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Image Foreground Segmentation Based on Small Data Set for Visual
Servo Applications
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Abstract—Extraction of features is a key process in image-based
visual servo. However, existing image processing methods are
difficult to segment the target foreground and cannot overcome
distracting factors, such as background and illumination,
resulting in reduced accuracy of feature extraction. Therefore,
target foreground segmentation is a critical problem in
image-based visual servo tasks. In this paper, a method for image
foreground segmentation and visual servo control based on small
data training is proposed. Semantic segmentation is achieved by
training a small number of images. Focusing on the target artefact
region and blurring the background are also achieved to avoid its
influence on feature recognition, especially for industry parts. It is
shown that recognition and segmentation under different lighting
conditions can be obtained, reducing the interference of lighting
on visual servo. Experimental results show that the proposed
method is effective in visual servo control applications.

Index Terms—Feature extraction, foreground segmentation,
small data set, visual servo.

I. INTRODUCTION

Visual servo using machine vision and robots is a common
task in industry applications. According to the usage of
different error signals, visual servo can be classified into
position-based visual servo (PBVS), image-based visual servo
(IBVS), and hybrid visual servo (HVS). The PBVS method
obtains the target geospatial position and motion parameters
by image 3D reconstruction of the target, which can reflect the
target motion in coordinate space more intuitively. However, its
positioning accuracy is highly dependent on the calibration and
attitude estimation accuracy [1]. The HVS method represents
the current error with respect to the desired target by
decoupling the single-response matrix into the corresponding
position and rotation components. Although this method can
improve the stability, it requires online estimation of the depth
of each feature point, which is hard to implement in real time
and also more sensitive to image noise interference [2]. The
IBVS method uses the error of the features in the image as
the control signal, so there is no need to obtain the spatial
location of the target and the computational complexity is
low. However, this method imposes higher requirements on the
avoidance of interferences from background, illumination and
the extraction of target features [3]. Among the three visual
servo methods mentioned above, the IBVS method is more
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widely used. Therefore, attention needs to be paid to extracting
target features more robustly.

Traditional methods of image segmentation and feature
extraction include threshold segmentation, watershed algorithm
[4], edge detection, corner point detection, etc. But they are
more sensitive to noise and require high contrast between target
foreground and background. It is worth noting that the above
methods are all computed with the whole picture and cannot
eliminate the interference of similar features in the background
environment.

With the rise of deep learning, techniques such as
target detection and semantic segmentation are rapidly
developing. Target detection can distinguish targets by
outputting a bounding box, while semantic segmentation
provides pixel-level masks for target objects, adapts to different
shapes and even occluded target objects to improve accuracy.
The GrabCut algorithm [5], improved from the GraphCut
algorithm, could perform foreground segmentation on colour
images. This method requires the user to provide a priori
target box positions, and has difficulty achieving good results
on foreground segmentation of non-visible objects, which is
time-consuming and less robust. From the R-CNN object
detection algorithm proposed by Girshick [6] to the feature
pyramid network FPN [7] proposed by Tsung-Yi Lin based
on Faster RCNN, to the YOLO algorithm [8] to predict the
class probability and bounding box of each grid, the speed and
accuracy of object detection methods have been continuously
improved. From the Olaf Ronneberger team, which improved
on the FCN model and proposed the U-Net method [9], to the
DeepLab family of models [10] proposed by Liang-Chieh Chen
to achieve pyramidal pooling of voids in spatial dimensions
through void convolution, to the Mask R-CNN algorithm [11]
proposed by Kaiming He to predict the segmentation mask in a
pixel-to-pixel manner, major breakthroughs in the accuracy and
fine-grained granularity of semantic segmentation are obtained.

Considering the uniqueness of artifacts in industry, this
paper proposes a target foreground extraction algorithm for
small dataset training by fusing YOLOv7 target detection
algorithm and Mask R-CNN semantic segmentation algorithm.
The accuracy and robustness of target foreground extraction
can be improved, and the interference of background and
illumination on target feature extraction can be avoided while
reducing the labeling cost of datasets. Based on the above target
foreground extraction results, the workpiece features are then
extracted by methods such as Hough transform linear detection
and used as input in a BP neural network. The output of the
corresponding control rate can be realized in visual servo task,
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which can accelerate the visual servo process and improve the
servo accuracy by pre-training.

