data augmentation is a technique widely used in the deep
learning domain to increase the size of the training dataset
by slightly modifying the data samples. This technique acts
as a regularization term and helps avoid overfitting during
the training stages, improving generalization [17]. Standard
data augmentation strategies can be grouped into geomet-
ric approaches, e.g. re-scaling and flipping, and photometric
approaches, e.g. changing pixel values in terms of contrast,
sharpness, blurring, brightness, and color.

Among the spread horizon of augmentation techniques,
copy-and-paste [18]–[20] emerged as a key tool to supplement
the original training dataset, achieving improved performances
in common detection and segmentation tasks. Copy-and-paste
is a method to compose real images by pasting object masks
in backgrounds [18], thus avoiding the common drawbacks of
synthetically rendered images and a dataset distribution shift.
Usually, copy-and-paste is performed by randomly pasting
the objects. The key insight exploited by the copy-and-paste
technique, is that common deep learning methods pay a lot of
attention to local region-based features as opposed to global
scene layout [18]. Hence, by randomizing the object scale,
viewpoint, and style of utilized backgrounds, a more uniform
distribution of the object instances in the training dataset
is achieved leading to a boost in performance. In [19] this
approach is used in combination with random scale jittering for
the training of instance segmentation models, which resulted

in a better dataset distribution followed by improved accuracy.
Instead, [20] applied copy-and-paste in a self-supervised con-
trastive pretraining scheme for improved segmentation perfor-
mance of downstream tasks. This augmentation technique can
be also employed on point cloud data, as presented in [21],
where it is used to improve the performance of LiDAR-based
semantic segmentation by realistically modeling the inserted
objects’ scan lines and shadows. These works demonstrate the
capability of the copy-and-paste approach for a diverse set of
tasks and frameworks.

Apart from copy-and-paste, other advanced augmentation
approaches emerged in the literature. For instance, Scale-
aware AutoAug [22] tackles the problem of discrepancy in
scales in the dataset distribution. This discrepancy weakens the
generalization capabilities of object detection and segmenta-
tion models across the diverse scales of objects. Thus, the au-
thors introduce a method to learn a data augmentation policy to
achieve scale invariance. Alternatively, SemAug [23] proposed
a method to inject objects in contextual meaningful scenes,
thereby augmenting the original training dataset. The trained
network avoids becoming invariant to contextual information,
e.g. as for random pasting of objects, but instead learns to
exploit that contextual information as done by humans.

B. Deformable Objects Segmentation

In the last decade, the progress and impact of deep learning
in the field of visual recognition were immense. In particular,
Convolutional Neural Networks (CNN) established themselves
as the primary framework for several vision tasks, thanks to
some important properties like translation equivariance and
efficiency in terms of the number of parameters [24]. In
this regard, the ResNet family [25] was the most widely
used backbone in vision tasks for several years. Recently, the
field was altered with the advent of Transformers for vision
tasks, showing superior performances compared to ResNet and
CNNs in general, especially with larger models and datasets.
The Swin-Transformer [26] spreads widely as a state-of-the-
art backbone thanks to its efficiency and scalability to dense
predictions compared to alternative Transformers architectures
[24]. With ConvNeXt [24], there was a successful attempt to
match the performances of transformers employing only con-
volution layers. Thus, the ConvNeXt family of backbone was
demonstrated as a valid alternative to the Swin-Transformer.

Specific to the segmentation task, several popular networks
were developed in the past [16], [27], [28]. Additionally, suc-
cessful application to the context of deformable linear objects
like cables and wires were obtained employing DeeplabV3+
[16], both in a pure semantic segmentation task [9], [29] or
as pre-processing step for downstream tasks [13], [30], [31].

III. METHOD

As mentioned in Sec. I, we are aiming toward the applica-
tion of state-of-the-art deep learning methods for specific real-
world applications, which require the collection of new data.
Indeed, plenty of unique real-world problems are characterized
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Fig. 2: Deformable wiring harness bags dataset generation pipeline based on copy-and-paste paradigm and data augmentation
techniques.

by the lack of public data. Thus, we propose a dataset gener-
ation pipeline that requires minimal human intervention. We
showcase our approach using the semantic segmentation task
of wiring harness deformable bags, see Fig. 1. We organize
the data into foreground images, i.e. the object of interest
that we want to segment, and background images. Only a
small set of foreground images is required to be annotated.
Moreover, we leverage the simple and effective copy-and-paste
[18] and data augmentation techniques to combine foreground
and background images obtaining a broad and diverse dataset
distribution.

