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Abstract—Currently, numerous single-track railway lines are
disused due to economic reasons. However, one way they could be
reactivated for a bidirectional on-demand service traffic by small
vehicles that use only one rail. MONOCABs are such small cabin-
like vehicles, stabilized by a system of control moment gyroscopes
and a trim mass. They could make an important contribution to
improve the mobility offer especially in rural areas. Regarding
the MONOCAB, there is currently no reference in comparison
with other vehicles. It is mandatory to gain experience before
transferring such a new vehicle concept into commercial op-
eration. Especially the safe and robust commissioning of the
stabilization control system is crucial and therefore requires an
elaborated procedure. At this step, parameters related to the
vertical dynamics have to be determined beforehand. This paper
presents a comparative investigation of methods to estimate the
moment of inertia and gravitational torque constant. Multiple
methods in time-domain and frequency-domain are experimen-
tally evaluated and compared with each other. Experimental tests
are carried out with a full-scale monorail vehicle.

Index Terms—Parameter identification, Vehicle dynamics,
Control moment gyroscope, Roll stabilization, Monorail vehicles

I. INTRODUCTION

The expansion and renovation of existing railway lines
are essential parts to make transport policies more climate
friendly. This also includes the reactivation of disused single-
track sections. In Germany, the total length of such disused
tracks is about 5000 km. An appropriate reactivation concept
could be based on small autonomously driving monorail
vehicles - MONOCABs. MONOCABs are narrow vehicles
which use one rail only. This vehicle enables a demand ori-
ented bidirectional traffic on conventional single-track routes
without causing high personnel and investment costs. By
using MONOCABs, a flexible and economically as well as
ecologically efficient connection from rural areas to medium-
sized centers could be established, for example. The research
project MONOCAB OWL aims to prove the feasibility of the
MONOCAB concept. Two full-scale experimental vehicles are
developed, constructed and finally tested on a real disused
track.

MONOCABs are intended to use conventional railways
without an additional mechanical support. This requires that
the vehicle stabilizes itself on the rail by control moment
gyroscopes (CMGs). Such kind of gyro stabilized vehicles
were firstly developed by Louis Brennan who successfully

demonstrated a monorail vehicle with a weight of 22 tonnes,
[1]. Other gyro-stabilized vehicles have been developed at
about the same time, [2], [3]. However, a commercial imple-
mentation did not occur presumably due to technical problems
(e.g. lack of fail-safe behavior) and a lack of appropriate
commercial applications in the time of early mass mobility.

Beside the previous mentioned monorail vehicles, similar
stabilization and motion control techniques are also discussed
in aerospace applications [4], boats and yachts [5], motor-
and bicycles [6]–[11] as well as for medical purposes [12]. A
comprehensive review of stabilization applications (land, sea
and spacecraft) and techniques as well as modeling and control
strategies can be found in [9] and [13]. Different solutions
for the stabilization and control of such vehicles have been
investigated. However, the combination of CMGs with a trim
mass is of particular interest in this project which has not been
discussed to full extent in literature.

The system and control design of stabilization systems
is a complex task. A well-known approach is the model-
based design which allows analytical calculations as well as
numerical simulations. However, in case of sensitive controller
or unkown model parameters an elaborated commissioning
concept is important. The contribution of this paper is the
presentation and comparison of parameter identification proce-
dures as part of the commissioning process of the MONOCAB
stabilization system. Model parameters especially mechanical
properties such as masses and inertias can usually only be
roughly estimated, e.g. from CAD data. By experimental iden-
tification methods, parameter values can be estimated more
precisely. The paper is structured as follows: An overview on
the stabilization system and controller is given in section II.
Section III describes the identification procedures which are
experimentally investigated and compared to each other in
section IV.

II. SYSTEM OVERVIEW AND MODELING

As mentioned above, the MONOCAB needs a stabilization
system to control the rolling motion. A combination of multi-
ple systems is required as illustrated by figure 1a). Figure 1b)
describes the mechanical quantities which are further on used.

