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Abstract— Robot-driving motors are frequently driven at
high temperatures as their weight-to-torque ratio increases
for various movements of robots. Such an increase in driving
temperature reduces the magnetic flux density of the permanent
magnet and the torque constant of the motor. Particularly in
applications that mainly utilize feed-forward torque control
without an additional torque sensor, this torque constant
reduction leads to severe degradation of torque control per-
formance. This research proposes a torque control method that
compensates for the torque constant depending on temperature
by identifying the relationship between magnet temperature and
the torque constant. In addition, since it is difficult to measure
the temperature of the rotor-attached magnet directly, lumped
parameter thermal network(LPTN) and full-state observer are
used for magnet temperature estimation. The robustness of the
proposed controller is verified through experimental results of
torque error from 6.19% without compensation to 0.65% with
compensation.

I. INTRODUCTION

In areas where complex mobility is required, such as hu-
manoids, quadrupedal walking robots, and wearable robots,
the mobility and weight of the system are directly related.
For complicated movements, various methods to maximize
output torque in set weight limits are introduced. There
are some studies to obtain control performance with slight
energy loss by lowering the deceleration ratio and increasing
the deceleration efficiency with high allowable current [1].
Other methods include motor design with distinct materials,
such as permanent magnets with exceptional molecular ar-
rangements or utilizing halbach arrays [2], [3]. As a result,
power efficiency relative to the average weight of the robot
system is gradually increasing. Therefore, it is a trend to pass
current through the motor beyond its recommended usage
standard.

However, as a high current pass through BLDC motors,
the internal temperature rises due to Joule heat and eddy
current. Then, the arrangement of magnet-constituting-atoms
within the permanent magnet is disrupted, decreasing the
magnetic flux density of the magnet and the torque constant
of the motor [4]. When the magnet is heated by 100◦C,
the output torque decreases from 10% to 20% depending
on the material of the magnet [5]. This means the increased
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internal temperature of the motor acts as a complex cause of
error in torque control performance. Control performance can
be maintained by using torque sensors, but there are many
difficulties in attaching additional sensors, especially in the
wearable robot field. Wearable robots have substantial lim-
itations, particularly on their weight, since they are directly
related to human burden [6]. In addition, there is a strict
standard for control performance according to their high
priority of safety, and stability [7]. In other words, the driving
system of wearable robots should be able to compensate for
the influence of high temperatures without attaching a bulky
torque sensor.

Moreover, as output torque change is attributed to the
temperature of a rotor-attached permanent magnet, several
methodologies for estimating the magnet temperature have
been proposed. Finite element method(FEM) can estimate
temperatures accurately, but this method is not suitable
for robot applications that require real-time control due to
its large computational volume [8], [9]. Several estimation
methods can be implemented in real-time [10], and one is
temperature estimation based on flux observer [11]–[13].
However, this method can only be used in high-speed appli-
cations where magnetic flux changes are prominent. An in-
vasive method of obtaining temperature-dependent flux vari-
ation by measuring current response has also been proposed
[14], [15]. This method can be implemented for low-speed
driving, but it can only be used in thermal and electrical
steady states. Another solution is to identify the lumped
parameter thermal network(LPTN), an equivalent system that
simplifies the heat transfer of the actual system [16]–[18].
Although the abstraction level is higher than other methods,
it is suitable for applications with dynamic movements and
wide-range speeds, such as wearable robots.

However, it is difficult to find a study that supplements
the torque control performance considering the change in
magnetic flux density. This paper introduces mathematical
modeling of magnetic flux density change according to
magnet temperature using LPTN methodology. In addition,
an algorithm that improves the feed-forward torque control
performance by compensating for torque constant change is
proposed.

The contribution of this study is as follows: 1) The torque
constant according to magnet temperature was modeled, and
a temperature-robust torque controller was designed based
on the model. 2) The magnet temperature, a direct cause
of torque constant change, is accurately estimated through a
thermal model and full-state observer.
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Fig. 1. Experimental setup.

II. TORQUE CONSTANT - TEMPERATURE
RELATION IDENTIFICATION

This research proposes a feed-forward torque controller
that is robust to temperature by identifying torque constant
in magnet temperature. To this end, the relationship between
these two is experimentally identified in an experimental set-
ting, as shown in Fig. 1. In this experiment, the temperature
of the permanent magnet and generated torque are measured
when a constant current flows through the motor. The output
terminal of the motor was fixed during the experiment to
measure the rotor temperature where a permanent magnet is
attached. Allied Motion’s HT02305 motor is used during the
experiment, and the self-developed Bumblebee motor driver
is used for current control. TMP36 temperature sensor from
Analog Devices, and 4503B torque sensor from Kistler are
used for temperature and torque measurement, respectively.
Each data is measured with a sampling frequency of 10Hz,
and torque constant is obtained based on the measured torque
values while 4A, 5A, 6A, and 7A current control. In order to
find the tendency of torque change to temperature, the torque
constant reduction ratio γ is identified. Since the relation
between torque constant and temperature is considered first-
order generally [5], the results are fitted in the first-order
equation through MATLAB cure-fitting tool. The relation is
identified as

