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Abstract—In recent years, unmanned aerial systems (UAS) are
being utilized for a variety of increasingly complex tasks, includ-
ing the inspection of offshore installations and the transportation
of medical equipment. This has motivated the development of
mission-specific dynamic design procedures. The principle of
concurrent control and design, also known as co-design, extends
the traditional approach of design optimization and trajectory
optimization by integrating both into a single treatment. This
results in coupled solutions that cannot be achieved using a
traditional sequential approach. Studies have demonstrated the
effectiveness of combining surrogate-assisted optimization meth-
ods, such as Bayesian optimization, with a nested formulation
of the co-design problem. In the present work, we extend
this approach by simultaneously treating multiple objectives. A
reformulation of the Bayesian optimization framework through
the use of an alternative acquisition function is fit around a
trajectory optimization routine. This results in a novel framework
that generates optimized designs that outperform the standard
design in various metrics. This allows the designer to select a
compromising design based on the system’s application type and
confirms the effectiveness of the concurrent design and control
procedure. The subsequent methodology is evaluated on the
mission-specific design of a fixed-wing unmanned aerial system,
with the aim of conducting a survey mission in challenging
terrain. To model the dynamics of the aircraft, the differential
flatness of the system is utilized.

Index Terms—Bayesian Optimization, Multi-Objective Opti-
mization, Trajectory Optimization, Co-design, Unmanned Aerial
Vehicles, Differential Flatness.

I. INTRODUCTION

Engineering innovation of mechatronic systems demands a
corresponding evolution in their model-based system design,
which emphasizes the central role of behavioral models in
addressing both shape, size and control design concerns.
This approach strives for an efficient, cost-effective design
process that reduces the need for multiple iterations, ultimately
resulting in pioneering systems with enhanced or even novel
capabilities. By focusing on model-based system design, the
enhancement of functional performance, energy efficiency, and
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facilitation of autonomous execution of complex tasks, can be
pursued.

In the model-based system design paradigm, performance
measures as a function of a set of design variables are derived
from a model describing the system and optimized. Histor-
ically, design optimization, which pertains to the motion-
independent attributes of the mechatronic system, and tra-
jectory optimization, which pertains to the motion-motivated
control signals made by the system, have been handled as
distinct processes. Refer to Fig. 1 for an extended design
system matrix representation of the sequential system design
approach [1]. The principle of concurrent control and design,
or co-design, integrates these approaches by linking design and
trajectory optimization. The result of which is an extended
design space that permits the development of concurrent
static and dynamic optimal designs that are not achievable
through a successive design approach, such as maximizing
static performance first and enhancing the dynamic abilities
without altering the design second [2].

In general, two main architectures can be considered for the
integration of design optimization and trajectory optimization
in mechatronic systems: (1) a nested approach, in which the
optimal trajectory is determined for each iteration of the design
optimization problem, and (2) a simultaneous approach, in
which the optimal design and trajectory are determined in
parallel. The nested approach allows for separate definition
of static and dynamic objectives, as well as the use of
solvers that are tailored to the specific characteristics of the
problem, such as the presence of constraints. However, this
approach is also subject to drawbacks, such as feasibility
and computational costs. On the other hand, the simultaneous
approach is characterized by a reduced number of iterations
and computational time, but has a larger and more complex
design space [2]. A comparative study of the two architectures
was presented in [3].

In this work, we propose a multi-objective co-design frame-
work for the mission-specific design. This is realized by
combining a nested co-design problem formulation with a
multi-objective Bayesian optimization framework. To validate
the newly devised methodology the mission-specific design of
a fixed-wing unmanned aerial system (FW-UAS) for multiple
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Fig. 1: XDSM (extended design system matrix [1]) representation of the sequential system design approach. The grey lines in the figure depict the flow of data,
while the black lines indicate the flow of processes. Horizontal lines denote output and vertical lines denote input. The variables d, x, f , g and J represent
the optimization variables, state variables, simulator output, constraints and objective, respectively. The subscripts ’D’ and ’T’ indicate the distinction between
static (design) and dynamic (trajectory) elements, respectively. Superscripts within brackets indicate the iteration number, and a star denotes an optimum
value.

criteria is presented. Generating trajectories for FW-UASs
poses a challenge due to its nonlinear underactuated dynamics.
An inverse model of the dynamics can be beneficial for
trajectory optimization [4]. However, in the absence of such
an inverse model and to overcome the issue of underactuation,
we employ the differential flatness characteristic of the UAS,
as outlined in [5].