The key steps of our dataset generation pipeline, shown in
Figure 2, can be summarized as follows:
A) Manual labeling of foreground images containing de-

formable wiring harness bags instances;
B) Randomized selection and augmentation of background

images;
C) Copy-and-paste of a random amount of bag instances on

each background image.
In the following, the details about the foreground and
background image sampling are provided in Sec. III-A
and Sec. III-B. The copy-and-paste method is discussed in
Sec. III-C. Finally, the semantic segmentation framework used
to validate the approach is presented in Sec. III-D.

A. Foreground Images

To generate a dataset for the segmentation of automotive
wiring harness organizer bags, we first manually labeled 65
images constituting the set of bag instances to be used as
the key ingredients of the pipeline. Due to the utilization
of the copy-and-paste approach combined with standard data
augmentation techniques, a small number of instances is
sufficient and the time and effort for the human labeling are
significantly reduced. In addition, better quality control of the
annotation is obtained. For manual labeling, several tools are
available, the most famous one being LabelMe1. From the pool
of available tools, we selected the easy-to-use segments.ai2

web interface which employs AI and a superpixels-based
method to simplify labeling operations. In total, a labeling

1https://github.com/wkentaro/labelme
2https://segments.ai/

time of about 30 minutes was necessary to obtain accurate
and reliable instance masks from the foreground input set. In
Fig. 3 some labeled wiring harness bags with the background
removed are shown.

Prior to performing the merging of the extracted instance
bags with the background images, we exploit the possibility
of performing data augmentation individually to each instance,
thus enabling the creation of a greater variance in the final
overall dataset. In particular, the following augmentation are
performed: flip, noise, blur, rotation, shear, distortion, bright-
ness and contrast, color jittering, and gamma.

B. Background Images

For good generalization on real-world data, it is necessary to
have as similar as possible data distributions between the train-
ing data and the real-world environment. Therefore, the choice
of background images is of fundamental importance. Since the
application environment is expected to be a factory/industrial
plant, we decided to rely on indoor scenes as opposed to out-
door ones. The need of collecting the set of background images
is avoided by employing already publicly available datasets. In
particular, the MIT indoor dataset [14] is selected to provide
the background images. It contains 67 indoor categories and
a total set of 15620 images. For comparison purposes, two
additional datasets are tested: The first is the HRSOD dataset
[15] containing 2010 high-resolution images; The second is
a complex dataset containing 100 images displaying abstract
and chaotic contents, similar to [29].

Additionally, to create diverse and broad training data, a
set of standard augmentation techniques is applied to the

Fig. 3: Example of instance bags extracted from the foreground
images.
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background images: rotation, cropping, shear, brightness, con-
trast, color jittering, blurring, and noise. By utilizing these
augmentations, we ensure that every data sample has a dif-
ferent background which helps to create a broad training data
distribution.

C. Copy & Paste combined with Augmentation

The copy-and-paste approach to enrich or generate new data
is widely used and proved itself successful [19]. The idea is
very simple. A random background Ibg is selected from the
pool of available images and it is augmented as described
in Sec. III-B. Similarly, an image of a wiring harness bag
Ifg is randomly picked from the foreground set along with
its annotation mask Mfg. Both Ifg and Mfg are augmented as
detailed in Sec. III-A. Finally, Ifg is randomly pasted on Ibg
as the following:

Iout = MfgIfg + (1h×w −Mfg)Ibg (1)

where Iout is the obtained composed image and with
(1h×w − Mfg) the inverse mask is computed, 1h×w being a
unit matrix with the same size of the mask.

For a single background image, the operation described in
eq. 1 is repeated for n number of bag instances, and the
insertion location is randomized.

D. Semantic Segmentation Framework

As a general framework to test the proposed dataset genera-
tion approach and to validate the obtained dataset, the semantic
segmentation task is used as a challenging benchmark. For the
baseline method, the popular DeepLabV3+ [16], an encoder-
decoder architecture, is selected for its proven performances
especially in decoding precise object boundaries.

