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Abstract—This paper introduces a methodology for finding
a solution to the inverse kinematic problem of underactuated
manipulators composed of a three-link revolute joints planar
mechanism with mechanical coupling. The proposed method
consists in solving iteratively a set of algebraic equations defining
the Inverse Kinematic Model (IKM) of a 3R mechanism whose
rotational joints are first considered independent. The respect
of the mathematical constraint due to the mechanical coupling
between certains axes is taken into account in the procedure
by introducing an internal variable whose value is updated
iteratively. The value of this internal variable is increased at
each iteration until the coupling relationship is satisfied. The
proposed methodology is applied to solve the IKM of a multi-
phalanx robotic finger whose kinematics follows a human-like
finger coupling between the intermediate and distal phalanges.

Index Terms—Inverse kinematics, Planar three-joints mecha-
nisms, Robotic finger

I. INTRODUCTION

Robotic systems can be classified according to their actuation
architecture: fully-actuated (FA), if their number of actuators
is equal to their number of joints, redundantly-actuated (RA)
if their number of actuators is bigger than their number of
joints, and under-actuated (UA) if their number of actuators is
smaller to their number of joints [1]. These latter have certain
advantages with respect to their FA and RA counterparts such
as: reduced energy consumption, less number of mechanical
elements, volume saving, and reduction of manufacturing costs
[2]. The mentioned features have made UA systems a corner-
stone for the design and subsequent manufacture of: legged
robots [3], robotic arms [4], robotic wrists [5], underwater
vehicles [6], and robotic hands [7] among others [8]. Some UA
systems have been designed from a bio-inspired point of view
such as legged manipulators and robotic hands, also known
as multi-fingered grippers. Robotic hands incorporate a certain
degree of anthropomorphism to carry out tasks performed by
human hands, the under-actuation arising from the need to
replicate the correlation of movement between the intermediate
and distal phalanges of each finger. From a biological point
of view there exist an interdependence between the distal
interphalangeal (DIP) joint and the proximal interphalangeal
(PIP) joint of the human fingers during the flexion/extension
[9]. Such dependency results from biomechanical constraints
produced by the actuation system of the fingers involving the
flexor digitorum superfialis (FDS) and the flexor digitorum
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profundus (FDP) tendons used for the flexion of the finger and
the extensor digitorum communist (EDC) tendon used for the
extension [10]. Several robotic finger designs use mechanical
couplings based on pulleys or gears to reproduce the depen-
dence of movement between the PIP and DIP joints, resulting
in UA systems. We can detail some examples of robotic hands
whose fingers integrate a passive coupling between the DIP
and the PIP joints, for instance: the DLR Hands [11], [12],
which are formed by four fingers, each finger having four joints,
among which only three are actuated (the joint that produces
the abduction/adduction motion, and the joints of the proximal
and intermediate phalanges used for flexion/extension), the
distal phalanx being coupled to the intermediate one by using
a pulley. The CEA dexterous hand [13] is another example. It
is composed by five fingers, each one formed by a modular
unit that includes three electric backdrivable motors used to
pilot four joints used to regulate the abduction/adduction and
flexion/extension motions. As in DLR hands, CEA dexterous
hand makes use of a coupling mechanism to transfer the
motion from the PIP joint to the DIP joint. Despite the fact
that there are notable differences in the above examples in
terms of actuation, transmission, and the number of fingers,
all of them make use of three-links-planar mechanisms that
attempt to emulate the three phalanges of a human finger. In
the existing literature, it has been extensively documented the
kinematic modeling (forward and inverse) of such three-links
planar mechanisms considering the three joints as indepen-
dently actuated [14], [15], [16]. In the case of the Forward
Kinematic Model (FKM), the inclusion of a kinematic coupling
does not considerably entail the way to find the FKM solution,
and we can take advantage of classical formulations such as
the Denavit-Hartenberg (D-H) notation. However, finding a
solution to the Inverse Kinematic Model (IKM) becomes a
very challenging procedure due to the kinematic restrictions
imposed by the coupling. In the literature, it has been reported
few methods to solve the IKM in underactuated 3R mechanisms
with coupling. We can cite some relevant examples, for instance
in [17], the problem is solved by using a multi-layered Artificial
Neural-Network (ANN). The simulation results showed a good
convergence between the desired positions in Cartesian space
and the estimated ones. Nevertheless, the accuracy and the
learning speed of the ANN depend on the appropriate tuning
of four parameters of the learning algorithm. In [18], the
IKM solution is an integral part of the process for generating
optimal trajectories in Cartesian space for a prosthetic finger.
The coupling constant between the PIP and DIP joints is
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Figure 1. Kinematic representation of the underactuated 3R mechanism with
mechanical coupling.

computed by minimizing the maximum jerk in the finger joints.
Then, the IKM is solved through a standard Newton-Raphson
algorithm. Nevertheless, this method requires an appropriate
initial guess value to converge to the local solution, and it may
be computationally expensive.