γ(TR) =
Kt(TR)

Kt(25◦C)
=−0.00109 ·TR +1.03, (1)

where Kt(25◦C) is the torque constant at room temperature
and measured as 0.3355Nm/A; γ is the torque constant
reduction ratio; TR is rotor temperature. As in Fig. 2, modeled
torque constant shows an error of up to 0.5621% and
0.2998% on average compared to the measured torque con-
stant. In addition, the torque constant decreased by 5.74% on
average at 75◦C than that of room temperature. This means
that when the torque constant is fixed at room temperature, a
torque constant error of 5.74% occurs at 75◦C. The validity
of identified relation is proved in that this error is reduced
to a maximum of 0.56% and an average of 0.30% through
the proposed model.

Fig. 2. Identified torque constant - temperature relation.

III. THERMAL MODEL OF BLDC MOTOR

A. Lumped Parameter Thermal Network Model

The permanent magnet temperature must be accurately
measured to compensate for a decrease in torque output
according to temperature. However, since magnet attached
rotor rotates rapidly as the motor is driven, it is impossible
to measure the magnet temperature using a contact-type
temperature sensor. Among non-contact-type sensors, it is
possible to measure the rotor temperature using a small
infrared temperature sensor. Still, infrared sensors are not
suitable for temperature measurements that require both real-
time and accuracy since the response is slow, and their
accuracy highly depends on the emissivity of the measured
object [19]. Therefore, a method of accurate estimation is
required for torque constant compensation. In this paper, the
LPTN of the motor is set and used to estimate the permanent
magnet temperature in real-time accurately.

B. Proposed Thermal Model

In the design of LPTN, as the number of considered nodes
increases, the estimation accuracy increases, as well as com-
putation time and complexity. However, if the characteristics
of the motor are well considered, relative accuracy can be
ensured even with the small number of nodes. Therefore,
selecting an appropriate model for accuracy and real-time
estimation is essential. As shown in Fig. 3, the motor stator,
rotor, and housing are selected as nodes of the proposed
heat transfer model. The stator node includes a stator core
and stator winding. Two are considered one node since heat
conduction between them is accessible with a wide contact
area. The rotor node includes a rotor core, permanent magnet,
and rotating shaft. The end cap and casing are considered as
one housing node, although the thermal distance between
the two is relatively long. This is because the material
constituting the housing node is aluminum, of which the
thermal conductivity is more than three times that of iron
and four times that of carbon steel [20].

The heat transfer proposed in Fig. 3(a) can be expressed
as LPTN, as in Fig. 3(b). Here, TS, TR, TH , and TA represent
stator, rotor, housing, and ambient temperature, respectively;
RSR, RSH , RRH , RHA represent the thermal resistance between
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Fig. 3. Proposed thermal model. (a) Modeled heat flow. (b) Proposed
thermal network.

stator and rotor, stator and housing, rotor and housing and
housing and ambient, respectively; CS, CR, and CH repre-
sent the thermal capacity of the stator, rotor, and housing,
respectively; PS represents the loss of stator.

C. State-Space Representation of Proposed Thermal Model

The heat transfer equation of the proposed LPTN can be
expressed in a discrete-time state-space equation asTS(k+1)

TR(k+1)
TH(k+1)

= F

TS(k)
TR(k)
TH(k)

+G
[

i2(k)
TA(k)

]
, (2)

where i and R are the current through winding and terminal
resistance of winding, respectively. Here, the state matrix,
F ∈R3×3 and input matrix, G ∈R3×2 are to be identified in
the next section.

D. Thermal Model Identification

The Least squares method is used to identify the state
matrix and input matrix of the proposed model. An exper-
iment is conducted while the motor shaft is fixed since the
temperature of all nodes, including rotor temperature, should
be measured. Here, it is assumed that convection heat transfer
due to rotation is insignificant. Therefore, the model can be
identified in a fixed state. The experimental setup is as in Fig.
1, and the same types of equipment are used as in Section II.
While the current is controlled as 5A, 6A, and 7A, the stator,
rotor, and housing temperatures are measured until the stator
temperature rises to 95◦C. This experiment is repeated four
times, respectively. Then, the state matrix and input matrix
are identified by applying the least squares method to the
measured temperature data. Based on the identified model,
the temperature of the permanent magnet is estimated for
sinusoidal input currents with RMS magnitude of 5A, 6A,
7A. Table I shows the RMS errors of temperature estimation.
The estimation accuracy is as low as 4.0◦C, in average,
meaning that identified model has some error itself. Here,
the ambient temperature, TA, is assumed constant as 25◦C.