The main contributions of this paper are: 1. For the loss
function in YOLOV7, Focal-EIOU calculation is used instead
of CIOU to improve the target box recognition accuracy; 2.
Feature comparator algorithm is designed to realize target
foreground segmentation and enhance the robustness of feature
extraction 3. Combining BP neural network for servo control
to speed up the visual servo process and improve the servo
accuracy.

The rest of the paper is organized as follows. Section
IT presents the related problems and the overall framework.
Section III elaborates the fused target foreground segmentation
algorithm and visual servo control method. Experimental
results and comparisons are given in Section IV. Section V
concludes and outlooks the paper.

II. PROBLEM STATEMENT AND OVERALL FRAMEWORK
A. Problem Statement

Sheet metal stampings are common workpieces in the
automotive industry, and its servo task using 2D industrial
cameras requires the extraction of features of the target
object. When extracting features using methods such as Hough
detection, the robustness is poor, susceptible to interference
from lighting factors and difficult to distinguish target features
from complex backgrounds. However, current deep learning
methods require manual annotation of large datasets for special
objects, which is costly and difficult to extend. Considering that
the YOLO algorithm can effectively avoid background errors
and generate false positives, while the Mask R-CNN algorithm
can provide pixel-level masks. Therefore, it is interesting to
see how to achieve better target foreground segmentation by
training on small data images and fusing the results of both
methods.

B. Overall Framework

The basic framework structure of the proposed small data
training based image foreground segmentation and servo
control method is shown in Figure 1. Firstly, the images are
passed through Mask R-CNN network and YOLOv7 network
respectively to obtain Semantic Pixel and Identification Box.
The standard mask of the Feature Mask is then input to the
Feature Comparator and rotated to obtain the corresponding
minimum target box. The minimum target box is then
compared with the Identification Box size and fed back to
the Feature Comparator, and when its overlap region is the
largest, the output information from the Feature Comparator
is used as the Segmentation Region as the pose feature. Then,
combined with the position information of Semantic Pixel, the
orientation features are output through Feature Comparator and
the uniquely determined Feature Mask is applied directly to the
image to generate Segmentation Region. finally, the obtained
target foreground segmentation map is used for Hough straight
line detection, extracting slope, Centre point and other features
are used as input in the BP neural network to obtain the control
rate and achieve visual servo.

Semantlc Feature Segmentation
Pixel .
Comparator —| Region
i Commends

Robot

‘ Feature Mask J

Identificat
ion Box
YOLOv7
Target Detection

Mask R-CNN
—, Semantic Segmentation -

---> Feedback
> Direct Action

Fig. 1. Overall framework of the foreground segmentation and visual servo
method. The blue pentagon is semantic segmentation and the red quadrilateral
is target detection, the long dashed line indicates that the results of both are
compared with the manual annotation mask, and the short dashed line indicates
that the processing results are applied to the image as a region of semantic
segmentation.

III. THE PROPOSED METHOD

A. Loss function Focal-EIOU

The first stage of Mask R-CNN proposes the candidate target
bounding box through Region Proposal Network (RPN), then
goes through RolAlign layer, reduces the pixel error using
bilinear interpolation algorithm, and generates a fixed size
Feature Map, and finally regresses using fully connected layer
with the loss function L = L5 + Lpox + Limask, Where L.
denotes the classification loss, L., denotes the detection box
loss, and L,, 45 denotes the average binary cross-entropy loss.
However, when the training data set is small or the background
interference is large, the Rol region recognition error is large
and there is incomplete semantic segmentation.

Meanwhile, considering the advantages of YOLO algorithm
with fast speed and less background misdetection, the loss
function CIOU of YOLOV7 is improved with Focal-EIOU to
achieve more accurate center point recognition. The recognized
target Box is then replaced with the target Box in Mask R-CNN
and used as fused features to be input to the next stage of
feature comparator.

The loss function CIOU currently used by YOLOv7 takes
into account three important factors: overlap area, center point
distance and aspect ratio. By giving a prediction box B and a
target box B9, the CIOU loss is defined as follows.

p* (b,b%")

LCIOU =1-10U + 2 + av (1)

where b and b9 denote the center points of B and
B9, respectively. p(-) = ||b—b9"||, denotes the Euclidean
distance between the center points. ¢ denotes the diagonal
length of the smallest closed box covering both boxes.v =

4 w9t w _ v
— (arctan Jat — arctan F) and o = =00 denote the

difference in the measured aspect ratio.
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Fig. 2. Map of the fusion algorithm between Mask R-CNN and YOLOv7. CNN is the semantic segmentation network architecture and GoogLeNet is the
target detection network architecture. The target box of Mask R-CNN is replaced with the target box of YOLOv7, and the features are combined and output

as fused features to be fed into the feature comparator.