In this paper, we propose a new methodology to solve
the IKM for underactuated 3R mechanisms with kinematic
coupling. The proposed method consists in solving iteratively
the equations that define the IKM of this kind of mechanisms
considering first the three revolute joints of the mechanism
as “independently actuated” then introducing the coupling
condition between the PIP and the DIP joints. The reminder
of the paper is organized as follows: Section II describes in
detail the problem of finding an IKM solution for underactuated
3R mechanisms with coupling between the PIP and DIP
joints. The proposed solution used to address this problem
is explained in Section III. In Section IV, we applied the
proposed methodology to solve the IKM of a robotic finger that
will be part of a future gripper dedicated to perform sterility
testing processes. The validation of the proposed methodology
in detailed in Section V, and finally, the conclusions of this
study are discussed in Section VI.

II. PROBLEM DESCRIPTION

Let us consider the planar underactuated 3R mechanism with
kinematic coupling depicted in Fig. 1, whose Cartesian space
variables are denoted as p = [px py]

T , whereas the join
space ones are represented as q = [q1 q2 q3]

T . The Forward
Kinematic Model (FKM) establishes the Cartesian position of
the manipulator given the joints’ positions. In this case the
equations describing the FKM are given as follows:

px = l1 cos q1 + l2 cos(q1 + q2) + l3 cos[q1 + (1 + kq)q2]

py = l1 sin q1 + l2 sin(q1 + q2) + l3 sin[q1 + (1 + kq)q2]
(1)

where kq is the coupling ratio. In order to compute the IKM,
we should be able to solve the system of equations (1) by
considering px and py as known parameters and, q1, q2 as
unknown variables. Therefore, squaring the equations in (1),

summing them and simplifying by means of trigonometric
identities, leads to the following mathematical expression:

p2x + p2y − l21 − l22 − l23 = 2l1l2 cos q2

+2l1l3 cos(q2 + kqq2) + 2l2l3 cos kqq2
(2)

Equation (2) is a nonlinear equation with only one unknown
q2.

In the restrictive case of a coupling constant kq as an
integer number, existing methodologies based on Chebyshev
polynomials are known [19]. In the more general case where
kq can take any real value (more likely in the practical case of
mechanical coupling within poly-articulated mechanisms), this
equation needs to be solved using a numerical approach, as it
has no analytical solution.

III. PROPOSED SOLUTION

We introduce an auxiliary angle called ϕ, which represents
the absolute orientation of the last link of the mechanism with
respect to the abscissa axis (x0 in this case, see Fig 1). If each
joint is considered as independently actuated, then the angle
ϕ should be considered as an input Cartesian space variable
together with px and py . In the related literature, the orientation
angle ϕ is crucial to obtain the IKM for 3R mechanism as
detailed in [14], [15] and [16]. However, in this case, we
have a system where the first and second joints are considered
independently actuated, whereas the third joint is coupled to the
second one. Although ϕ exists and its value can be computed in
underactuated 3R with coupling, it cannot be considered as an
input variable since its value is restricted to an unique value due
to the coupling constant. The angle ϕ of the underactuated 3R
mechanism with coupling is defined by the following equation:

ϕ = q1 + q2 + q3 = q1 + (1 + kq)q2 (3)

where q3 is a variable that directly depends of the value of
q2, and the term kqq2 restricts ϕ to a unique orientation as a
function of q2. Therefore, we need to find the IKM solution
that satisfy q3 = kqq2. In order to find the IKM solution, we
propose to solve iteratively the equations that define the IKM
considering firstly all joints of the 3R mechanism as “indepen-
dently actuated”. As mentioned previously, when considering
the system as fully actuated, it will be necessary to provide
an initial value ϕinit of ϕ for the any given value of px, py ,
and then start performing the calculations iteratively by slightly
increasing the value of ϕ until the solution that satisfies the
coupling condition is found. Thereby, the proposed method
requires prior knowledge about the range of motion of the two
actuated joints in order to define an appropriate initial value for
ϕ. We can summarize the steps to compute IKM as illustrated
in Figure 2.

