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Abstract— In recent years, the advent of machine learning
technologies has significantly increased interest in factory
automation (FA). Pose estimation, a crucial process in bin-
picking within FA, has been explored extensively by researchers
worldwide. This technology has applications in various fields
including computer graphics (CG), virtual and augmented
reality (VR/AR), and robotics. This paper specifically addresses
the pose estimation of cylinders using a single point cloud
(PC), a challenging problem due to potential ambiguities when
the PC captures both the base and side of a cylinder, which
can significantly impact the accuracy of pose estimation. To
address this, we propose a geometric density-based clustering
approach centered on the cylinder axis as the critical feature.
Our method involves three steps: first, performing probability
density estimation using two Gaussian spheres based on the
normals and cross-products of the PC, applying directional
kernel density estimation (DKDE). Second, choosing the dom-
inant aspect either the base or the side through a point-to-
point matching process to estimate the center point. Finally,
conducting aspect clustering using an in-out circle created by
cosine similarities to utilize the estimated cylinder axis. The
center point is then determined either as the average of the PC
or by the least square circle fitting, depending on the dominant
aspect identified. Our approach demonstrates precise one-shot
pose estimation results using a single PC.

I. INTRODUCTION

Bin-picking is a crucial task in factory automation (FA),
significantly impacting the efficiency of assembly lines. It
involves three key steps: object detection, pose estimation,
and path planning. Initially, target objects captured by an
RGB-D camera are identified. Subsequently, the orientation
and position of these objects are estimated. Finally, they are
grasped by a robotic arm and placed in a designated area.
The advent of deep learning technologies has facilitated these
tasks; however, challenges such as dynamic environments,
real-time processing, and precise operation persist. This
research focuses on developing an accurate pose estimation
system to address the need for precise operations.

In pose estimation, a combination of color, depth, or point
cloud (PC) information is typically utilized. PCs are defined
as point-wise data representations in a Cartesian coordinate
system, including color data from RGB-D cameras. A tradi-
tional method, the Iterative Closest Point (ICP) [1], is often
used for pose estimation and has been widely applied in
simultaneous localization and mapping (SLAM) to address
registration issues, effectively matching point-wise data to
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a predefined target object. Despite its high accuracy, ICP
requires considerable computation time. Alternatively, color
information can be utilized to detect key points from 2D
images and match them with known object models, such
as 3D CAD models [2]. Moreover, convolutional neural
network (CNN) [3] and PointNet [4] based methods represent
the latest trends in machine learning technologies for pose
estimation.

Our research aims to accurately estimate the pose of cylin-
ders using a single PC from an arbitrary camera viewpoint,
a notably challenging problem due to the variability in PC
appearance. Our approach differs from previous works as
our PCs may include both the base and side of a cylinder.
The dominance of these features varies depending on the
viewpoint, which complicates accurate pose estimation using
conventional methods that typically rely on side PCs. Our
method addresses cylinders of varying dimensions, from
thin, long pipes to thick, short discs, ensuring our approach
is not limited by specific dimensional ratios. To address
these challenges, we propose a three-step solution: firstly,
conducting aspect clustering between the base and side;
secondly, selecting the dominant aspect to accurately esti-
mate the center point; and finally, estimating the cylinder
axis using the dominant cluster. Notably, this research does
not use color information or machine learning techniques
due to the need for extensive modifications of color values
and the substantial computation required for data annotation,
augmentation, and training.

II. PREVIOUS WORKS

A cylinder is one of the primitive shapes frequently used
in manufacturing industries. There are a lot of previous
works concerning pose estimation of cylinders, and they are
generally divided into two categories in terms of whether
to use surface normals [5]–[7]. In this section, methods that
utilize a normal vector at each point are termed “Normal-
Based Methods,” while others are called “Non-Normal-Based
Methods.” Our approach falls into the former category.
Commonly employed techniques in cylinder pose estimation
include principal component analysis (PCA), random sample
consensus (RANSAC), Hough transform (HT), and least
squares (LS), with the LS circle fitting method utilized in
our research for center point estimation.

A. Normal-Based-Methods

The method for extracting cylinders from cylindrical ob-
jects was proposed early on [5]. It involves two main steps:
initially, projecting a normal at each point of a cylinder
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onto a unit sphere termed Gaussian mapping is performed,
which is beneficial for characterizing object shapes. Sec-
ondly, a cylinder axis is decided to make a random subset
of normal by RANSAC in the Gaussian map. Another
approach simplifies the 5D HT into 2D and 3D to manage
the computational complexity, where normals are projected
onto a semi-sphere, and great circles are computed iteratively
from the intersection points with the origin [6]. The point that
intersects the most between all great circles is estimated as
the cylinder axis. For shape detections, the method with the
underlying cylinder feature is adapted [8]. Minimal subsets
of normals are estimated by RANSAC and the orientation
is equal to the cross product between normal from the
side of cylinder. The score function is employed as well
to recognize each shape because it is expected to be other
primitive shapes such as planes, spheres, and cones. Multiple
cylinder extractions at the same time are presented with
region-growing clustering [7]. As the covariance matrix of
normal on the Gaussian sphere, the eigenvector of PCA is
computed and the smallest eigenvector can be regarded as
the cylinder orientation because it is obvious if normals are
from the side of the cylinder, they are supposed to be on the
arc of a cylinder.