The primary system consists of control moment gyroscopes
(CMGs) that provide the basic vertical stabilization and com-
pensate dynamic disturbances. A CMG consists of a flywheel
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Fig. 1. Schematic representation of the stabilization system.

in a gimbal rotating at a high spinning speed ωG,y . The
relevant angular momentum of each flywheel is described by
L = IG,yy ·ωG,y . The gimbal allows a precession motion as an
additional rotational degree of freedom, further on described
by the angle θ. In order to control this motion, an inverter-
fed electrical drive is considered. The actuation torque TG,z
yields an acceleration of the gimbal (inertia IG,zz) with respect
to their vertical axis z. Due to the fact that the precession
torque of CMGs is proportional to the precession speed and
limited to the range −90◦ < θ < 90◦, they are not capable
of compensating stationary disturbances. For this purpose, a
trim mass mM can be actively moved by an inverter-fed
motor (force FM,y) in lateral direction (y) of the vehicle.
The lateral displacement yM yields a desired gravitational
torque to compensate stationary disturbances. This is further
on named as stationary stabilization system. For parking and in
case of emergencies, the MONOCAB has mechanical support
systems that allows the vehicle to rest on the track bed. This
is named as tertiary stabilization system. More details about
the stabilization concept can be found in [14].

For simulation and control design, we derived a physical-
based model of the vertical dynamics of the MONOCAB via
the Lagrangian approach, [15]. The model is nonlinear and
mainly used for detailed simulations. Considering an active
stabilization system, a linearization of the model is reasonable,
as the roll angle ϕ remains in valid operation range. In our
previous work [15], [16], a detailed comparison between linear
and non-linear model was performed and it was shown that in
realistic operating points the differences between both models
are very small and negligible. Therefore in this paper the linear
model is further on used for parameter identification without
losing accuracy.

Underlying the stabilization control, a speed control for both
actuators is implemented. The resulting state-space model (ẋ =

A·x+B·u, y = C·x) with x =
[
ϕ ϕ̇ yM ẏM θ θ̇

]T
,

u =
[
ẏ∗M θ̇∗

]T
and y =

[
ϕ θ

]T
is described by the

matrices in (1). Here, ĨV,xx, mV and zV < 0 are the inertia,
mass and center of gravity (height) of the total vehicle and τσ,G
as well as τσ,M are the total sum of the small time constants
considering the speed controls of the CMGs and trim mass.
The quantities ẏ∗M and θ̇∗ are the set-point values for the speed
control the trim mass and CMGs.

A =



0 1 0 0 0 0
−mV ·zV ·g
ĨV,xx

0 mm·g
ĨV,xx

−zM ·mM
4·τσ,M ·ĨV,xx

0 L
ĨV,xx

0 0 0 1 0 0
0 0 0 −1

4·τσ,M 0 0

0 0 0 0 0 1
0 0 0 0 0 −1

4·τσ,G



B =



0 0
zM ·mM

4·τσ,M ·ĨV,xx
0

0 0
1

4·τσ,M 0

0 0
0 1

4·τσ,G


C =

[
1 0 0 0 0 0
0 0 0 0 1 0

]
(1)

By analytical calculations considering a limited dynamic of
the speed control of the CMGs, it can be shown that the
relevant inertia of the roll motion ĨV,xx is higher than the
real mechanical inertia IV,xx of the system. This occurs due
to the physical coupling between the precession motion of the
CMGs and the roll motion of the vehicle. Depending on the
dynamic of the speed control (τσ,G), the relevant inertia can
be evaluated by ĨV,xx ≈ IV,xx + 8 · τ2σ,G · L2/IG,zz . In the
ideal case (τσ,G = 0), the real mechanical inertia is obtained.

Based on the plant model in (1), a state feedback control
is designed as linear quadratic integral regulators (LQI) to
provide the nominal stabilization function. This variant uses
both actuators and is described in a previous paper [16].

However, in order to provide a suitable test signal for
parameter identification and first commissioning, experiences
on the real system have shown that a simpler control concept
with less parameters is useful. Assuming that the trim mass is
fixed in its neutral position meaning the vehicle is statically
balanced at ϕ = 0◦, the trim mass can be analytically removed
out of the plant model in (1). Without the trim mass, the
controllability of the precession angle θ is not fulfilled. This
state can be simplified removed, because no feedback of θ
is included in the full linear model. The reduced model is
described by ˙xR = AR · xR + BR · uR, yR = CR · xR with
xR =

[
ϕ ϕ̇ θ̇

]T
, uR = θ̇∗, yR = ϕ and (2).