The structure of this paper is as follows: In Section II, we
present the methodological foundations of the proposed multi-
objective mission-specific design procedure, including the dis-
cussion of the nested co-design problem and the elaboration
on the multi-objective Bayesian optimization approach, which
serves as the outer loop of the nested optimization framework.
In Section III, we detail the modeling of a FW-UAS using
differential flatness, including a description of the aerodynamic
solver used to obtain the aerodynamic force coefficients. In
Section IV, we demonstrate the application of the proposed
approach to the multi-objective mission-specific design of a
fixed-wing UAS for challenging surveying tasks. Finally, in
Section V, we provide a conclusion and an outlook for future
research.

II. MULTI-OBJECTIVE MISSION SPECIFIC DESIGN

In this section we describe the cornerstones of the multi-
objective mission specific design procedure by elaborating
on the nested co-design problem formulation and the multi-
objective Bayesion optimization methodology.

A. Multi-objective nested co-design
The current co-design solution methods build upon existing

numerical schemes developed for trajectory optimization, such
as those presented in references [6, 7, 8]. These methods typ-
ically involve discretizing the trajectory optimization problem
using techniques such as Direct Multiple Shooting (DMS).
This reformulation transforms the problem into a conventional
(constrained) numerical optimization problem, which can be
tackled using suitable optimizers. With regard to co-design, the
optimization variables derived from the trajectory parametriza-
tion are extended to include static design variables, resulting
in a simultaneous co-design approach. Nevertheless, if the
design variables are included as optimization variables, it may
result in a less sparse optimization problem. To tackle this
problem, a nested co-design architecture can be used. It should
be emphasized that in a nested approach, the evaluation of
the objective function necessitates solving the entire trajectory
optimization problem.

In engineering design problems, conflicting objectives are
common. As such, the goal becomes the identification of the
set of non-dominated objectives, where improving one objec-
tive would lead to the deterioration of another. This (hyper-
)surface is known as the Pareto front or Pareto boundary
P ≜ Par({J1(D), ...,Jm(D)|D = d1, ...,dn}). In the present
study, we use the vector d to denote the design variables, the
state and control signals are represented by x and u, respec-
tively. The functionals JD, and JT represent the static design
objective problem, and the dynamic trajectory optimization
objective, respectively. The latter is typically expressed as a
time integral, as will be discussed in a subsequent section.
Furthermore, the dynamics of the system are represented
by f , the constraint functions of the trajectory optimization
problem are represented by gT , and the constraint functions
of the design optimization problem are represented by gD. The
multi-objective nested co-design problems can be formulated
as follows

D∗ =arg Par
d∈D⊂D

JD(d|x∗,u∗)

s.t. gD(d|x∗,u∗) ≤ 0

{x∗,u∗} = argmin
x,u

JT [x,u|d]

s.t. ẋ = f(x,u|d),

gT (x,u;d) ≤ 0

(1)

where D represents a set of design vectors and D represents
the design space of interest, often a compact subset of RdD .
Furthermore, it is assumed that JD : D 7→ R are continuous
functions that are noise-free and gradient-free, in the sense that
a direct evaluation of the gradient is unattainable without ap-
proximations. Since the nested co-design formulation demands
a trajectory optimization during every design optimization
step, the computational burden can become significant. To
account for this problem Bayesian optimization (BO) can be
employed. The central idea of BO to solve this problem is to
build a surrogate model of the objective(s) that can be updated
and queried to drive the optimization decisions [9].