The gradient of v, which is with respect to w and h, is
calculated as follows.

Ov 8 w9t w h

% = ﬁ <arctan W — arctan h) * m

Ov 8 w9t w w @)
% = fﬁ (arctan W — arctan h> * m

Although the CIOU method incases the loss of detection
box scale and the loss of length and width, which increases
the accuracy of the prediction box to some extent, it uses
relative values to describe the aspect ratio, which is fuzzy,
and does not consider the balance problem of difficult and
easy samples. And EIOU is based on the advantages of CIOU,
which calculates the difference value of width and height
separately and replaces the aspect ratio, and also solves the
balance problem of difficult and easy samples by introducing
Focal Loss. the loss function calculation of EIOU is defined
as follows.

Lgiou = Liou + Lais + Lasp
7 (00%)
(we)? 4 (he)?

(.07

(we)®

p* (b h*")
(he)?

3)

=1-10U +

where w® and h¢ are the width and height of the minimum
enclosing box covering these two boxes. EIOU retains the
beneficial feature part of the CIOU loss and divides the loss
function into IOU loss Loy, distinct loss Lg;s and aspect loss
Losp.

Considering the regression quality gradient, Focal Loss is
introduced to distinguish high quality anchor boxes from low
quality anchor boxes with the following equation.

LFocal—ElOU = IOU’YLEIOU (4)

where JOU = |ANB|/|AU B, « is the parameter controlling
the degree of outlier suppression, and the value is taken as 1/2
in this paper. The accuracy of target detection is improved by
modifying the calculation method of YOLOV7 loss function,
and the extracted target box is replaced with the Rol detection
box in Mask R-CNN to achieve feature fusion.

B. Feature comparator design

The structure of the fusion algorithm proposed in this paper
is shown in Fig. 2. By rotating the manual labeling mask
by different angles to obtain different minimum enclosing
rectangles p. Define the coordinates of the top left corner
vertex M of the enclosing rectangle as (z1,y1) and the
coordinates of the bottom right corner vertex N as (x2,¥y2),
then, the corresponding aspect ratio § can be calculated from
the coordinates of M and N. Similarly, the coordinates of
the top left corner vertex M’ of the YOLOvV7 target box p as
(2!,v}) and the coordinates of the lower right vertex N’ as
(24, v5), the corresponding aspect ratio ¢’ can be calculated

from the coordinates of M’ and N'.
)= L2-% (o3
To—x B
R )
5/ — Y27Y1 __ ol
xh—x) B’

where a and o’ denote the height of the enclosing box; 4 and
B’ denote the length of the enclosing box.

To calculate the repetition of the minimum enclosing box
1 and the YOLOV7 target box p, the discrepancy function is
defined as follows.

2

o= 1=+ [ D (@ =) + - )

=1

(6)

Based on the calculated discrepancy function o, the rotation
angle 6 can be determined so that its discrepancy function
o is minimized. It should be noted that the same minimum
enclosing box covers two corresponding rotation angles 6, as
shown in the following equation:

0, =06
Oo=7+0

The unique angle 6 is then determined based on the overlap
IOU of the pixel mask obtained from Mask R-CNN in the cases
of 01 and 69, respectively. The Feature Comparator Design
Process is shown below.

(N
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Algorithm 1 Feature Comparator Design Process

Input: Rotation 6(61,...,0x); Mask R-CNN pixels; Desired
box center; Minimum Box (b1, ...,bx); IoU (I1,...,In).

Output: Mask (0, center).

1: Initializing: Mask(pizels, 0, center) < &

2: Mask(pizels) < Mask label

3: for i =1 to 360 do

4 (lh,...,IN) < Minimum enclosing rectangle

5: if 0 min then

6

7

8

9

Mask(é) < Parameter 0 is derived Sfrom (7)
end if
: end for
: Mask (@) <— Mask R-CNN pixels IOU
0: Mask (center) < Desired box center

C. Visual servo control

The image based visual servo control error expression is
e(t) = s(m(t),a) — s ®)

where m(t) is the image data obtained by the camera, and
a is additional information about the system such as camera
internal parameters. m(t) and a compute the resulting s called
visual features, which is a series of feature values that can
be extracted quantitatively, and s* is the target value of these
visual feature quantities.

