
  

  

Abstract— In this study, we propose a virtual reality system for 

identifying expert-specific skills in a visual inspection task in a 

refinery by using an eXplainable Artificial Intelligence (XAI) 

technique. Most previous studies have applied statistical analysis 

such as t-tests to the mean value of the experimental data, and 

there is a consequent lack of specificity in the results (i.e., when 

and where expert skill appears within a long inspection duration). 

It is thus difficult to provide feedback based on the most important 

part of the collected experts’ data to the novices. To address this 

issue, we introduce a Convolutional Neural Network (CNN) with 

Class Activation Map (CAM) technique, an XAI method, to 

analyze the experimental data of experienced and novice field 

operators, and identify the most significant contributors for 

classifying expert and novice behavior for 120 seconds inspections. 

The resulting model can classify field operators as expert or novice 

with an accuracy of 99.1% on average, and visualize the 

classification criteria as a heat map for each experimental trial. 

Based on those results, we propose a virtual reality training system 

for learning expert inspection skills by referencing the CNN results. 

The contribution of our study is the proposition of a new analytical 

framework, as well as a training system beyond the limitations of 

conventional statistical analysis.  

I. INTRODUCTION 

Daily field patrol is essential for safe and stable refinery 
operations. During the field patrol process, experts move around 
the operation areas and attempt to identify any potential and/or 
revealed anomalies in the environment. The oversight of 
anomalies can cause serious incidents; hence, it is important to 
increase the probability of anomaly detection by improving the 
inspection skill of field operators.  

Many previous studies have investigated the differences in 
inspection behavior between experts and novices. This is often 
done through simulated inspection task experiments, where 
some dependent variables, such as gazing at targets and head 
positioning, are measured and analyzed [1,2].  

However, since most previous studies applied statistical 
analyses such as the t-test to the mean value of the dependent 
variables for detecting expert–novice differences, there is a lack 
of specificity in the treatment of the experts’ inspection 
behaviors. For example, even if the results show that experts tend 
to position their heads at a lower level than do novices, when 
investigating head position, it is not clear when the experts 
instigate a lower gaze position, nor what prompts them to do so 
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during a long inspection. In other words, conventional statistical 
analyses are unable to determine which part of the experimental 
data indicates “know-how” which novices should learn to 
improve their skills. In addition to identifying the mean 
characteristics of experts, it is also important to identify the most 
important specific motion and behavior patterns. No previous 
studies have analyzed such a specific part of the inspection 
process; hence, a new analytical framework is required to 
address the above issue. 

II. RELATED WORK 

A. Experimental studies investigating inspection skills. 

As mentioned above, previous studies have attempted to 
classify expert inspection skills using the novice-expert 
paradigm, in which both novices and experts performed the same 
experimental inspection task, and researchers measured and 
compared their inspection behavior [3,4]. Most previous studies 
have dealt with visual inspection, such as finding illegal 
materials in baggage checks [5], conducting experiments by 
measuring and comparing the eye behavior of experts and 
novices using an eye tracker device [6,7]. As a result, they 
obtained some insights into the experts’ specific behaviors 
during inspection tasks. For example, experts are gazing at 
important (high-risk) equipment for longer durations [8], and 
employing a more systematic and stable search order [9] than 
novices. 

Takamido et al. [10] recently clarified the importance of head 
positioning behavior (motor behavior) in addition to information 
on the target of the gaze (perceptual behavior). Specifically, they 
used a virtual reality (VR) model, representing a section of a real 
refinery environment, and measured both the head position and 
gaze position data of expert and novice field operators. As a 
result, they revealed that experts position their heads differently 
for the effective detection of different anomalies (e.g., lower 
head positions are considered effective for leakage inspection). 

However, both these insights into eye behavior and head 
positioning were achieved by applying statistical analysis to the 
mean value among all experimental trials. Therefore, as 
highlighted above, there continues to be a lack of specificity in 
the investigation of expert inspection skills. 
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B. Explainable AI for identifying specific expert skills 

One approach that may address the above problem is the 
introduction of eXplainable Artificial Intelligence (XAI) to 
analyze the data obtained from experiments. XAI is an analytical 
technique in machine learning that visualizes the input data and 
identifies the part of the input data with the highest significance, 
using this with making predictions or classifications [11]. 
Although there are many methodologies for visualizing the 
significance of each part of the input data, a Class Activation 
Map (CAM) [12] is often used to analyze human movement [13]. 
Compared to other XAI methods, a CAM has the advantage of 
providing an explanation that is faithful to the original model 
because it does not build a surrogate model [14].  

For example, Fawaz et al. [15] used XAI to explain the 
reason for classification of expert–novice motion in a surgery 
simulator by using a CAM based on the 76-dimensional position 
data of the surgery simulator arm. In addition, Zhang et al. [16] 
collected six-dimensional position and angle data from four 
manipulators of a surgical robotic arm. The data were 
differentiated 0–3 times, and 96-dimensional data were used as 
the input to determine the skill level of a surgery. In this process, 
a CAM was used to provide a visual feedback based on the 
model classification. However, these studies utilized only 
unimodal information (position information). For application to 
visual inspection tasks, this method must be modified such that 
both motion and eye movement information are considered key 
features for expert–novice classification [8–10]. 