B. Multi-objective Bayesian Optimization

To determine the Pareto front in the context of Bayesian
optimization (BO), the state of the art approach is to construct
a surrogate model of each of the objective functions and for-
mulate an acquisition function that attempts to improve upon
the current best evaluated Pareto front. The most commonly
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used surrogate model in the context of BO is the Gaussian
process interpolator. In accordance to the function-space view
a Gaussian process can be defined as a distribution over
functions such that the set of values of J(d) evaluated at
an arbitrary set of points {di|i = 1, ..., N} jointly have a
Gaussian distribution. A Gaussian process is fully described
by second-order statistics J (d) = GP(m(d), ψ(d,d′)), with
m(d) : D 7→ R the mean function and ψ(d,d′) : D×D 7→ R
the covariance function. Depending on the formulation of the
mean function, different interpolators can be obtained. In case
of a constant value the method is referred to as simple Kriging,
in the case of a multivariate polynomial f(d), which is used
in this work, we refer to the interpolator as universal Kriging.

The surrogate model is trained by maximizing the marginal
likelihood L ≜ p(θ|D), where D represents the set of all
samples that the surrogate is capable of reproducing. This
involves determining the hyperparameters of the covariance
function.

Building forth on the definition of a Gaussian process and
the theorem of Bayes the predictive distribution p[J (d)|J(D)]
can be directly evaluated and gives again a normal distribution
of which the mean E[J (d)] ≜ µ(d) and variance V[J (d)] ≜
Σ(d) can be directly evaluated with α = Ψ−1(d−Fβ), Γ =
(F⊤Ψ−1F)−1, g(d) = F⊤Ψ−1ψ(d)− f(d).

µ(d) = β⊤ · f(d) +α⊤ ·ψ(d) (2a)
Σ(d) = σ2

{
ψ(0)− ||ψ(d)||2Ψ−1 + ||g(d)||2Γ

}
(2b)

with F the model matrix defined by F(i,j) = fi(dj) and Ψ
the correlation matrix defined by Ψ(i,j) = ψ(di,dj). The
coefficients of the multivariate polynomial trend β and the
process variance σ2 are obtained by enforcing stationarity on
the log marginal likelihood function.

A commonly employed type of covariance functions in the
field aerospace engineering is the Matérn covariance function
[10, 11]. It is often preferred over the conventional exponen-
tial covariance function, which infinitely differentiable nature
leads to nonphysical levels of smoothness [12].

An open-source toolbox called ooDACE (object-orientated
Design and Analysis of Computer Experiments) [13] is used
for constructing the Gaussian process interpolator. A multi-
start sequential quadratic programming (SQP) approach is
employed to optimize the concentrated log marginal likelihood
function [14, 15].

The current standard to assess the Pareto set quality is the
hypervolume indicator H(P). The hypervolume (HV) or S-
metric corresponds to the Lebesque measure of the hyperspace
dominated by the Pareto front bounded by a reference point
in the objective space r ≜ {Jj(x)|j = 1...m}. The indicator
can also be used to define a scalar improvement function
Ihv(p|P, r) which measures the contribution (or improve-
ment) of the point p ≜ {Yj(x)|j = 1...m} to the Pareto set P .
Identical to the single-objective case can the stochastic nature
of the interpolator be used to assess the uncertainty in the
prediction and evaluated to define the expected hypervolume
improvement EJ [Ihv(p|P, r)]. We ease out the notation by
introducing ϕj(x) ≜ ϕ(Jj |µj(x),Σj(x)) with ϕ the standard
normal probability density function

Ihv(p|P, r) = max[H(P ∪ p|r)−H(P|r), 0] (3a)

EJ [Ihv(p|P, r)] =
∫

Ihv(p|P, r)
m∏
j=1

ϕj(x)dYj (3b)

Details on the effective calculation of this criteria can be
found in [16].

C. Differentially flat trajectory optimization

Differential flatness refers to a mathematical characteristic
found in specific dynamic systems which asserts that the states,
represented by the vector x, and control inputs, represented by
the vector u, of the system can be described by function of a
flat output, represented by the vector s, and its derivatives.
The flatness property implies that for a given flat output
trajectory represented by s(t), any feasible state and control
input trajectory represented by x(t),u(t) that satisfies the dy-
namic equation of the flat system can be uniquely determined.
Therefore, the flat output, represented by the vector s, serves
as a minimal representation of the dynamics of the system.

