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Abstract— An autonomous underwater vehicle (AUV) is a
crewless robotic vehicle that dives into the water and performs
without human assistance. This paper focuses on developing
trajectory tracking control for bio-mimetic AUV system under
uncertain environments. Therefore, a relatively new control
technique called time delay-based estimation control is pro-
posed for trajectory tracking under multiple uncertainties. This
algorithm estimates the total disturbance in the system using
immediate past information of input and output of feedback
state and control variables. The benefit of this scheme is that
it avoids assumptions about a priori upper bound information
of disturbance. Further, the control structure is simple and
does not require any high-frequency switching or high gain to
nullify the effects of disturbance. The theoretical analysis of the
proposed scheme guarantees the uniformly ultimate bounded
stability of the closed-loop system. The numerical analysis is
also carried out to validate the control performance of the
given algorithm for lemniscate reference path tracking.

I. INTRODUCTION

Aquatic vertebrates are capable of moving at fast speeds
which in turn has drawn the widespread attention of re-
searchers in the field of bio-inspired robotics. This feature
has been used for biomimetics, such that the natural ca-
pabilities of such vertebrates can be effectively mimicked
in human-engineered systems. One such area where such
nature-inspired spatial locomotion has been replicated is in
autonomous underwater vehicles (AUV). AUVs are being
extensively used for underwater surveillance as well as
monitoring. However, much improvement was desired to the
conventional propeller based locomotion of AUVs, which
came in the form of bio-mimicking a fish. Such biomimicked
AUVs were found to be quieter, more maneuverable (lesser
accidents), and possibly more energy efficient. Merging
the conventional rigid body dynamics with the bio fluid
dynamics, which reproduces fish-like swimming, a unified
model of robotic fish was proposed in [1]–[3]. This robotic
fish comprises of its head as the first link followed by the
two-link manipulator, which resembles the tail. This tail
works as the propeller, which generates the required thrust
for the underwater vehicle. The coordinated multi-propulsion
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Fig. 1. Bio-mimetic fish model in Solidworks [2].

kinematic modeling of a biomimetic robotic fish is developed
on the Solidworks platform, which is shown in Fig. 1.

Various control strategies have been proposed for enhanc-
ing the performance of AUVs or bioinspired fish underwater
vehicles. Among these schemes, the open-loop strategies [4]
have been seen to use both electrostatic and electromagnetic
actuators in order to replace the muscles of fish. Fuzzy
based methodologies [5], [6] have been used in literature
for efficient planar control of the AUV, while Lyapunov
functions have been utilized to determine the stability for the
vehicle’s tracking system. By assuming the impact of vortex
shedding along with drift, a control affine methodology was
proposed in [7], and a quasi-steady control based on fluid
flow was presented in [8] which has the capability of pre-
dicting either the forward motion or the turning of the vehicle
based on swimming gaits. Also, fish brain mimicking at a
very basic level, in order to control the movement of AUV
has been explored in [9]. This process utilizes the concepts
of central pattern generator along with finite state machine
techniques to generate the control input appropriately. In
addition to these strategies, the extensive use of motion
control strategies can be seen in the state of the art for
matching the computational demand of the system by first
determining the torque requirement [10] while increasing the
freedom of the controller. In this regard, both feed-forward
control [11] and computed torque method [7], [10] have been
implemented in literature and practice.

In the last few decades, time-delayed control (TDC)
methodology [12]–[14] has been widely used for design-
ing control laws for varied system primarily due to its
inherent capability of alleviating assumption of bounded
uncertainty which is quite conservative for real-time practical
systems. Also, this methodology does not require apriori
knowledge about the upper bound of uncertainties. The
TDC strategy is able to relax these conservative assumptions
by considering a relatively non-conservative assumption of
slowly varying uncertainties. The unknown part of system
dynamics, along with uncertainties, is estimated using the
data from prior instant, which in turn introduces a delay
in the control formulation, though the system is delay-free.
Thus, the technique is termed as time-delayed estimation