AR =

 0 1 0
−mV ·zV ·g
ĨV,xx

0 L
ĨV,xx

0 0 −1
4·τσ,G


BR =

 0
0
1

4·τσ,G

CR =
[
1 0 0

] (2)

A state feedback control designed as linear quadratic inte-
gral regulators (LQI) is developed based on this reduced plant
model (2) similar to the nominal stabilization controller, see
[16]. Compared to the full model and control, this variant is
of significant lower order and has less parameters. Hence, it is
more suitable for parameter identifications and first commis-
sioning steps. However, it is not usable for a nominal operation
of the vehicle due to the fact that the precession angle θ of the
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CMGs is not controlled. Low stationary disturbances cause a
slow drift of the gyro precession until mechanical limits or
θ = 90◦ is reached.

The mechanical parameters in (1) and (2) which are un-
known and need to be identified are the inertia IV,xx, the total
vehicle mass mV and the center of gravity (height) zV . Using
the speed controlled CMGs, the system can be excited and the
unknown parameters can be estimated. Due to the fact that
the precession speed θ̇ is approximately proportional to the
precession torque TG,x, a simple relationship can be derived
from (2) as described by the following transfer function:

G(s) =
ϕ(s)

TG,x(s)
=

1

IV,xx · s2 − TV
, (3)

where TG,x is defined as TG,x = L · θ̇ and TV describes the
gravitational torque and is defined as TV = mV · zV · g. The
individual parameters (mV , zV ) shall not be estimated as only
the gravitational torque as summarized parameter is relevant
for the control design.

III. IDENTIFICATION PROCEDURES

A. Time domain - Minimization of the output error

This section discusses identification via nonlinear optimiza-
tion of the output error which is perhaps the most obvious
possibility in the time domain, especially with the computers
available today that provide methods for nonlinear optimiza-
tion and also have sufficient computing power [17].

All methods for parameter estimation require suitable test
data, in particular an excitation of the relevant variables. The
following test procedure was used for the methods in time
domain: The vehicle rests on the tertiary stabilization (see
section II) in a slightly tilted position with maximum roll angle
ϕ = 4◦. Then a step-wise change of the precession speed θ̇
respectively torque TG,x is applied until the vehicle reaches
its vertical position (ϕ = 0◦).
On the one hand, the roll angle ϕ̂(t) can be simulated
considering the existing model (3), on the other hand, it can
be estimated using the sensor data and the Kalman filter ϕ̃(t),
[18]. By this method, the parameter vector is adjusted so
that the deviation between the estimated output and simulated
output ẽ(t) = ϕ̃(t)−ϕ̂(t) is minimized. For a minimum square
distance, this corresponds to the performance function

P (ρ) =

N−1∑
k=0

(ϕ̂(tk, ρ)− ϕ̃(t))2, (4)

where N is the number of measurement points.
The simplex search method of Lagarias et al. [19] is applied as
optimization algorithm to minimize the defined performance
function and estimate the parameter vector ρ

ρ̂ = arg min︸︷︷︸
ρ

P (ρ). (5)

In general, it cannot be guaranteed that such numerical meth-
ods will find a global optimum in a non-linear optimization
problem. We assume that the existing problem is convex due

to the fact that an equal parameter vector was estimated by an
empirical variation of the initial parameter values.