As encoder, the original implementation of DeepLabV3+
employs a modified ResNet [25] backbone with atrous con-
volutions, instead of the common convolutions, allowing the
explicit control of the computed features resolution via the
output stride parameter. In this work, we provide also a
comparison of state-of-the-art backbone architectures, such as
Swin-Transformer [26] and ConvNeXt [24], on the segmenta-
tion task.

The decoder consists of a simple yet effective module
that refines the segmentation results along object boundaries.
Here, the low-level features are concatenated to the bilinearly
upsampled (4x) high-level features coming from the encoder.
Several convolutions are performed to refine the features and
a final upsampling (4x) is performed. This design choice of
the decoder, compared to a direct bilinear 16x upsampling,
provides improved performances [16].

IV. EXPERIMENTS

A. Training Runs and Dataset

All the models are implemented in PyTorch 1.10.1 and
trained with an NVIDIA GeForce RTX 3090 with 24 GB
VRAM and on an AMD Ryzen 2950X 16-Core CPU clocked
at 3.50GHz.

The dataset is obtained as detailed in Sec. III and it is
composed of a total of 5000 samples having a resolution of
640 × 480 pixels with the common split of 90% for training
and 10% for validation. The number n of foreground instances
in each training image is bounded between 1 and 4.

As backbones are selected ResNet101, SwinS and Con-
vNeXtS. All of them share a similar number of parameters
and complexity, thus making the comparison fair [24], [26].
The training runs are performed using common hyperparam-
eters allowing an unbiased comparison among the different
backbones. In particular, a total of 50 epochs are conceived.
The early stopping procedure is enabled after the first 20
epochs and it is configured to end the training process when
the validation loss does not decrease for 5 epochs in a row.
The final weights of each run are selected as those having the
minimum validation loss. As optimizer AdamW is selected
while a polynomial learning rate scheduler is employed with
power 0.95 and with the learning rate initialized at 5 ·10−6. A
batch size of 16 is selected for ConvNeXtS and ResNet101,
whereas for SwinS it is configured to 12 due to memory
limitations.

During training, a standard data augmentation scheme is
employed: channel shuffling; hue, saturation, and value ran-
domization; flipping; perspective distortions; random crop-
ping; random brightness, and contrast.

B. Testing Dataset and Metrics

The segmentation network produces a mask that corre-
sponds to the predicted semantic segmentation of the bags.
We evaluate and compare the outputs of the training runs by
means of the Dice coefficient (Dice = 2

|Mp∩Mgt|
|Mp|+|Mgt| ) and the

Intersection-over-Union (IoU =
|Mp∩Mgt|
|Mp∪Mgt| , where Mgt is the

ground truth and Mp the predicted mask for both formulations.
The models of Sec.IV-A are evaluated with Dice coefficient

and IoU on a real test set. It is composed of a total of 75 images
accurately annotated and organized into 3 different sub-classes
(25 images each), in particular:
C1: scenes with the wiring harness placed on an almost

uniform background, e.g. table or floor, in a laboratory
environment. Lights are uniform and occlusions are only
due to other parts of the wiring harness.

C2: scenes with the wiring harness hanging from the main
branch, replicating the starting configuration at the begin-
ning of the assembly operations in a factory environment.
Occlusions are mainly due to other parts of the wiring
harness.

C3: scenes with the wiring harness lying on the cockpit
assembly station, replicating the configuration during the
assembly operations in a factory environment. Occlusions
are due to complex mounting structures and a cluttered
environment with shiny surfaces, and difficult lighting
conditions.

C. Results

The quantitative evaluation of the real-world test sets of
different variations of the DeepLabV3+ semantic segmentation
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TABLE I: The average dice coefficient and intersection over union computed for each network and dataset configuration, across
the test sets and particularly for each subgroup, namely C1, C2 and C3. In all the tests the predictions are thresholded at 0.5.
Bold denotes the best-performing method network backbone.

backbone dataset augmentation C1 C2 C3 all
dice ↑ IoU ↑ dice ↑ IoU ↑ dice ↑ IoU ↑ dice ↑ IoU ↑

ResNet101 [25]

MIT indoor ✗ 0.464 0.374 0.477 0.368 0.109 0.067 0.350 0.269
MIT indoor ✓ 0.525 0.411 0.553 0.425 0.173 0.111 0.417 0.315