2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
June 28-30, 2023. Seattle, Washington, USA

978-1-6654-7633-1/23/$31.00 ©2023 IEEE 930



(TDE). The TDC approach is explored for robot manipulators
[15], synchronous motors [16], wheeled mobile robots [17],
biped robots [18], shape memory alloys [19], unmanned
aerial vehicles [20], missile guidance [21], [22], reusable
launch vehicles [23], attitude controller for spacecraft [24],
etc. Thus, this work makes use of the TDC robust control
strategy to design an efficient control law for the underwater
vehicle. The proposed control law demonstrates superior
tracking capabilities and is able to guide the vehicle along
the reference trajectory, which is an essential aspect for
underwater navigation. The TDC based robust control law
is also able to effectively tackle the external disturbances
and uncertainties affecting the system. Stability analysis has
also been included in this work based on Lyapunov analysis
which ensures UUB stability. The TDC based strategy has
been shown to outperform the widely popular PD controller
for the desired objectives.

The rest of the paper is organised as follows: Section II
discusses the system model in brief, which is followed by the
control law formulation in Section III. The stability analysis
is included in Section IV and the results from simulation
studies are provided in Section V. Finally, the concluding
remarks are presented in Section VI.

II. MODEL DESCRIPTION

In this work, a three-link manipulator has been designed to
work as a bio-inspired robotic fish that operates underwater.
The Lighthill (LH) mathematical model [25] is integrated
with the kinematic and dynamic model of the robotic fish
model for obtaining the tail lateral positions, thus obtaining
the unified dynamic model. The shape of the model mimics
the structure of a carangiform fish [26]. The head which
is also the first link works as a mobile base, with the two
other rotational joints connected through caudal tails act as
thrusters that use lateral displacement to facilitate motion.
The biomechanics of the relative pressure forces have been
integrated with that of the moments to ease the undular
motion of the AUV.

The robotic fish dynamics model can be mathematically
described by the following system of equation [27]

M(q)q̈ +C(q, q̇)q̇ + g(q) + d(t) = τ (t) (1)

where, q ∈ Rn represents the joint position state variable and
τ ∈ Rn denotes the control torque. The other parameters
governing the evolution of the system dynamics (1) are:
the inertia mass matrix M(q, q̇) ∈ Rn×n, the Coriolis
centripetal function C(q, q̇) ∈ Rn×n, the gravity vector
g(q) ∈ Rn, and combination of slip force, damping force
and friction forces f(q̇) ∈ Rn. Any external disturbances
affecting the system is represented as d(t) [28].

In this paper, a tracking problem has been addressed where
a robust controller is to be designed such that the robotic fish
system (1) follows a reference positional trajectory qr. In
this regard, the joint position error is defined as q̃ = q−qr.
Differentiating q̃ with respect to time and then multiplying
both sides with M(q), gives:

M(q)¨̃q = M(q)(q̈ − q̈r). (2)

By substituting the expression for M(q)q̈ as (1) in (2), the
error dynamics is formulated as follows:

M(q)¨̃q = τ (t)−C(q, q̇)q̇− g(q)− d(t)−M(q)q̈r. (3)

All the functions of states, system uncertainties and external
disturbances are lumped together into a single function as
N = [−C(q, q̇)q̇ − g(q) − d(t) − M(q)q̈r]. The error
dynamics (3) now is expressed as

M(q)¨̃q = τ (t) +N(q, q̇, qr). (4)

For the purpose of brevity, the arguments of the functions in
(4) are dropped and all parameters being explicit functions
of time, M(q) and N(q, q̇, qr) are henceforth represented
as M(t) and N(t) respectively. Thus, (4) now becomes

M(t)¨̃q(t) = N(t) + τ (t). (5)

III. CONTROLLER DESIGN

A. Time-Delayed Control Law

The artificial time-delay philosophy is used in this section,
to obtain a stabilizing control law τ (t) for (5). In this
regard, a time-varying design matrix M̄(t) is considered that
needs to be appropriately chosen by the designer such that
M̄(t) is invertible. Introducing M̄(t)¨̃q through adding and
subtracting leads to