B. Time domain - Least squares method

To apply the linear LS method, the relationship must be
written in a linear form with respect to the parameters [17]. For
each of the 2 parameters, there is an input variable, denoted
here as ψj,k, where j = 1, 2 and k = 1, · · · , N and N is the
number of measurement points. It is therefore necessary to
distinguish between the physical inputs TG,x,k and the input
variables ψj,k of the LS problem. It is also useful to distinguish
between the physical output and the output variable yk of the
LS problem.
Therefore, the considered relationship can be expressed in the
form yk = θ1ψ1,k + θ2ψ2,k. Considering (3) in time domain,
the input variables and the parameters are summarized to an
input vector and a parameter vector, respectively

ψψψTk =
[
ψ1,k ψ2,k

]
=
[

¨̃ϕk −ϕ̃k
]

(6)

θθθ =
[
θ1 θ2

]T
=
[
IV,xx TV

]T
The output vector of the LS problem is equal to physical

input vector yk = TG,x,k = ψψψTk θθθ. To solve the LS problem, the
same input and measurement data are used as in section III-A,
but ¨̃ϕk is not measurable and since ˙̃ϕk is noisy, its derivative
easily covers the actual useful signal. Therefore, an approach
that provides some filtering is necessary.
In this case a state variable filter is used. The idea of the state
variable filter is based on the use of a filter like Butterwoth
with angular frequency ω represented in the form[

¨̃ϕF
ϕ̃
(3)
F

]
=

[
0 1

−ω2 −
√

2ω

] [
˙̃ϕF
¨̃ϕF

]
+

[
0
ω2

]
˙̃ϕ

¨̃ϕF =
[
0 1

] [ ˙̃ϕF
¨̃ϕF

]
, (7)

where ˙̃ϕ is the filter input and ˙̃ϕF is the filter output. In this
form the second filter state corresponds to the first derivative
˙̃ϕF of the filtered signal.

After this filtering, the input vector can be actualized and the
parameter vector can be estimated based on the LS problem
θ̂θθ = (ΨΨΨTΨΨΨ)

−1
ΨΨΨTθθθyyy. By using this method, it is assumed

that the input and output of LS problem can be measured
accurately.

C. Frequency domain - Minimization of the output error

This section and the following describes procedures which
uses the frequency response of the system. As basis for both
algorithms, the numerical frequency response of the system
(3) need to be experimentally estimated [17]. In order to
excite the system in the relevant vertical position (ϕ = 0◦),
a test signal can be superimposed during active stabilization
control (see section II). Compared to the previous time domain
methods, these procedures are more complex and require a
proper stabilization control system. In this contribution, these
methods are included for comparison and validation but may
not be practical in a real application.
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However, there are two variants conceivable as test exci-
tation. First, a sine sweep can be implemented as an offset
to the set value of the stabilization control (roll angle ϕ).
Especially the lower frequency range and therefore the effect
of the graviational torque can be estimated well but the
frequency range that can be determined is limited due to the
controller dynamics. As second variant, an excitation could
be implemented as an offset to the control output θ̇∗. This
allows an excitation of a higher frequency range, but the lower
frequency range is not estimated reliably due to the fact that
the superimposed control dampens the vehicle movement.

In this contribution, we use the first variant and choose
a sine sweep with frequencies between 0 and 10 Hz. The
bandwidth of the overall stabilization control is limited to
about 8 Hz. Therefore, an excitation with a higher frequency
is not reasonable. The recorded measurement data is analyzed
offline by the method of Welch [20] in order to estimate
the frequency response G̃(jω). The captured data is divided
into K subsequences and afterwards transferred into frequency
domain using Hanning windows. The estimated transfer func-
tion is obtained by the division of the cross- and auto power
spectral densities S̃Wxy (jω) resp. S̃Wxx (jω) by

G̃ (jω) =
S̃Wxy (jω)

S̃Wxx (jω)
=

K∑
i=1

S̃xy,i (jω)

K∑
i=1

S̃xx,i (jω)

(8)

in which the spectral densities S̃xy (jω) and S̃xx (jω)
are calculated by FFT from the corresponding correlation
functions. In this application, the estimated precession torque
TG,x serves as input x(t) while the measured roll angle ϕ
is chosen as output y(t). By comparing the numerical results
(G̃(jωl)) with the modeled behavior (Ĝ(jωl, ρ)), the unknown
parameters ρ can be estimated. In this paper only the ampli-
tude responses are considered for the following performance
function

P (ρ) =

N∑
l=1

(∣∣∣Ĝ(jωl, ρ)
∣∣∣− ∣∣∣G̃(jωl)

∣∣∣)2, (9)

where N is the number of estimated frequency points. Similar
to section III-A, the simplex search method is applied.