B. Non-Normal-Based Methods

For cylindrical object detections in facilities, a circle slice-
based approach is presented with HT [9]. As the cylinder
orientation is pre-defined as the x, y, or z-axis, the circle
slicing procedure with the known circle radius is conducted
along with the direction. Hough voting is used for the
approximation of a circle. Finally, cylindrical objects are
extracted. A robust cylinder fitting method is proposed with
a robust PCA (RPCA) method [10]. The robust covariance
matrix of a PC is calculated to solve the weakness toward
outliers or noise in the conventional PCA. Thus, the cylinder
position and direction are found accordingly. A fast cylin-
der shapes matching method against the large-scale PC is
proposed [11]. curvatures are calculated with PCA and k-
neighbors. The curvature is the feature that the shape of
the PC shows whether to be curved or straight line. For
robust cylinder estimation in PCs, the slicing-based approach
is proposed [12] like the previous work [10]. Candidate
cylinder axes and ellipses are generated by slicing the PC
with RANSAC. Next, the cylinder similarity function is used
to extract the most possible cylinder out of all candidates.

III. APPROACH

In the proposed approach, the geometric principle concern-
ing the cylinder axis provides solutions for pose estimation.
The cylinder axis can be described using two properties
consistently. Firstly, the unit normal of the base PC nb

can describe the orientation as shown in Eq. 1. Secondly,
the unit cross product of the side PC ns can describe the
orientation as shown in Eq. 2. Hence, it is straightforward
that the normal from the base and the cross product between
two normal from the side are equal Eq. 3. Fig.1 shows the
illustration of the following Eq. 1 to 3.

n = nb
k, (1)

n = cs =
ns

i × ns
j

∥ns
i × ns

j∥
(i ̸= j), (2)

nb = cs. (3)

Fig. 1. Two Gaussian spheres are shown via Gaussian mapping. (a) normals
from the base PC. (b) normals and the cross-product from the side PC.

This principle allows for the estimation of a cylinder axis
using a PC obtained from an RGB-D camera at an arbitrary
viewpoint. From this property, two ideas are considered for
the estimate of an accurate center point. Firstly, the aspect
clustering is conducted using the cylinder axis as the key
point. Secondly, the dominant aspect is chosen out of the
base and side to analyze the cylinder axis from normals and
cross products. If the cylinder axis derived from normals is
dominant, the base aspect is expected to be predominant, and
vice versa. Hence, normals correspond to the base aspect and
cross-products to the side aspect, based on the cylinder axis.

The approach is organized as follows. Firstly, the PC of
a cylinder is used as the input in Fig. 2(a). Two Gaussian
spheres of normals and cross-products are calculated in Fig.
2(b). Each density sphere from two Gaussian spheres is
estimated with directional kernel density estimation (DKDE)
[13] in Fig. 2(c). Based on these spheres, points with high
density in one density sphere and the corresponding aspect
are chosen with the point-to-point matching process in Fig.
2(c). To use the estimated cylinder axis from the sphere, the
aspect clustering is performed in Fig. 2(d), and the result is
shown in Fig. 2(e). Finally, the center point is estimated with
the dominant cluster.

A. Gaussian Sphere Estimate

This step involves calculating two Gaussian spheres rep-
resenting normals and cross products, centered at the ori-
gin o and normalized to a unit norm. Firstly, outward
normals which have the outside orientation are calculated.
As a conventional approach, a normal flipping process is
performed to ensure the normals are outward-facing [14].
However, there is the case that normals can not be flipped
appropriately due to the multicollinearity problem to estimate
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Fig. 2. Flowchart of the proposed clustering approach: (a) PC of a cylinder, (b) Gaussian spheres of normals and cross products, (c) Density estimate
with DKDE and choice of dominant aspect, (d) Aspect clustering with in-out circle, (e) PC after clustering.

normals using singular value decomposition (SVD) from k-
neighbors, especially when the alignment of neighbors is
nearly collinear. To overcome this problem, the adaptive k-
neighbors algorithm is employed.