Since the dynamic system under consideration is differen-
tially flat, it is possible to establish a correspondence between
any admissible trajectory and its corresponding counterpart in
the flat coordinate space. We employ the B-spline framework,
as described in [17], to parameterize the flat trajectory s(t). A
function basis known as a B-spline of order d is composed of
basis functions represented by piecewise polynomials, denoted
as Bi,d. A knot-vector, a non-decreasing set of time instants
T = t0, t1, . . . , tm, further describes the basis functions. By
setting t0 to 0 and tm to T , the B-spline covers the time
interval [0, T ]. The total number of basis functions can be de-
termined as n = m−d+1. The flat trajectory can be expressed
as a linear combination of the B-spline basis functions and a
set of coefficients, ci, such that s(t) =

∑n
i=0Bi,d(t)ci.

The aim is to minimize an integrand l(x,u) over a time
interval [0, T ]. Since the integral is nonlinear and not ex-
plicitly computable, some researchers prefer to use a linear
or quadratic integrand in the flat coordinates to ensure that
the integrand is polynomial and explicitly integratible [18].
Rather than using an integral over the entire interval, we
use a trapezoidal integration rule on a dense sample grid
G. Additionally, inequality constraints can be incorporated to
reinforce specific characteristics of the trajectories.

c∗ = argmin
c

∑
t∈G

l(Φ[s](t),Ψ[s](t)), t ∈ G

s.t. g(Φ[s](t),Ψ[s](t)) ≤ 0, t ∈ C
(4)

The trajectory optimization problem, formulated as a non-
linear program (NLP), is typically solved using standard
numerical optimization techniques. In this work, we employ
the sequential quadratic programming (SQP) method, which
is implemented in the fmincon environment in Matlab, and
utilize default numerical differentiation settings to compute
the gradient. It should be noted that due to the presence of in-
equality constraints and the requirement for numerical gradient
evaluations, the solution of the trajectory optimization problem
can be computationally intensive. This further highlights the
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need for the utilization of efficient optimization methods in
the outer loop of a nested co-design framework.

III. FIXED WING UAS MODELING

To validate the newly proposed framework, we present the
mission-specific design of a FW-UAS for multiple criteria.
In this section we describe the different aspects required
to evaluate the impact of design and control on mission
performance.

A. Rigid body dynamics of flight

The coordinate systems employed in our analysis include
the world frame of reference (f.o.r.) W and the body f.o.r.
B, which is fixed to the center of mass of the vehicle. For
a visual representation of these different frames of reference,
please refer to the accompanying scheme (Fig. 2).

The kinematics of the vehicle can be represented by its
relative pose, which is characterized by the homogeneous
transformation matrix between the world frame of reference W
and the body frame of reference B, denoted by W

BT ∈ SE(3).
This matrix is determined by a translation vector W

Bp ∈ R3,
which characterizes the position of B relative to W , and
a rotation matrix W

BR ∈ SO(3), which characterizes the
orientation of B relative to W . The differential kinematics
of the vehicle are given by W

Bṗ = W
Bv and

W
BṘ = W

BR
W
BΩ,

where Ω = ω̂.
To simplify the modeling, a minimal representation q ∈ R3

is used for the rotation matrix W
BR. This allows the definition

of the rotation matrix as W
BR(q), and the local angular veloc-

ities as Bω = BJ(q)q̇, where q̇ = BJ(q)
−1ω. This numerical

modeling approach is valid as long as the flight trajectories are
not close to the singularities of the Jacobian matrix, BJ(q).
We adopt the yaw-roll-pitch (ψ, ϕ, θ) convention in a ZXY
rotation sequence and we make the assumption that the vehicle
meets the requirements that define a rigid body, and hence, the
dynamics of the vehicle are governed by the Newton-Euler
equations.

The aerodynamic forces and angular moments exerted on
the rigid body can be denoted by Bf and Bτ , respectively. The
vehicle’s mass and inertial tensor are represented by m and I,
respectively. The inertial tensor takes the form of a diagonal
matrix B

BI = diag(Ixx, Iyy, Izz) to reflect the symmetries of
the geometry.