M(t)¨̃q(t) + M̄(t)¨̃q(t) = N(t) + M̄(t)¨̃q(t) + τ (t)

⇒ M̄(t)¨̃q(t) = [M̄(t)−M(t)]¨̃q(t) +N(t) + τ (t). (6)

Taking, N̄(t) = [M̄(t) − M(t)]¨̃q(t) + N(t), the error
dynamics becomes

M̄(t)¨̃q = N̄(t) + τ (t). (7)

Subsequently, the stabilizing control law for (7) can be
designed as:

τ (t) = M̄(t)u(t)− N̂(t), (8)

where N̂(t) represents the estimated value of N(t). The
auxiliary input u(t) is designed as a closed loop feedback
control law as:

u(t) = −KD
˙̃q(t)−KP q̃(t), (9)

where KP and KD are the controller gain parameters. Using
(8) and (9), (7) is re-written as:

M̄(t)[ ˙̃q(t)− u(t)] = N̄(t)− N̂(t). (10)

Multiplying M̄
−1

(t) on both sides of (10) results in

¨̃q(t)− u(t) = M̄
−1

(t)[N̄(t)− N̂(t)] = Λ(t) (11)

By substituting u(t) as (9) in (11), the closed loop error
dynamics for the robotic fish is achieved as:

¨̃q(t) +KD
˙̃q(t) +KP q̃(t) = Λ(t)

⇒ ˙̄q(t) = Kq̄(t) + ϕ(t) (12)

where

q̄(t) =

[
q̃(t)
˙̃q(t)

]
,K =

[
0n In

−KP −KD

]
,ϕ(t) =

[
0n×1

Λ(t)

]
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If ϕ(t) goes to zero, a suitable choice of the controller gains
K can steer the closed loop system to the origin which
leads to ideal tracking of qr(t). However, ϕ(t) represents the
estimation error in (12) which appears due to the estimation
of the nominal value of N̄(t) by N̂(t). Using (7), N̄(t) is
expressed as:

N̄(t) = M̄(t)¨̃q(t)− τ (t) (13)

The TDE methodology has been employed in this work
to carry out the required estimation. The method uses the
system dynamics information and input-output measurement
data to compute the estimated value N̂(t). One can infer
from (13) that an ideal estimation is achieved when N̂(t)
is computed by using measurement data of the present time
instant t. However, such a requirement indicates availability
of control input and other state measurement at that particular
instant of time. For practical scenario, such a feat is not
admissible and an alternate scheme of using measurement
data from previous time instant can be adopted to estimate
the effects of uncertainties. Needless to say, one achieves
ideal estimation under such philosophy as time difference
between current and previous time stamps tends to zero.
Representing the previous instant as a time-delayed version
of the present instant, the estimated value is expressed as:

N̂(t) ≈ N̄(t− γ) (14)

where γ is an artificially induced small time delay repre-
senting the difference between the current and previous time
instant. It can be seen from (14) that choosing a small enough
value of time-delay γ, leads to smaller estimation error
ϕ(t). In real-time applications, the smallest time realizable
is the sampling interval of the processor. Hence, the time-
delay is conservatively set equal to the processor sampling
time. Thus, the time-delayed version of (13) is subsequently
expressed as:

N̂(t) ≈ N̄(t− γ) = M̄(t− γ)¨̃q(t− γ)− τ (t− γ) (15)

Using (14) and (15) in (8), the control law for closed loop
system (12) is derived as:

τ (t) = M̄(t)u(t)− M̄(t− γ)¨̃q(t− γ) + τ (t− γ) (16)

It is to be noted that the original system (12) is inherently free
of any time-delay. However, because of the application of
time-delayed control scheme, a time-delay of γ is introduced
into the system, from where the method derives its name of
‘artificial time-delayed control’.