The density-based Spatial Clustering of Applications with
Noise (DBSCAN) algorithm is adapted to discard sparse side
points that can cause the above problem [15]. The radius
of the sphere and the number of points within the radius
are predefined as thresholds. Moreover, a cluster with the
largest number of points is only used for the normal estimate.
Secondly, the initial normal is estimated as the eigenvector
v3 corresponding to the smallest eigenvalue λ3 from SVD.
As the matrix of PC of the cylinder is M , SVD is described
using three matrices that are left singular vectors U , singular
values Σ and right singular vectors V as shown in Eq. 4,

M = UΣV. (4)

Adaptive k-neighbors algorithm from kd-tree that itera-
tively updates k neighborhood size (initial k=10) and re-
estimates a normal if the contribution rate of the principal
component is close to one to avoid the situation that the
second and third largest eigenvalues are close to zero in Eq.
5,

k =

{
k + 1, if λ1

λ1+λ2+λ3
≈ 1

k, otherwise.
(5)

Thirdly, the conventional normal flipping process [14] is
performed to obtain the outward normal consistently if the
inner product is a negative value. Supposing pi is the point
of the cylinder, the process is shown in Eq. 6. Therefore, the
outward normal is estimated in Fig. 3(b) compared with Fig.
3(a),

ni =

{
−ni, if −pi · ni < 0

ni, otherwise.
(6)

Additionally, 10,000 cross products ci are calculated using
two normals, excluding the normal itself, selected through a

Fig. 3. Difference of normal orientations is shown. (a) Normals from
ordinary k-neighbors. (b) Normals from adaptive k-neighbors.

random sampling process. This method is chosen to optimize
computation time.

B. Density Estimate

If the raw normal and cross product are directly used
for cylinder axis seeking, points which do not describe
the cylinder axis can be estimated wrong as the cylinder
axis. Thus, normal density sphere (NDS) and cross product
density sphere (CDS) using Gaussian spheres of normals and
cross products are created with DKDE [13] for an effective
representation. Additionally, the density range is divided into
five intervals, as depicted in Fig. 4. The unit vectors x with
three-dimensional coordinates on a sphere can be described
by a Cartesian coordinate system,

Ω2 = {x ∈ R3 : ∥x∥ = x2
1 + x2

2 + x2
3}. (7)

Let x1,x2, ...,xn ∈ Ω2 be unit vectors by a probability
density function f(x) on Ω2,

f̂(x) =
ch(K)

n

n∑
i=1

K

(
1− xTxi

h2

)
, (8)

where h is the bandwidth only to take positive value [0,∞]
for an approximation of the density. K is the directional
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kernel function K(r) = e−r that describes monotonically
decreasing and ch(K) is a normalizing constant.

Fig. 4. Density sphere and color bar of density interval.

C. Aspect Choice

As the way of choosing the dominant aspect, each dis-
tribution of density spheres and maximum density will be
analyzed as necessary. For seeking the distribution of the
cylinder axis, the point-to-point matching process between
NDS and CDS is performed. In the process, the dominant
aspect and yellow points, have the highest density interval, in
one density sphere only to describe cylinder axis are chosen
to check the number of yellow points of NDS corresponding
to CDS. Additionally, suppose yellow points in CDS are
chosen. In that case, true yellow points that refer to the
correct orientation of the cylinder are chosen to distinguish
the opposite one for the cylinder axis estimate using Eq. 9 as
vf is the cylinder axis from the front viewpoint. However,
the cylinder orientation can not be found in the parameter of
θ is almost the same as 90 degrees. In this case, the known
correct orientation is used,

ptrue
y =

{
pi
y, if −vc · pi

y > 0

Ø, otherwise.
(9)

In special cases where there are no corresponding yellow
points, the cylinder axis distribution might appear exclusively
on one of the density spheres. Here, a comparison of each
sphere’s maximum density is conducted.

Fig. 5 illustrates two informative features concerning the
maximum density. Firstly, the maximum density of NDS
gradually decreases as the number of side points is large
because the distribution varies the concentrated to scattered
in NDS. On the other hand, the maximum density of CDS
gradually increases because the distribution varies from the
scattered to the concentrated in CDS. Secondly, the mag-
nitude relationship of these maximum densities is flipped
by the ratio of base and side. Therefore, the aspect with
the larger maximum density is chosen as the dominant one.
Three cases are shown as follows.

1) Case A: Yellow points in NDS and base PC
2) Case B: Yellow points in CDS and side PC

3) Case C: Case A or B based on the maximum density
comparison

Fig. 5. Change of density distributions of NDS and CDS.

D. Aspect Clustering

Firstly, the cylinder axis is estimated as the point with
the maximum density in the selected yellow points. For the
aspect clustering, the in-out circle is computed using the
estimated cylinder axis and the point with minimum density
in yellow points. If normal is within the in-out circle, the
corresponding PC is classified as the base cluster. Otherwise,
the corresponding PC is classified as the side cluster.