Fig. 2: Visualization of the nominal fixed wing UAS design along with the
definition of the body reference system.

m Bv̇ = Bf −mgWez (5a)

BI Bω̇ = Bτ − Bω × BI Bω (5b)

The state of the rigid body, represented by the vector x ∈
R12, encompasses the position and velocity of the center of
mass, as well as the minimal representation of its orientation
and the angular velocities with respect to the local frame.

x =
[W

Bp
⊤ q⊤ W

Bv
⊤ B

Bω
⊤]⊤ ∈ R12

The aerodynamics of the wing and control surfaces and it
propulsion systems generate the force and angular moment,
which rely on the control input u and the design vector d.

B. Aerodynamic Parametrization

Conventionally the input to the FW-UAS system is deter-
mined by the propulsion system and the control surfaces. We
consider a single propeller tailless fixed wing system with
two elevons δ1 and δ2 that simultaneously perform the task
of the conventional elevator and aileron (Fig. 2). For electric
propulsion systems, the motor dynamics are much faster than
the rigid body dynamics and aerodynamics. Therefore, it
is assumed that propulsion system control can be achieved
instantaneously. Furthermore, the thrust vector generated by
the propeller is taken proportional to the squared rotor RPM
ω. Similarly, control surface actuation is assumed to to occur
instantaneously. As such, the control input vector is defined
as

u =
[
ω δ1 δ2

]⊤ ∈ R3

Consequently, the forces and moments can be expressed as
linear combinations of control inputs. The aerodynamic forces
are assumed to be made up out of two components: the thrust
force, which is assumed to be aligned with Bex, and the wing
induced force, corresponding to the lift and drag force. No
side force is assumed to be present. The torque components
are assumed to be fully determined by the control surfaces.

Bf = (kTω
2 − kDv Bvx) Bex + kLv Bvz Bez (6a)

Bτ = kl,δv Bvx(δ1 − δ2) Bex + km,δv Bvx(δ1 + δ2) Bey

+ kn,δv Bvx(δ1 − δ2) Bez (6b)

With kL = q∂vCL the drag force coefficient according to ϕ-
theory using the Buckingham π theory motivated conventional
lift coefficient CD [19]. Furthermore, q = 1/2ρS, with ρ the
density of air and S the wetted surface of the UAS. Simi-
larly, kL = q∂vCL corresponds to the lift force coefficient,
kl,δ = qb∂2v,δCL corresponds to the roll moment coefficient
due to elevon deflection δ with b the span-wise distance from
the center of gravity to the centroid of the control surface,
km,δ = qc∂2v,δCL corresponds to the pitch moment coefficient
due to elevon deflection with c the chord-wise distance from
the center of gravity to the centroid of the control surface and
kn,δ = qb∂2v,δCD corresponds to the yaw moment coefficient
due to elevon deflection.
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C. Differential Flatness
One can demonstrate that the FW-UAS exhibits differential

flatness using the position and yaw of the system as flat
coordinates, as shown in [20].

s =
[W

Bp
⊤ γ

]⊤ ∈ S ⊂ R4

We briefly summarize the approach by which Tal et al.
derived the flat dynamics [20]. From Eq. 6a it can be ob-
served that no lateral forces are present Bfy = 0, which
can be justified from the observation that the FW-UAS under
consideration has no vertical surfaces (Fig. 2). From this
observation, rotating W f around ψWez from which ϕ can
be readily obtained. Eq. 5a and Eq. 6a can now be solved for
θ and ω. The angular velocity and angular acceleration can
be determined by applying the derivative operation twice on
the expression for attitude. This expression is a function of
velocity ṗ, acceleration p̈, jerk

...
p , snap

....
p , yaw ψ, yaw rate

ψ̇, and yaw acceleration ψ̈. The moment can then be calculated
by inverting Eq.5b, which allows for the determination of
rotor speeds and flap deflections using Eq.6b. The resulting
expressions are too tedious to be presented here. We refer to
Tal et al. [20] for a step by step derivation.