Now, let us start with the formulation of the equations that al-
low finding the value of the joints as a function of the assigned
position in the Cartesian space. Since px, py and ϕinit are
considered known, it is necessary to formulate an expression
that takes into account only the subsystem constituted by the
two first links. Therefore, the system of equations described in
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Figure 2. Workflow procedure for obtaining the IKM.
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Figure 3. Illustration of several positions performed by a 3R mechanism where
ϕ always satisfy ϕ ≥ ϕinit

(1) is reformulated by separating the known variables from the
unknown ones, resulting in the following system of equations.

pkx2 = px − l3 cosϕ
k = l1 cos q1 + l2 cos(q1 + q2)

pky2 = py − l3 sinϕ
k = l1 sin q1 + l2 sin(q1 + q2)

(4)

where pkx2, and pky2 correspond to the position of the third joint
of the manipulator measured from the origin frame as Fig. 1(b)
illustrates, and the superscript k denotes the current value of the
involved variable at the kth iteration. By squaring and summing
both equations of (4), the following expression is obtained:

(pkx2)
2 + (pky2)

2 = l21 + l22 + 2l1l2[cos q
k
1 cos(q

k
1 + qk2 )+

sin qk1 sin(q
k
1 + qk2 )]

(5)

By using trigonometric identities, the trigonometric functions
in (5) can be simplified as:

cos qk1 cos(q
k
1 + qk2 ) + sin qk1 sin(q

k
1 + qk2 ) = cos qk2 (6)

Therefore, (5) can be rewritten as:

cos qk2 =
(pkx2)

2 + (pky2)
2 − l21 − l22

2l1l2
(7)

A complementary sin function can be established as:

sin qk2 = ±
√

1− cos2 qk2 (8)

The term ± of (8), indicates that there are two pairs of possible
solutions for qk1 and qk2 . In the case of qk2 its value can be found
as follows:

qk2 = arctan 2(sin qk2 , cos q
k
2 ) (9)

Once the value of qk2 is found, we can proceed to calculate the
angle qk1 by using the auxiliary angles αk and βk as explained
in [20]. The angle βk is formulated by analyzing Fig 1(b).

βk = arctan 2(pk2y, p
k
2x) (10)

The angle αk can be formulated as follows:

αk = arctan 2(l2 sin q
k
2 , l1 + l2 cos q

k
2 ) (11)

Thereby, the angle qk1 results from:

qk1 = βk − αk (12)

Finally, the dependent joint qk3 is computed by:

qk3 = ϕk − qk1 − qk2 (13)

The equations (9), (12), and (13) are solved iteratively until
satisfying the following condition:

qk3 ≥ kqq
k
2 (14)

If the previous condition is satisfied, we can affirm that q1 = qk1 ,
and q2 = qk2 yielding the solution of the IKM. It is worth
to emphasize that this methodology is focused on finding the
IKM of underactuated 3R mechanisms under the following
constrains:

l1 > l2 > l3

q2 ≥ 0

kq ≤ 1

(15)

Such constraints constitute key aspects in the kinematics of
human-inspired robotic fingers. The first indicates that the
proximal phalanx should be longer than the intermediate and
distal phalanges, and the intermediate phalanx should be longer
than the distal phalanx. The second constraint indicates that q2,
which is related to the PIP, cannot perform negative extension
movements, which is the case for active movements of the
index, middle, ring, and little fingers of the human hand [21].
Finally, the last constrain implies that the displacement of q3
(DIP joint angle) will never be greater than that of q2 (PIP joint
angle), but it may be equal.

Regarding the selection of ϕinit, since the true value ϕ is
unknown when px and py are assigned, we have to choose
ϕinit relatively close and with a lower value than the unknown
ϕ, because if we assign an initial value greater than the real
one, the iteration process will fail to find a solution. If the
mechanism satisfies the conditions established in (15), we can
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Figure 4. Modular finger unit prototype.

make use of the following formula to determine a suitable value
for ϕinit:

ϕinit = arctan 2(py, px) (16)

The previous expression guarantees that computed value for
ϕinit will be smaller and close to the unknown ϕ as is depicted
in Figure 3.
Now, let us apply the described iterative method to compute
the IKM of a modular robotic finger intended to be integrated
into a future multi-fingered gripper whose phalanges design
satisfies the constraints of (15).