E. Center Point Estimate

One of two existing methods depending on the dominant
aspect is used for the center point estimate. If the base cluster
is chosen to use, the average of the base cluster is calculated
based on the assumption that the base cluster will be within
the base. In contrast, if the side cluster is chosen to use, the
LS circle fitting is performed after projecting the side cluster
on a plane formed by the farthest point from the estimated
cylinder axis and cylinder axis because of making use of the
feature that the side cluster is on the arc of a cylinder.

IV. EVALUATION

A. Experimental Setting

As illustrated in Fig. 6, the experimental setup involves a
cylinder model and an RGB-D camera for point cloud (PC)
acquisition, using Choreonoid [16], a robot simulator. The
camera is positioned to rotate around the center point of
the cylinder, which serves as the center of rotation. For the
purpose of evaluating the clustering model, the base of the
cylinder is painted red, and the side is painted blue. Since
a simulator is used, there is no inherent measurement error
in the camera’s capture process. To assess the robustness
of the proposed method against noise, Gaussian noise is
added to the acquired PC. We explore the accuracy of the
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method under various conditions by adjusting the following
parameters:

• θ ∈ {0, 5, 10, . . . , 90} : Degree from the initial camera
position by 5 [deg]

• H ∈ {10, 50, 100, 500} : Height of cylinder [mm]
• R ∈ {25, 50, 75, 100} : Radius of cylinder [deg]
• D ∈ {500} : Distance between camera and cylinder

[mm]
• σ ∈ {0, 0.1, 0.5, 1} : Gaussian noise along with the

width of the camera coordinate system [mm]

Fig. 6. Illustration of experimental setting in Choreonoid.

B. Evaluation Metrics

For the evaluation of pose estimation, two key metrics
are utilized: cosine similarity for the cylinder axis and
Euclidean distance for the center point. These metrics assess
the error between the estimated values and the ground truth.
In assessing the clustering model, three metrics derived from
the confusion matrix are employed: accuracy score, precision
score, and recall score. These metrics help determine the
effectiveness and characteristics of the clustering model.

V. RESULT AND DISCUSSION

There are sixty-four results of pose estimation and clus-
tering. Then they are divided into accurate or inaccurate
results concerning each pose estimation accuracy. Fifty-
nine results are accurate at all angles. However, under
some conditions, R = {25}, H = {10}, σ = {0, 0.1, 0.5, 1}
or R = {25}, H = {50}, σ = {1}, pose estimation results
are inaccurate at any angle.

A. Results

According to the results depicted at the top row of Fig. 7,
the orientation accuracy is exceptionally high, as indicated
by the cosine similarity values being close to one, suggesting
minimal error in orientation estimation. The center point es-
timation is also highly accurate, with the Euclidean distance
typically within the expected radius. However, the distance
can suddenly be large at 85 degrees although the result is still
accurate. The accuracy score can be inaccurate depending on

the strength of Gaussian noise (σ). As the number of side
points is large, the accuracy gradually changes to be accurate
as well. The precision score shows a quite high accuracy
consistently. Recall score is similar to the way of change
with accuracy score.

Conversely, the bottom of Fig. 7 illustrates inaccurate
results. Here, the cosine similarity falls below 0.5 at angles
around 80 to 85 degrees, indicating significant errors in
orientation. The Euclidean distance exceeds the radius, re-
flecting inaccuracies in center point estimation. Additionally,
as the angle approaches degrees known for less accurate pose
estimation, the clustering results’ accuracy declines sharply.

B. Discussion
In clustering results, the factor of the high precision score

is written as follows. The base cluster only contains base
points because a strict point with the minimum density in
yellow points is used for the calculation of the in-out circle.
The side cluster contains side points and a part of edge points
which have normals with the ambiguous orientation formed
by base and side points. Furthermore, the ratio of edge points
is basically small. Thus, the precision score is close to one.
However, if the height of the cylinder is extremely small, the
precision score will be inaccurate because the ratio of edge
points will be large.

In pose estimation results, if a small arc or small size of
base or side points is obtained, the algorithm will not be
useful because the density distribution is inaccurate. Thus,
the maximum density comparison is unreliable. In Fig. 8,
Case A is wrong chosen although the density distribution
does not describe the cylinder axis. In other words, The
accurate pose estimation is performed if these contexts are
satisfied.

VI. CONCLUSION

The one-shot pose estimation approach with geometric
density-based clustering was proposed only using a single
PC data. The pose estimation result is accurate under most
cylinder dimensions. Then it turned out that the clustering
model has the feature to show a high precision score if the re-
sult is accurate. As future works, two tasks will be conducted
in the future. Firstly, multiple cylinder pose estimation will
be conducted. It will be necessary to detect each cylinder
first before adapting the proposed approach. Otherwise, the
density distribution in the density sphere will be inaccurate.
Secondly, the approach will be used against a real cylindrical
object. In real situations, noise is not necessarily followed by
Gaussian distribution. Thus, the process of noise smoothing
or removal can be quite important.
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