D. Frequency domain - Minimization of the equation error
Based on the frequency domain data (see previous subsec-

tion), a further method is conceivable for this application [21].
For this purpose, (3) is used and reparameterized with n0 and
d2 and the frequency response is given in the following form

Ĝ(ω) =
1

IV,xx(jω)
2 − TV

=
n0

d2(jω)
2

+ 1
=
N̂(jω)

D̂(jω)
. (10)

From modeled frequency response (10) and measured fre-
quency response G̃(jωl), equation error is given as follows

êl = G̃(jωl)− ((1− D̂(jωl))G̃(jωl) + N̂(jωl))︸ ︷︷ ︸
G̃′(jωl)

, (11)

where l = 1, · · · , N and N is the number of measurement
points. The goal is to minimize the sum of the squared errors,
where a weight wl is also provided for the individual errors.
It applies |êl|2 = êlê

∗
l , where ê∗l denotes the conjugate

complex value of êl. This further gives êl = êR,l + jêI,l with
real values êR,l and êI,l and the performance function can also
be written as

P =

N∑
l=1

ωl(ê
2
R,l + ê2I,l) = êTWê, (12)

2N equations are obtained, but no further complex variables
appear. With the frequency response (10), the equation error
(11) can be specified as

êl = G̃(ωl) + d̂2G̃(ωl)(jωl)
2 − n̂0

= yl −ψψψTl θ̂θθ,

where yl = G̃(ωl) is the output, ψψψTl =
[
−G̃(ωl)(jωl)

2
1
]

is
the input, and θ̂θθ =

[
d2 n0

]T
is parameter vector of this LS

problem.
The error êl is separated into real and imaginary part and con-
sequently the solution of the described weighted LS problem
is θ̂θθ = (ΨΨΨTWWWΨΨΨ)

−1
ΨΨΨTWWWyyy. The relative uncertainty increases

with increasing frequency, and errors belonging to higher
frequencies are much more strongly included in the total error
due to the exponentiations of the frequency in the input vector.
To counteract this effect, the inverse of the squared relative
error are used as weights:

wl =


∣∣∣G̃(ωl)

∣∣∣∣∣∣∆G̃(ωl)
∣∣∣
2

. (13)

IV. EXPERIMENTAL SETUP AND RESULTS

In order to gain experience with the described identification
procedures, an experimental test setup was realized and mea-
surements were conducted. A first version of the MONOCAB
as experimental vehicle has been realized in full scale where
figure 2a) shows a CAD drawing of the technical substructure
on which the passenger cabin is mounted. The substructure is
based on a simple steel frame structure in which all required
technical components (supply, communication, driving and
stabilization systems) are installed.

As CMGs, two modified gyros MC² X5 DC of QUICK
SPA provide a total angular momentum of L ≈ 3300Nms.
The actuator concept for the precession movement is self
developed and consists mainly of an inverter-fed bevel gear
motor with a chain drive. The trim mass has a total weight of
about mM ≈ 500kg and is realized in a compact design via
lead plates. The actuator concept for the trim mass is based
on a ball screw drive and an inverter-fed motor. The vertical
stabilization requires a measurement of the roll angle ϕ of the
vehicle. For this purpose, the inertial measurement unit LPMS-
IG1 of LP-RESEARCH provide raw data from its internal
acceleration and gyro sensors. The roll angle ϕ is dynamically
correct estimated by an implemented kalman filter, [16].
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Fig. 2. Experimental test setup (a) and schematic diagram of the controlling and data capturing system (b).

The overall concept for controlling and data capturing is
shown in figure 2b). As inverters for the stabilization actuators,
we use servo amplifiers COMBIVERT S6 of KEB. For both
actuators, first of all a speed control is implemented and
commissioned using the inverters. The stabilization control
concept and test excitation are implemented on the real-
time system MicroAutobox 2 of dSPACE, also used for data
capturing of the measured values. The data communication
between the sensors, inverters and control units is realized via
CAN communication networks. Before this real experiment,
the setup and communication networks have been tested in
offline and Hardware-in-the-Loop simulations, [16]. It was
shown that communication latencies and cycle times do not
have a dominant influence on the control.