IV. STABILITY ANALYSIS

This section discusses the stability of the closed-loop
structure of the error system (12) as the proposed TDC con-
trol law (16) is applied while taking the following assumption
into consideration.

Assumption 1: For the error dynamics (7),
1) Uncertainties in the lumped function N̄(t) varies

slowly with time t [18], [24], [29].
2) Variation in the feedback auxiliary input u(t) in be-

tween two sampling instants, i.e., γ, is bounded.

Lemma 1: With Assumption 1 being satisfied, the esti-
mation error Λ(t) of the closed loop system (12) remains
bounded under the application of time-delayed estimation
(14) and control law (16) , if there ∃ M̄(t) such that∥∥M−1(t)M̄(t)− I

∥∥ < 1, ∀t ≥ 0 (17)
Proof: Using (5), the control torque τ (t) is expressed

as
τ (t) = M(t)¨̃q(t) +N(t) (18)

The above expression, when written for a delayed time
instance (t− γ), can be represented as

τ (t− γ) = M(t− γ)¨̃q(t− γ)−N(t− γ) (19)

Using (19) in (16), the control law τ (t) becomes

τ (t) = M̄(t)u(t)−[M̄(t−γ)−M(t−γ)]¨̃q(t−γ)−N(t−γ)
(20)

From (11), the estimation error Λ(t) at time t is represented
as:

Λ(t) = ¨̃q(t)− u(t) (21)

Multiplying M(t) on both sides gives

M(t)Λ(t) = M(t)¨̃q(t)−M(t)u(t) (22)

Substituting M(t)¨̃q(t) by using (7) and replacing τ (t) as
(20), the above equation is re-written as

M(t)Λ(t) = [M̄(t)−M(t)]u(t)− [M̄(t− γ) (23)

−M(t− γ)]¨̃q(t− γ) +N(t)−N(t− γ)

Addition and subtraction of the term [M̄(t)−M(t)]u(t−γ)
on the right hand side of (23) with small rearrangement gives

M(t)Λ(t) = [M̄(t)−M(t)][u(t)− u(t− γ)]

− [M̄(t− γ)−M(t− γ)]¨̃q(t− γ) +N(t)

−N(t− γ) + [M̄(t)−M(t)]u(t− γ)
(24)

Exploiting the time-delayed expression of (11) and substitut-
ing ¨̃q(t− γ) = u(t− γ) +Λ(t− γ), (24) becomes

M(t)Λ(t) = −[M̄(t− γ)−M(t− γ)]Λ(t− γ)

+ [M̄(t)−M(t)][u(t)− u(t− γ)]− [M̄(t− γ)

−M(t− γ)− M̄(t) +M(t)]u(t− γ)

+ [N(t)−N(t− γ)] (25)

Recalling that γ is set as the sampling time of the processor
in order to ensure better estimation using TDE philosophy.
Thus, without loss of generality, the instant t and (t−γ) has
been represented as pth and (p − 1)th sampling instances
respectively. This translates (25) to

M(p)Λ(p) = −[M̄(p− 1)−M(p− 1)]Λ(p− 1)

+ [M̄(p)−M(p)][u(p)− u(p− 1)]− [M̄(p− 1)

−M(p− 1)− M̄(p) +M(p)]u(p− 1)

+ [N(p)−N(p− 1)] (26)

Multiplying M−1(p) on both sides, one obtains
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Λ(p) = −η1(p− 1)[M−1(p− 1)M̄(p− 1)− I]Λ(p− 1)

+ [M−1(p)M̄(p)− I]η2(p− 1)

− η1(p− 1)[M−1(p− 1)M̄(p− 1)− I]η3(p− 1)

+ [M−1(p)M̄(p)− I]η3(p− 1) + η4(p− 1) (27)

where

η1(p− 1) = M−1(p)M(p− 1)

η2(p− 1) = u(p)− u(p− 1)

η3(p− 1) = u(p− 1)

η4(p− 1) = M−1(p)[N(p)−N(p− 1)]

Note that boundedness in the function η1(p − 1) can be
guaranteed by appropriately choosing M̄(t). On the other
hand, Assumption 1 ensures boundedness of the functions
η2(p−1), η3(p−1) and η4(p−1). Therefore, the condition
that guarantees boundedness in estimation error Λ(p) can be
stated as: ∥∥M−1(p)M̄(p)− I

∥∥ < 1, ∀p ∈ Z+ (28)

Lemma 1 leads to the following theorem on the stability
of the closed loop system.