The difference between different visual servo methods is
mainly reflected in the different target feature s extraction.
Based on the selected image features s, a velocity controller
can be designed to control the movement of the robotic
arm, and let the instantaneous velocity of the camera in the
camera coordinate system be V. = (v.,w.), where v, is the
instantaneous linear velocity in the camera coordinate system
and w, is the instantaneous angular velocity in the camera
coordinate system. Then the rate of change of the image
features with time $ is related to the camera velocity V. as

$=LgV. 9

where Lg € R5** is the image Jacobi matrix. Substituting Eq.
(9) into Eq. (8) yields.

e=1L1V, (10

where L. = Lg,considering V. as the input of the robot arm
velocity control, the control equation of the visual servo can
be obtained by inverse of Jacobi in Eq. (10).

Vo = —ALTe (11)

The above equation is the visual servo control equation for
six degrees of freedom. However, considering that the three
degrees of freedom RX, RY and Z are already fixed when the
servo is corrected, the image-based visual servo control can be
trained using BP neural network to speed up the servo in real
time.

The extracted feature data and the corresponding robotic arm
parameters are normalized as test data and used as the input and

output of the BP neural network for training. Then the feature
data to be predicted is used as input, and the trained network
is used for prediction and inverse normalization, at which time
the obtained robotic arm parameters are the control parameters
for servo deflection.

IV. EXPERIMENT

A. Data labeling and parameters

A

Original Drawing

YOLOV7 Label

Mask R-CNN Label

Fig. 3. Data set label. The original drawing classifies the datasets into dark,
medium and strong according to the background illumination intensity.

In this section, we adopt a total of 126 images containing
strong, medium and dark background illumination intensity,
which are divided into 75 training sets, 25 validation sets and
26 test sets. The number of training rounds is 50, and the
number of batch-size is 8. The data sets are labeled with Mask
R-CNN semantic segmentation and YOLOV7 target detection
regions according to contour points and minimum enclosing
rectangle, as shown in Fig. 3.

B. Achieving results

The training loss for semantic segmentation and target
detection is shown in Fig. 4(a), and the verification loss
for semantic segmentation and target detection is shown in
Fig. 4(b). After 50 epochs, the training loss value of Mask
R-CNN dropped rapidly from 2.54 to stabilize around 0.08;
the training loss value obtained using the CIOU calculation
method in YOLOv7 dropped from 0.067 to 0.024, and the
training loss value obtained using the Focal-EIOU calculation
method dropped from 0.066 to 0.025. Both YOLOvV7 target
recognition methods are basically the same in terms of loss
values on the training dataset.

Similarly, after 50 epochs, the validation loss value of Mask
R-CNN gradually decreases from 0.85 to around 0.07; the
validation loss value obtained using the CIOU calculation
method in YOLOV7 decreases from 0.077 to 0.031, and
the validation loss value obtained using the Focal-EIOU
calculation method decreases from 0.076 to 0.028. Fig. 4(b)
shows that the validation loss values for the Focal-EIOU
method are consistently smaller than those for the CIOU
method and have a maximum difference of 0.0237.
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Due to the small validation dataset, the CIOU method suffers
from an increasing loss value during the validation process,
which decreases further as the number of validation rounds
increases. In contrast to the Focal-EIOU method, the degree
of overfitting is reduced considering that it focuses on a
more comprehensive set of features. Both of these methods
eventually converge gradually and the latter has a lower value
of validation loss.
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Fig. 4. Target detection and semantic segmentation loss map. The loss values
for Mask R-CNN are referenced to the left scale values in the figure.The loss
values for YOLOv_CIOU and YOLOv_Focal-EIOU are referenced to the right
scale values in the figure.

The images with different lighting backgrounds are divided
into weak, medium and strong categories, and the foreground
extraction is performed using the algorithm in this paper,
respectively, as shown in the fourth column in Fig. 5.
Comparing the original image and the processed image, it can
be seen that the background is blurred and the sharpness of the
foreground target is retained, and the separation and extraction
of the foreground target under different lighting backgrounds
is achieved.