IV. CASE STUDY

The present case study shows the validation of our inverse
kinematics algorithm using a modular robotic finger that will
be integrated into a future multi-fingered gripper designed to
perform sterility testing processes within the European project
TraceBot [22]. The modular finger is composed of three pha-
langes (proximal, intermediate, and distal) connected to each
other via three revolute joints used to perform flexion/extension
motions. The finger incorporates an additional joint placed at
the base to regulate its orientation. The finger makes use of
three electric motors to drive remotely the four finger joints
through a cable-based transmission yielding an underactuated
3-DoF configuration. Figure 4 illustrates the assembly of a
robotic finger prototype, and Figure 5 depicts its kinematic
configuration where the kinematic parameters are defined as
follows: l1h, and l1v represent the horizontal and vertical offsets
between the self-rotation joint and the proximal phalanx joint,
and l2, l3, l4 represent the lengths of the proximal, intermediate,
and distal phalanges.

A. Inverse Kinematic modeling

The position variables of the 3-DoF TraceBot modular finger
are denoted as follows: p =

[
px py pz

]T
for the task space

variables, and q =
[
q0 q1 q2 q3

]T
for the joint ones. It

is worth to recall that q3 is a dependent joint variable whose

value is determined by the position of q2. Unlike the general
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Figure 5. Detailed illustration of the kinematic configuration of the 3-DoF
TraceBot finger.

model of a 3R mechanism, in this case the finger has an
additional joint at its basis for orientation purposes. Therefore,
it is necessary to find its value before performing the iterative
process used to find joint positioning of the finger phalanges.
The self-rotation joint q0, can be formulated by analyzing
Figure 5(b) (with the hypothesis that −60◦ ≤ q0 ≤ 60◦):

q0 =

{
arctan 2 (py, px) , px ≥ 0

arctan 2 (−px, py)− π/2, px < 0
(17)

The next step consists in performing the iterative computations
in order to find the joint positions of the three phalanges
of the finger that satisfy the kinematic coupling between the
intermediate and distal phalanges. Following the procedure
described in Section III, the position of the PIP joint (q2),
is determined by applying (9). However, the cosine function
described in (7), must be reformulated as follows:

cos qk2 =

(
pkx3

)2
+

(
pky3

)2
+
(
pkz3

)2 − l22 − l23
2l2l3

(18)

The auxiliary position variables pkx3, pky3, and pkz3 are for-
mulated by clearing the Cartesian positioning equations, which
are obtained by calculating the Forward kinematic model. For
this case, the auxiliary position that separate the known data
from the unknown data are:
pkx3 =px − (l1h + l4 cosϕ

k) cos q0 =

cos q0[l2 cos q
k
1 + l2 cos(q

k
1 + qk2 )]

pky3 =py − (l1h + l4 cosϕ
k) sin q0 =

sin q0[l2 cos q
k
1 + l3 cos(q

k
1 + qk2 )]

pkz3 =pz − l1v − l4 sinϕ
k = l2 sin q

k
1 + l3 sin(q

k
1 + qk2 )

(19)

The angular displacement for the proximal phalanx (q1) are
determined by considering (12). However, the auxiliary angles
αk and βk should be reformulated as follows:

αk = arctan 2(l3 sin q
k
2 , l2 + l3 cos q

k
2 ) (20)

βk = arctan 2(pkz3, s
k) (21)
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TABLE I
KINEMATIC PARAMETERS OF THE 3-DOF MODULAR FINGER.

Parameter Description Value
l1h Horizontal offset distance between j0 and j1 5 mm
l1v Vertical offset distance between j0 and j1 12.75 mm
l2 Proximal phalanx length 62 mm
l3 Intermediate phalanx length 37 mm
l4 Distal phalanx length 28 mm
kq Coupling ratio 2/3

where the auxiliary term sk is defined as:

sk = ±
√
(pkx3)

2 + (pky3)
2 (22)

where the sign of sk is chosen according to the following
conditions, which involve the orientation of the finger q0 in
the xy-plane considering the aforementioned range of motion:

sgn(sk) =
{

+, pkx3 > 0
−, pkx3 ≤ 0

(23)

Finally, the position of the DIP joint is funded by implementing
(13). And the iterative procedure ends when the coupling
condition described in (14) is satisfied. The initial orientation
angle considered for the iterative procedure ϕinit described in
(16) is reformulated for our case study considering the self-
rotation angle q0 as follows:

ϕinit = arctan 2
(
p′z,±

√
p′2x + p′2y

)
(24)

where:

p′x = px − l1h cos q0

p′y = py − l1h sin q0

p′z = pz − l1v

(25)