Theorem 1: Under the application of the feedback control
law (16) derived using time-delayed estimation (15), states of
the closed-loop error system (5) achieve uniformly ultimately
bounded (UUB) stability.

Proof: Consider a Lyapunov candidate as:

V =
1

2
q̄(t)TΘq̄(t) (29)

where Θ represents a positive definite matrix that satisfies
the Lyapunov equation

KTΘ+ΘK = −Λ (30)

and Λ is a user-defined matrix which has to be positive
definite. Differentiating (29) with respect to time gives

V̇ =
1

2
q̄(t)TΘ ˙̄q(t) +

1

2
˙̄q(t)TΘq̄(t) (31)

Substituting expression of ˙̄q(t) as (12), (31) becomes

V̇ =
1

2
q̄(t)TΘ[Kq̄(t) + ϕ(t)] +

1

2
[Kq̄(t) + ϕ(t)]Θq̄(t)

=
1

2
q̄(t)T [ΘK+KTΘ]q̄(t) + q̄(t)TΘϕ(t)

= −1

2
q̄T (t)Λq̄(t) + q̄T (t)ξ̄(t) (32)

where Θϕ(t) = ξ̄(t). It is to be noted that Lemma 1 ensures
boundedness in ϕ = [0T

n×1 ΛT ]T . On the other hand,
Θ is an user defined matrix which satisfies the Lyapunov
equation (30), subsequently, one can also conclude the ϕ ∈
L∞, which indicates that ϕ remains bounded for all time.
Therefore, the derivative of V in (32) alternately satisfies

V̇ ≤ −λmin(Λ) ∥q̄(t)∥2 + ∥q̄(t)∥
∥∥ξ̄(t)∥∥ ,

V̇ ≤ −ρ ∥q̄(t)∥2 − [λmin(Λ)− ρ] ∥q̄(t)∥2 + ∥q̄(t)∥
∥∥ξ̄(t)∥∥

(33)

where the value of the parameter ρ is defined within the
bound 0 < ρ < λmin(Λ). Since, the Lyapunov function
satisfies V ≤ 1

2λmax(Λ) ∥q̄(t)∥2, the above expression is
revised as:

V̇ ≤ −λmin(Λ) ∥q̄(t)∥2 +
∥∥q̄T (t)ξ̄(t)

∥∥
≤ −ρ̄V − [λmin(Λ)− ρ̄ ∥q̄(t)∥2 + ∥q̄(t)∥

∥∥ξ̄(t)∥∥
where ρ̄ = 2ρ

λmax(Θ) Note that V̇ ≤ −ρ̄V if the following
condition holds

[λmin(Λ)− ρ] ∥q̄(t)∥2 ≥ ∥q̄(t)∥
∥∥ξ̄(t)∥∥

⇒ ∥q̄(t)∥ ≥
∥∥ξ̄(t)∥∥

[λmin(Λ)− ρ]
(34)

Condition (34) states that for every t ≥ 0 if the error q̄(t)
is outside the region defined by the right-hand side of (34)
then q̄(t) exponentially convergences to the same region and
remains therein. Thus, the closed-loop system (7) always
remains uniformly ultimately bounded.