HRSOD ✗ 0.205 0.130 0.192 0.134 0.086 0.048 0.161 0.104
HRSOD ✓ 0.197 0.120 0.190 0.126 0.107 0.062 0.164 0.102
complex ✗ 0.704 0.567 0.788 0.659 0.397 0.285 0.629 0.503
complex ✓ 0.691 0.546 0.756 0.616 0.367 0.259 0.604 0.473

SwinS [26]

MIT indoor ✗ 0.611 0.495 0.513 0.391 0.311 0.232 0.478 0.372
MIT indoor ✓ 0.622 0.495 0.509 0.390 0.308 0.227 0.479 0.370

HRSOD ✗ 0.451 0.339 0.255 0.181 0.182 0.118 0.296 0.212
HRSOD ✓ 0.524 0.404 0.325 0.241 0.210 0.144 0.353 0.263
complex ✗ 0.658 0.504 0.465 0.335 0.317 0.196 0.480 0.345
complex ✓ 0.676 0.522 0.485 0.352 0.339 0.212 0.500 0.362

ConvNeXtS [24]

MIT indoor ✗ 0.760 0.635 0.734 0.596 0.396 0.299 0.630 0.510
MIT indoor ✓ 0.782 0.656 0.780 0.648 0.406 0.310 0.656 0.538

HRSOD ✗ 0.616 0.474 0.147 0.087 0.277 0.202 0.346 0.254
HRSOD ✓ 0.435 0.301 0.138 0.078 0.248 0.176 0.273 0.185
complex ✗ 0.647 0.494 0.539 0.385 0.349 0.243 0.511 0.374
complex ✓ 0.678 0.526 0.545 0.389 0.349 0.243 0.524 0.386

network is provided in Table I. A general observation is that
the models trained with MIT indoor backgrounds outperform
the ones trained with HRSOD and complex backgrounds, with
ConvNeXtS being the best performing one. This is due to
the more similar data distribution of the MIT indoor dataset
and real-world test set. The ResNet101 and SwinS backbone-
based models trained on the complex dataset achieve the best
results, according to Table I. The difference is significant for
ResNet101 and less substantial for SwinS. Among the different
sub-groups of the test images, the complex backgrounds help
in achieving good performances, especially on the challenging
C3 test set. Overall, the difference between the results for
MIT indoor and complex might be that, for the latter, the
neural networks learn to distinguish chaotic and unstructured
backgrounds from everything else, resulting in a more effective
generalization to the C3 test images.

The qualitative comparison of different variations of the
DeepLabV3+ model on the real-world test sets is shown in
Figure 4. Interestingly, ResNet101 and SwinS generalize well
on the real-world test sets but fail to precisely separate the
organizer bags and tend to oversegment. On the other hand,
the ConvNeXtS backbone-based model trained on MIT indoor
backgrounds is capable of segmenting the organizer bags more
accurately which can be attributed to multiple reasons: 1)
the MIT indoor dataset is contextually more similar to the
real-world test sets so that the network does not learn to
eliminate the background but to understand the underlying
context within the scene; 2) thanks to the design changes in the
ConvNeXt architecture - depth-wise convolution and patchify
layers - the backbone can learn better and more high-level
features.

V. CONCLUSIONS

In this paper, we address the problem of segmenting task-
specific objects of interest, such as wiring harness bags. The

peculiarity of these objects, apart from the deformability, is
given by the lack of public datasets. Thus, a dataset generation
pipeline relying on minimal human effort and based on the
copy-and-paste approach combined with data augmentation
techniques is proposed. The obtained dataset is validated
experimentally on real-world test sets and satisfying results
are achieved.

In the literature, there are still confusing statements re-
garding the importance of blending approaches and back-
ground image selection [19]. Therefore, active research is
still needed to verify the importance of the above-mentioned
aspects. Additionally, the extension of the transfer learning
approach presented in [32] could be evaluated for segmenting
automotive wiring harness bags and other specific real-world
applications.

REFERENCES

[1] E. Commission and E. E. Agency, Decarbonising road transport : the
role of vehicles, fuels and transport demand. Publications Office of
the European Union, 2022.

[2] E. Commission and D.-G. for Communication, European green deal :
delivering on our targets. Publications Office of the European Union,
2021.
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