V. MODEL VALIDATION

This section presents the evaluation performed to validate the
effectiveness of the proposed methodology for IKM calculation.
For this section, we make use of the kinematic parameters
of the finger described in Table 1. We select four desired
points that lie within the workspace of the robotic finger. The
workspace of the finger is bounded by the kinematic parameters
and the following ranges of motion: −60◦ ≤ q0 ≤ 60◦,
45◦ ≤ q1 ≤ 135◦, 0◦ ≤ q2 ≤ 90◦, and 0◦ ≤ q3 ≤ 60◦.
The way to validate the IKM algorithm is based on simulation
and real-time tests. In order to perform the numerical iterations,
we define an increment constant value ∆ϕk = 0.01 rad. The
obtained results are summarized in Table 2, in which the first
column corresponds to the desired position in Cartesian space,
the second one is the computed ϕinit. The columns 3-6 of
the table show the values obtained from the IKM solution, the
seventh column denotes the resulting value for ϕ, the eighth
column includes the number of required iterations used to find
the IKM solution, the ninth column denotes the consumed time
for all iterations, and the tenth column represents the absolute
error of the approximation ε, which is computed as follows:

ε = ||FKM(q0, q1, q2, q3)− FKM(q0, q1, q2, kqq2)||2 (26)

where FKM represents the forward kinematic model being
evaluated with the values resulting form the IKM computations.
The first FKM considers the value of q3 resulting from
the iterative process whereas the second one computes it by
multiplying q2 by the coupling constant. It is worth mentioning
that each iteration is executed in 30µs.
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Figure 6. Evolution of the estimation of the joint space variables with respect
to the number of iterations.

The resulting data of Table 2 is complemented with the infor-
mation provided in Figure 6. This figure helps us to understand
how the joint variables evolve during the computation process.
By analyzing the obtained information, we can see that the
number of iterations performed in the four desired points are
relatively low, which is positive since the computation time is
also relatively low. Therefore, the proposed solution is suitable
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Figure 7. Positioning of the modular robotic finger in one plane by performing
the IKM.
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TABLE II
OBTAINED RESULTS OF THE IKM METHODOLOGY APPLIED TO THE 3-DOF ROBOTIC FINGER.

p = [px py pz ]T [mm] ϕinit [Deg] q0 [Deg] q1 [Deg] q2 [Deg] q3 [Deg] ϕ [Deg] N. iterations Time [ms] ε [mm]
p = [−8 0 106]T 97.93° 0 56.84791 62.8957 42.3640 162.1076 113 3.4 0.227
p = [−62 0 107]T 125.40° 0 99.9838 37.8921 25.9202 163.7961 68 2.0 0.344
p = [−81.7 0 16]T 177.85° 0 132.6782 69.9494 46.8452 249.4720 126 3.8 0.111
p = [−24.1 0 67.4]T 118.03° 0 62.3796 90.9328 60.97 212.2912 169 5.1 0.186

for implementation in real-time controllers. Moreover, we can
observe in Table 2 the accuracy of the approximation, yielding
values for ε considerably small.

It should be mentioned that this model has been implemented
in real-time in a PID-type position controller, where a series
of points in Cartesian space were proposed and transformed
into joint space. The obtained values served as setpoints for
the trajectory generation in joint space. The proposed points in
Cartesian space are the same as in Table II. Figure 7 shows the
obtained positioning of the finger in real-time seen in the finger
plane. The magenta dots are the positions to be reached within
the workspace, the dotted line is the resulting displacement, and
the solid line represents the lateral section of the workspace.

VI. CONCLUSIONS

In this paper, we present a new methodology allowing to
solve the IKM problem in underactuated 3R mechanisms with
coupling such as robotic fingers. The calculation of IKM in
such mechanisms is complex and finding a solution analytically
is practically impossible. Our proposal consists in solving
iteratively the set of equations that define the kinematics of the
mechanism, which are formulated by geometrical analysis, and
the FKM of the system. This method is an attractive solution to
deal with this problem. The present methodology is applicable
in systems such as robotic fingers where the DIP joint is
passively coupled to the PIP joint in an attempt to mimic the
kinematics of human fingers. The proposed method was used to
solve the IKM of a robotic finger intended to be integrated into
a future multi-fingered gripper. To validate its performances,
four reference coordinates were proposed within the workspace
of the finger. The obtained results showed great effectiveness
in the estimations. The obtained results also showed that the
solutions are found in few iterations, which is suitable for the
real-time implementation of the algorithm.
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