IV. REAL-TIME ROTOR TEMPERATURE
ESTIMATION BASED ON HEAT TRANSFER

MODEL

A. Design and Implementation of Full-State Observer

The permanent magnet temperature is estimated in real
time based on the identified heat transfer model. In the
model verification of Section III. D, a non-negligible error
existed with the sinusoidal current input, meaning that error
exists in the proposed LPTN model. In order to increase
the estimation accuracy, the stator temperature is measured
in real-time through a temperature sensor. The measurement
improved the estimation accuracy by compensating for model
error through the designed full-state observer.

B. Verification of Temperature Estimation

The magnet temperature estimation using the identified
model and observer is verified with real-time magnet tem-
perature estimation. The verification included estimation with
sinusoidal current, which validates periodicity, commonly
generated in robot control. The RMS magnitude of sinusoidal
current is controlled as 4A, 5A, 6A, and 7A. Here, the
input is controlled with 0.1Hz frequency. During verification,
measured temperature is implemented through a discrete-
time low pass filter of 0.02Hz, and such frequency is
designed considering the time constant of the heat transfer
model. Table II shows the RMS error of these temperature
estimations. Also, Fig. 4 represents the estimation error with
and without state observer to sinusoidal input current. Table
III shows the performances of these estimations using RMS
errors. As a result of verification, the RMS error of estimation
is lowered as 40% by implementing a state observer. With the
observer, the robustness of temperature estimation to time-
varying current input is reinforced. In brief, the estimation
accuracy is augmented by supplementing a model error
through a state observer.

V. DESIGN AND IMPLEMENTATION OF TORQUE
CONSTANT COMPENSATOR

A. Design of Torque Constant Compensator

A torque constant compensator is implemented for robust
torque control for temperature. Fig. 5 shows the block
diagram of the entire closed-loop system, including the
proposed controller. Here, τd , id , and uc represent torque
reference, current reference, and control input, respectively;
τ and i represent output torque and output current, respec-
tively. Torque compensation controller can be designed using

TABLE I
RMS ERROR OF TEMPERATURE ESTIMATION.

The magnitude RMS error with
of current [A] sinusoidal current [◦C]

5 4.8636
6 4.5921
7 2.4782
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TABLE II
RMS ERROR OF TEMPERATURE ESTIMATION WITH STATE OBSERVER.

The magnitude RMS error with
of current [A] sinusoidal current [◦C]

4 2.0004
5 1.9662
6 1.2281
7 1.1717

(a) (b) (c)

Fig. 4. Error of temperature estimation with and without observer while
sinusoidal current control. (a) With 5A input current. (b) With 6A input
current. (c) With 7A input current.

TABLE III
COMPARE OF ESTIMATION ERROR WITH AND WITHOUT OBSERVER.

Implementation RMS error with
of state observer sinusoidal current [◦C]
Not implemented 3.9780

Implemented 1.5916

identified torque constant reduction ratio in (1) as

C(TR) = γ(TR)
−1 ≃ 0.00122 ·TR +0.9646. (3)

By substituting the estimated rotor temperature for (3), the
current reference is determined as

uc(k) = id(k)C(T̂R(k)). (4)

Fig. 5. The block diagram of proposed controller.

B. Experimental Results

Fig. 6 shows the torque control performance according
to increasing rotor temperature with and without a torque
constant compensator. When the RMS magnitude of 4A,

(a)

(b)

Fig. 6. Performance evaluation of proposed torque constant compensator.
(a) Change of control input respect to temperature. (b) Error to torque
reference respect to temperature.

5A, 6A, and 7A sinusoidal currents are applied, output
torque linearly decreases until 6.19% without a compensator,
on average. However, with the proposed controller, torque
decrease hardly exists as 0.65% even at the highest temper-
ature, on average. This means that the proposed controller
can robustly control torque despite the magnet temperature
changes.

VI. CONCLUSION

In general, the control performance of feed-forward torque
controllers, widely used in the wearable robot field, sig-
nificantly decreases as the permanent magnet temperature
of the motor increases. This research proposed a torque
control algorithm that compensates torque constant in real-
time, based on the identified relationship between magnet
temperature and torque constant. The magnet’s temperature
while rotating is estimated using LPTN which is identified
by the least squares method. By using a full-state observer
that uses an additional temperature sensor, the estimation
accuracy is improved and verified with multiple experiments.
The robustness of torque constant estimation that varies to
temperature is verified for sinusoidal and stall current input
with various magnitudes.

For future studies, the control performance in practice
should be verified while the motor rotates at high speed. The
experiments in this research are done with attachable temper-
ature sensors in static conditions. With available non-attach
temperature measurement devices for identifying LPTN, the
advanced full-state temperature observer that can consider
the rotation speed should be developed. Furthermore, the
condition under which the motor is driven within a safe
temperature range should be found mathematically.
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