V. NUMERICAL ANALYSIS

This section presents the simulation result of the proposed
time delay-based control strategy (16) for the AUV system
(1) under the influence of uncertainties and disturbances.
The proposed results are also compared with computed
torque control with PD compensation (CTC-PD) [2]. The
underwater behavior of the AUV in simulation is modeled
by (16), which has three linear and three angular position
states, namely x, y, z and roll ϕ, pitch θ, yaw ψ, respectively.
The model parameters of the AUV are extracted from [27],
and the initial conditions are given in Table I. Reference
trajectories are also given in Table I, which is selected such
that it forms a lemniscate path system scenario. Further, the
controller gain parameters for both the schemes are tabulated
in Table II. The control gain parameters are tuned based on
iterative performance measures while the time delay constant
was selected to be greater than the sampling time.

TABLE I
AUV PARAMETERS

Description Value
Initial position [0.05, 0.4, 0.1,−0.5,−0.1,−0.4]
Initial velocity [0, 0, 0, 0, 0, 0]

Ref. trajectory qr =


0.4(sin(0.3t))
0.6(sin(0.6t))
0.3(sin(0.6t))
0.2(sin(0.5t))
0.3(sin(0.4t))
0.4(sin(0.7t))



TABLE II
CONTROL PARAMETERS

Schemes Parameters
TDE (16) KD = 12, KP = 18, γ = 1× 10−3s
CTC-PD Kv = 30, Kp = 20

To ensure the resilience of the proposed control scheme
against system uncertainties and disturbances, the nominal
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parameters of the AUV are selected as 80% of the true
values. Further, the external disturbance is considered as
d = −0.3ẋ − 0.3sign(x) + 0.3 sin(0.3t), where x ∈ R6

is the system states [30].

A. Simulation Results Discussion

The simulation performance of the proposed strategy and
the comparative scheme are shown in Fig 2–6. Figure 2
presents the 3-dimensional trajectory tracking response in
x-y-z plane for both control techniques. It can be observed
from this 3-dimensional plot that the proposed TDE scheme
tracks the lemniscate reference path more effectively than
the CTC-PD scheme. The above observation can easily
be realized through tracking error responses, which are
illustrated in Fig. 3 and Fig. 4. The linear relative error
response [q̃1, q̃2, q̃3]

T in Fig. 3 for the proposed scheme
shows that its convergence rate is faster with a better steady-
state response. On the other hand, Fig. 4 depicts the linear
error response under the comparative scheme that shows
unsatisfactory results during both transient and steady-state
periods. The wider residual bound of [q̃1, q̃2, q̃3]T in Fig. 4
is because the disturbances are not nullified effectively.

Similarly, the angular position error response [q̃4, q̃5, q̃6]
T

are presented in Fig. 5 and Fig. 6. The angular trajectory
tracking performance under the proposed algorithm achieves
a better convergence time with a decent steady-state precision
than [2]. Further, from the error performance in Fig. 5,
the controller (16) has adequate resilience towards unknown
external disturbances and parametric uncertainties because
there are negligible deviations in the steady state, as com-
pared to Fig. 6. It is also evident that the proposed control
method transient response and their performance measure
is also illustrated in Table III, which depicts the excellence
of the designed scheme over [2] in terms of settling time
and residual bound. The convergence time of the position
tracking error is lesser, and the residual bound is also
narrower under the proposed methodology.

TABLE III
PERFORMANCE COMPARISON

Measures TDE CTC-PD
Convergence time (s) 7.86 12.16
Linear residual bound 5.99× 10−4 6.6× 10−3

Angular residual bound 2.53× 10−4 7.79× 10−4

VI. CONCLUSION

This work investigated the application of time delay-based
estimation control to improve the bio-inspired AUV locomo-
tive motion under unknown uncertainties. The Lyapunov sta-
bility theory establishes the UUB convergence of the closed-
loop system. The proposed controller ability is investigated
by tracking the joint position and velocity. The simulation
results demonstrated that it effectively tracks the reference
trajectories of different magnitudes and frequencies. Further,
the resilience of the proposed algorithm is also tested under
uncertain parameters and unknown time-varying disturbance
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Fig. 6. Angular error response under CTC-PD scheme.

values. The proposed methodology exhibits a substantially
improved performance than the CTC-PD algorithm.
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