Two differential operators, Φ and Ψ, can now be formulated
to transform respectively the flat coordinate vector, s, to the
state vector, x = Φ[s], and the control input vector, u = Ψ[s].
One may observe that τ is a function of the second-order time
derivative of the generalized coordinates, W

Bp and q, which
are again a function of the second derivative of the flat output
trajectory, s̈. Consequently, the control input is reliant on the
fourth-order derivative of the flat output,

....
s and should be

considered to guarantee seamless control.

D. Aerodynamic solver
In this paper, aerodynamic coefficients of a UAS design are

evaluated using Drela’s Athena Vortice Lattice (AVL) method
[21]. AVL is based on potential flow theory, which assumes
inviscid, irrotational, and incompressible flow field, resulting
in the Navier-Stokes equations that describe the flow around
the UAS reducing to the Laplace equation. To induce lift,
an irrotational vortex is introduced, and its influence can
be determined using Biot-Savart’s law. In two-dimensional
potential flow, lift can be modeled by introducing a vortex
core. In three dimensions, however, the Helmholtz theorem
must be satisfied, which enforces that each vortex is closed.
This results in the formation of a horseshoe vortex that is
closed at infinity by a starting vortex. The linear nature of the
Laplace equation allows for the assessment of aerodynamic
derivatives through chain differentiation.

Within the framework of a two-dimensional panel method,
the airfoil surface and wake trajectory are partitioned into
Np panels. In each panel, a linear vorticity distribution is
introduced and across the surface constant source strength is
defined of which the values are determined by solving a set of
equations that enforce flow tangency at each panel and compel
the Kutta condition to be met, which states that the flow over
the upper and lower surfaces of the airfoil must come together
smoothly at the trailing edge. The Vortice Lattice method
can be considered as a three-dimensional extension of the
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Fig. 3: Top view contour visualization of the flight domain in m. Red circles
represent the target (spatial position constraints) at 5m height. The inlet and
outlet location are respectively found at (0, 0)m and (0, 100)m. The inlet
and outlet velocities are determined by the trajectory optimization routine,
along with the flight duration.

panel method, and it corresponds to a discretized formulation
of the Prandtl lifting line theory, in which a lifting surface
is represented by a zero-thickness sheet. In each panel, a
horseshoe vortex is defined and quantified by its strength. To
close the set of equations, it is imposed that the flow is parallel
to the surface.

IV. VALIDATION EXPERIMENT

We specify here the details of the mission that was con-
sidered, the design parameterisation of the FW-UAS and
document the result of our co-design architecture.

A. Mission specifications and performance metrics

For our lower level trajectory optimization problem we spec-
ified a set of targets that should touch the optimized trajectory
such that a challenging surveying flight trajectory is provoked
(Fig. 3). We define two mission objectives to respectively
pursue efficiency and effectiveness. For each of the mission
objectives we require the trajectory to minimize a contribution
of 3 terms. The complexity of generating aggressive flight
trajectories arises from the challenge in enforcing control
input constraints, such as motor speed and flap deflection
limits, in the flat output space. To address this difficulty,
widely adopted algorithms for trajectory generation in the
differential flat output space of quadcopter dynamics resort
to minimizing snap, which represents the fourth derivative
of position and yaw acceleration. This optimization process
effectively reduces the demand for control moment, thereby
increasing the feasibility of the trajectory and ensuring that
control input limits are met [20]. The third term in the
respective efficiency and effectiveness objective is the energy
expenditure due to thrust and the time spend on the mission.

l1 = w1||WB
....
p ||2 + w2||γ̈||2 + w3ω

2 (7a)

l2 = w1||WB
....
p ||2 + w2||γ̈||2 + w4 (7b)
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with w1 = 10−4, w2 = 10−2, w3 = 10−3 and w4 = 10−1.
Furthermore, it is enforced that the angle of attack α and
sideslip angle β respectively do not exceed 15◦ and 5◦ to
avoid stall and ensure the validity of the dynamic model.
The thrust is also limited to 25N. In this study, a B-spline
basis of order d = 6 with 8 equidistant knots (m = 7) is
employed over the interval [0, 5] to yield 13 basis functions.
This is combined with a 4-dimensional flat coordinate space
to produce a 52-dimensional trajectory vector. To initialize
the trajectory optimization problem, a Fourier series that
approximates the targets is utilized and fitted onto the B-spline
basis.