The system is actuated with several inputs and, using
the methods described in chapter III, the moment of inertia
and the gravitational moment are estimated from measured
data and presented in figure 3. In figure 3 the estimated
parameters for each individual method are shown with smaller
markings and their mean value with large markings. The mean
values of large markings are shown as reference values with
dashed lines. As can be seen, the standard deviation of the
estimated values in the individual methods is not large, but
except for output minimization error, the deviation from the
reference values must be taken into account in the other 3
methods. Beside these experimental identified parameters, a
first estimation of the mechanical properties was obtained by
CAD calculation, also shown in figure 3. The CAD model does
not include all details of the realized system (e.g. cables and
smaller components) which explains the differences between
the methods. In particular the gravitational torque is lower due
to missing components in the CAD model.
By experimental consideration it is noticed that considered
model in (3) contains a small error and this error was corrected
by adding a static torque. Both methods in time domain are
simply developed with corrected model and results are shown
in figure 3 but in frequency domain due to caused non-linearity
the model cannot be represented in form of transfer function
and therefore this correction in model building is neglected.
This approximation justifies the deviations of the estimated
parameters in the frequency domain.
In time domain the method of output error minimization
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Fig. 3. Comparison between different methods in time and frequency domain.

shows a good result but despite the mentioned correction in
LS method a deviation with reference values is visible. In
section III-B the inputs of LS problem are assumed to be
ideal measurable variables but ¨̃ϕF is derived from ˙̃ϕ by state-
variable filter. When using LS method, it is assumed that five
classical Markov conditions [22] are satisfied. In the derived
¨̃ϕF , however, the superimposed noise is not zero mean and
therefore Markov conditions are violated and LS method is
no longer consistent.

In order to validate and test the results of the procedures,
the full stabilization control is parameterized using the mean
values (dashed lines in figure 3) and various dynamic and static
disturbances were tested. Figure 4 shows measurement and
simulation results that demonstrate the disturbance response of
the active stabilization control. For the simulation, the linear
model (3) in combination with the same stabilization control
was used. At about 1 second, one person sits on the edge of
the steel frame which is roughly a disturbance of 550 Nm.
For the simulation, the disturbance is modeled as a ramp-wise
change from 0 to 550 Nm. Considering the roll angle ϕ, only
a slight deviation below 0.05◦ can be noticed which confirms
the good parameterization and is verified by the simulation.
The second subplot shows that a precession movement occurs
which compensates the dynamic disturbance. In this scenario,
the angle θ is below 15◦ and thus has a high control reserve.
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Fig. 4. Experimentally measured disturbance response of the stabilization
system.

The trim mass provides the stationary balance which position
is shown in the lower subplot. Here, a significant overshoot
can be noticed at about 4 seconds. This is intended and
necessary for resetting the CMG’s precession angle to θ = 0◦.
Comparing the results of the measurement with the simulation,
slight differences can be noticed. They can be explained by
non-modeled friction effects and delays. The experimental
vehicle is mechanically protected by a safety catch which
unintentionally also introduces friction with respect to the
roll motion of the vehicle. The measurements show a larger
response of the stabilization systems which is plausible for
compensating additional friction torques.

V. CONCLUSION

In this contribution, parameter identification procedures
as part of the commissioning process of a self-stabilizing
monorail vehicle were discussed. The proposed procedures in
time and frequency domain allows the estimation of mechan-
ical parameters that are required for the vertical stabilization
and usually can only be roughly estimated from CAD data.
Especially the presented time domain methods need only a
simple excitation signal and can therefore be easily integrated
into an overall automatic commissioning procedure. The plau-
sibility of estimated parameters was compared, analyzed and
confirmed in various procedures. Further on the parameter
values were used for the control of the real vehicle. Various
dynamic and static disturbances were tested by which the
stability and robustness of the system was confirmed. In further
work the proposed procedures will be experimentally evaluated
with other vehicle configurations (e. g. different cabins).
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