The ablation experimental results are shown in Table I.
When using the original image for straight line detection,

(a)

(b)

(c)

(d)

(e)

Mask Box

Foreground
extraction

Original

drawing diagram diagram

Fig. 5. Comparison of the effect of foreground target extraction. Red area in
Mask diagram is the semantic segmentation result, red rectangular box in Box
diagram is the target detection result, foreground extraction is the result of the
target foreground segmentation algorithm in this paper.

hundreds of line segments are recognized coexist due to
the interference in the background, and it is difficult to
extract straight lines from the target edges; if only the Mask
R-CNN semantic segmentation region is used as the foreground
extraction area, the IOU ratio is about 10%, where IOU =
|ANB|/|AUB|, and A denotes the algorithm recognition region
and B denotes the actual target region. After combining Mask
R-CNN with YOLOv7, the IOU recognition accuracy can be
significantly improved, and the edge line segment of the target
can be accurately recognized at the same time.

TABLE I
COMPARISON TABLE OF ABLATION EXPERIMENTS.

Mask YOLOV7- YOLOV7-

10U Lines
R-CNN CIOU Focal-EIOU

— —_ —_ Nan 150~700
Vv — — 5%~11.7% 0
— v — 47%~86% 24
— — Vv 49%~88% 2~4
Vv vV — 92%~97% 1~2
v — Vv 95%~99% 1~2

The data of X, Y and RZ degrees of freedom are trained by
BP neural network, and then 30 test images are inputed, and
the results are shown in Fig. 6. The robot arm movement range
of X axis output is within 28 and 75 pixels. The robot arm
movement range of Y axis output is within 807 and 882 pixels.
The movement range of the robot arm output by RZ axis is
within 2.58 and 3.68 rad. The accumulated movement error
in the direction of the X and Y axes is within £3.5 pixels,
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which corresponds to the actual error of £0.2mm for X-axis;
40.5mm for Y-axis; the deviation of rotation angle is between
40.008 rad, which corresponds to the actual angle deviation
of +0.46°.

Visual servo output results and error analysis
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Fig. 6. Visual servo output results and error analysis. The target and actual
values for the X and Y axes refer to the scale values on the left side of the
graph. the target and actual values for the RZ axis refer to the scale values
on the right side of the graph. the movement errors for the X, Y and RZ axes
refer to the scale values on the right side of the graph.

C. Discussion

From the experimental results, it can be seen that this
algorithm can effectively segment and extract foreground
targets, thus reducing the interference of background
illumination and other factors on foreground target recognition.
In addition, fusing semantic segmentation with target detection
results can circumvent the problem of imprecise segmentation
mask regions due to small sample data training, especially
at the edges of segmented targets, which are prone to
misidentification or overfitting. To the best of our knowledge,
there is no other existing method that can perform fast
foreground target segmentation using small dataset training
following. Although our method currently focuses on servo
correction for three degrees of freedom, it can be extended in
an effective way.

First, most of the parts in industry have a more stable
structure, giving favorable conditions for attaching the standard
mask to the original drawing by manual annotation. When the
workpiece is rotated or moved around the other degrees of
freedom in a small way, the standard masks can be extracted
from each pose mask union of set to minimize unwanted
background interference. However, when the workpiece is
rotated or moved significantly, it will lead to the failure of
the mask coverage area. In this case, the standard mask under
different postures can be marked, and the corresponding mask
can be called for different postures such as front view and
side view. Second, the semantic segmentation under small data
sets may have the problem of unrecognition. At this point, the
target box region recognized by YOLO can be considered as

the mask area directly, or the union set of two angle masks in
the feature comparator design in Section 3 can be used as the
final mask area. Finally, we only extracted the straight line after
foreground segmentation, and the extraction of other features in
different backgrounds and the effect need to be further studied.

V. SUMMARY AND OUTLOOK

In this paper, we propose an image foreground segmentation
and visual servo correction method based on small data
training. The foreground target is effectively extracted through
the fusion of semantic segmentation and target recognition,
thus ignoring the interference of factors such as background
and illumination. The training of small data sets enables
the extension in industrial standard parts, providing favorable
feature extraction effects for visual servo and correction of
deflection. The shape and combination priority of the manual
annotation mask area can be adjusted for different feature
extraction tasks.

Regarding future work, the most important thing is
to investigate how to improve the balance of precision,
universality and speed of foreground target segmentation.
Then, it can be extrapolated from general industrial parts to
more flexible and diverse configurations and target features.
In addition, the effectiveness of our servo-deflection control
should be further tested in six degrees of freedom.
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