For our upper level design optimization problem we pursue
the simultaneous minimization of the third terms of the two
trajectory optimization objectives. This implies that during
every iteration of the multi-objective Bayesian optimization
routine the trajectory optimization problem is solved for each
objective and a surrogate is built for each of the respective
third terms. Furthermore, for each design AVL also provided
the stability derivatives ∂αCm and ∂βCn, which should be
respectively smaller and larger than zero in order for the
UAS to be longitudinally and directionally stable. This is
included in the BO framework by means of a probability of
feasibility approach [22]. This implies that additionally two
surrogates constraints are built and the probability that a newly
proposed design meets these requirements is multiplied with
the acquisition function obtained from the surrogates of the
objectives.

The optimization routine is initiated through the evalu-
ation of a design of experiments (DoE). In this work a
Latin Hypercube Sampling (LHS) approach is followed with
dd × 11 − 5 elements. The space-fillingness of the LHS is
quantified through a maximin-criterion and maximized. The
optimization is stopped when 100 additional designs have been
evaluated. The acquisition function, which guides the selection
of the next infill, is maximized during every iteration using a
genetic algorithm (GA) with a population size of 1e3 and 1e2
generations.

B. Design parameters and initialization

The FW-UAS being examined in this study exhibits a
blended wing body (BWB) design, which enhances its aero-
dynamic performance, and a tailless configuration, resulting in
a swept wing to ensure the aircraft maintains its tendency to
return to its equilibrium state. The traditional wing parame-
terization typically used in aerodynamic conceptual design is
employed here [23]. The following parameters are fixed: the
chord length of the wing at the fuselage, denoted by cr, is
set at 0.3m. The fuselage is modeled as a lifting body with
width set at 0.2m, and the total span of the UAS is set at
1m. The following parameters are taken as design variables
through which the performance of the UAS is optimized: first,
the taper ratio of the wing λ, which corresponds to the ratio of
the chord at the tip to the chord at the root λ = ct/cr. Second,
the sweep angle of the wing Λ, which is defined as the angle
between the leading edge projected on the xy-plane and the
y-axis in the body frame. Third, the wing twist γ, which refers
to the rotation of the tip in reference to the root of the lifting

Fig. 4: Pareto front after the final iteration of the multi-objective mission-
specific design procedure. The NSGA-II prediction of the Pareto front on the
surrogates is presented along with the validation of this front. Furthermore, the
DoE is presented along with the infills which migrate towards the Pareto front,
indicating the effectiveness of the acquisition function. Finally, the default
design and three designs on the Pareto are highlighted.

surfaces. Fourth and final, the fraction of the control surface
that can be tilted to initiate maneuvers, denoted as fC .

• Taper ratio wing: λ ∈ [0.05, 1.00]
• Sweep angle wing: Λ ∈ [0o, 45o]
• Twist angle wing: γ ∈ [−5o, 5o]
• Fraction control surface: fC ∈ [0, 1]

This results into a design vector of dimensions 4. The extremes
of the taper/sweep combinations are shown on the front page.
During the trajectory optimization, the coefficients kL, kD,
kl, km and kn are kept constant and obtained from the
AVL model [21] for the setting where the fixed-wing UAS
operates at cruise conditions: α = 6◦ and v = 22m/s.
We assume, following the work of Tal et al. that ∂vCL ≈
∂αCL, ∂vCD ≈ 2CL∂vCL/πeAR, ∂2v,δCL ≈ fC∂vCL and
∂2v,δCD ≈ fC∂vCD with e and AR respectively corresponding
to the Oswald efficiency factor and the aspect ratio. Despite
its coarseness, this approximation enables the exploration of
the novel framework and the baseline design. The following
parameters are used m = 2.50kg, Ixx = 8.35 × 10-3kgm2,
Iyy = 1.18× 10-2kgm2, Izz = 1.99× 10-2kgm2.

The baseline design is selected to closely resemble the
commercially available Gatewing UX5 (Fig. 2) [24]. The
resulting values of the reference design are kL = 6.14 ×
10-2kg/m, kD = 2.66 × 10-4kg/m, kl,δ = 4.29 × 10-2kg,
km,δ = 1.46× 10-2kg and kn,δ = 2.3× 10-3kg.

C. Results and discussion

The results of the multi-objective mission specific design
is a Pareto front of optimized designs that outperform the
standard design in various metrics (Fig. 4). Three designs
on the front are selected for closer inspection, which are
summarized together with the baseline geometry in Table. I.

TABLE I: Overview of co-designs

λ [−] Λ [◦] γ [◦] fC [−] J1 [kNt] J2 [t]
Default 0.470 37.499 -4.500 0.700 21.917 25.262

Design 1 0.203 41.765 0.225 1.000 17.557 23.044
Design 2 0.157 42.723 -0.595 1.000 18.211 22.986
Design 3 0.167 45.000 -6.083 1.000 18.239 22.852
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(a) Top view for the efficiency objective (b) Side view for the efficiency objective (c) Top view for the effectiveness objective (d) Side view for the effectiveness objective

Fig. 5: Optimal mission trajectories for the default and optimal designs. Using the same color code as Fig. 4

Upon careful examination of the taper ratios, it was deter-
mined that smaller tip chords were favored in optimal designs.
However, no clear trend was identified. The sweep angle was
maximized to enhance performance, but slightly reduced for
improved efficiency. The backward sweep of the wings was
also necessitated by the requirement for longitudinal and di-
rectional stability, which were both positively impacted by the
wing sweep. A similar trend was observed for the wing twist,
which had a limited impact on performance objectives but a
significant contribution to stability requirements. The control
fraction was maximized in all designs, owing to its direct
relationship to the torque coefficients and the aircraft’s ability
to execute sharp maneuvers. However, the potential for stall
during these maneuvers could limit its practical application, as
the models used in the analysis lack the capability to accurately
predict this scenario.

The optimized trajectories of the default and optimized
designs are depicted in Fig. 5. The side views of the efficiency-
driven trajectories reveal substantial variations among the dif-
ferent designs, while the distinctions among the effectiveness-
driven trajectories is less pronounced. Upon examining the
top view of the trajectories, a higher degree of consistency
can be discerned across the designs, with the intersection
point of the trajectories being the most salient difference.
The considerable disparities observed between the trajectories,
despite modest differences in design, highlight the importance
of concurrent design methodologies and suggest the need for
further investigation in this area.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a model-based multi-objective
dynamical system design strategy. The co-design optimization
approach, which combines design and trajectory optimization,
was examined in a nested formulation and enhanced with
multiple objectives. This was achieved through the integration
of the multi-objective formulation of Bayesian optimization
that simultaneously minimizes multiple criteria through the use
of a dedicated acquisition function, with a dedicated trajectory
optimization methodology relying on the differential flatness
of the dynamic system considered.

The dynamical design problem used as a case study was
the mission-specific design of fixed-wing unmanned aerial

systems, with the objective of simultaneously minimizing
its energy expenditure while performing a surveying task as
quickly as possible. The results demonstrate optimized designs
that outperform the standard design in different metrics. A
trade-off between levels of efficiency and effectiveness can be
observed, thus allowing the designer to select an optimal de-
sign geometry based on the application type of the unmanned
aerial vehicle and proving the effectiveness of the dynamic
design approach.

The framework is limited to tasks that are highly repetitive;
a change in working conditions might lead to suboptimal
performance. Therefore, a topic of ongoing research is the
pursuit of robustness in designs for changing tasks and/or en-
vironment. To realize this, a probabilistic approach is foreseen
in which the overall performance to be optimized is set to
correspond with the sum of a set of basic flight maneuvers.
This is a subject of ongoing research. Furthermore, accuracy
increase is pursued through the incorporation of Gaussian
process interpolators on the systems dynamics level. By doing
so we pursue the ability to increase the accuracy of the
simulator without increasing the computational cost of the
optimization routine.
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