III. METHOD 

A. Overview of the proposal method 

Based on the above background, this study aimed to develop 
a virtual reality system for identifying the specific inspection 
behavior of experienced field operators using an XAI technique 
with two different motion information resources (head position 

and angle) and gaze information. Figure 1 presents an overview 
of the proposed method. The process was divided into two parts: 
the training phase; and the feedback phase. In the training phase, 
the gaze and head position data are collected in the virtual 
environment, and pre-processing, such as normalization, is 
performed to prepare the data for input into the Convolutional 
Neural Network (CNN) architecture. Then, the model, using a 
CNN with CAM, is trained to classify the input data as either 
“experienced” or “novice”, with six experienced and three 
novice field operators, and the accuracy of the classification is 
evaluated.  

If the model shows a classification accuracy of over 90%, 
which is higher than that shown (67%) when all data are 
classified as experienced, then, we construct a feedback system 
that automatically displays the input head position data with the 
color that shows the percentage of importance to classification 
between the experienced and novices based on the CAM results.  

Finally, we propose a use case of this system in novice 
training, and present a possible platform for this application. 
Novice field operators can perform inspection tasks in the VR 
environment; and the model can identify the most significant 
deviations in their behavior compared to that of the experienced 
field operators. This information is fed back to them, enabling 
them to identify which specific parts of their inspection process 
should be improved. 

B. Data for construction of the proposal system 

We used data collected in a previous study [10] for the 
proposed classification exercise. In [10], six experienced field 
operators with more than four years of experience and three 
novices without any practical inspection experience performed 
the same simulated inspection task in a virtual environment 
representing a section of a refinery. In the experiment, they 
moved around the virtual environment and attempted to identify 
the arbitrarily assigned anomalies within an inspection time of 

Figure 1.Overview of the virtual reality system for identifying the specific inspection movement by using Explainable-AI  

1215



  

120 s. The experiment was conducted ten times for each 
participant. Figure 2 shows the refinery model used in the 
experiment. The model includes typical equipment for refinery 
inspection tasks, such as heat exchangers, rotating machines, and 
pumps. These pieces of equipment are appropriate targets for 
performing patrol inspection tasks because they include many 
inspection items. 

As for the training data for the CNN with CAM architecture, 
we used both head position data and gaze position data, which 
reported significant differences in some previous studies [10,17]. 
Specifically, the training data included two-dimensional data 
indicating gaze position, three-dimensional data indicating head 
position, three-dimensional data indicating head angle, and time 
differential values of each datum. In addition, to consider the 
interaction between motion and gaze data, six-dimensional data 
were added by multiplying the head and gaze position data. Thus, 
a total of 21 × 10800 (120 s × 90 Hz) time-series vectors were 
used as the input data. Using these, the CNN with CAM 
architecture learned the relationship between each piece of input 
data and the field operators’ level of expertise. The z-positional 
data were divided by the height of each participant, and each data 
point was normalized. We also collected the first-person videos 
of the participants during the inspection activity for use in 
training novices. 

C. CNN with CAM Model architecture 

Figure 3 shows the architecture of the CNN with the CAM 
model used in this study. It is mainly based on the method of a 
previous study used for the classification of expert/novice 
surgeons [15]. The input data, which consisted of 21-
dimensional time-series data, were convolved in two stages. 
First, eight filters were used in the first phase and sixteen in the 
second phase. Next, the data were passed to the Global Average 
Pooling (GAP) layer, where they were transformed into 16-
dimensional scalar values, and these values were used for binary 
experience classification (experienced or novice). The weights 
in the network were then updated according to the error values. 
The binary cross-entropy function was used here as the error 
function, a ReLU function was used for the activation function, 
and the softmax function was the last activation function. 

The presence of a GAP layer allows for CAM output. The 
method of creating a CAM from time-series data was introduced 

in [18]. In each class 𝑐, the output score 𝑆𝑐 and importance score 
𝐼𝑐(𝑡) used to write the CAM are expressed as follows: 

𝑆𝑐 =∑𝑤𝑘
𝑐

𝑘

∑𝑓𝑘(𝑡)

𝑡

=∑∑𝑤𝑘
𝑐𝑓𝑘(𝑡)

𝑘𝑡

, (1) 

𝐼𝑐(𝑡) =∑𝑤𝑘
𝑐𝑓𝑘(𝑡)

𝑘

, (2) 

where the 𝑘-th feature map is denoted by 𝑓𝑘(𝑡) as a function of 
time 𝑡 , and the weight of the connection between the 
corresponding value at the GAP layer and the output is denoted 
by 𝑤𝑘

𝑐. 

The above architecture was defined based on a previous 
study [15]. However, to deal with both motion and gaze 
information, we modified the methodology by considering the 
characteristics of the target task in this study (inspection) and the 
collected data. First, we set the seven subgroups in the first layer 
according to the characteristics of the data to avoid large 
differences in the weights of the information content of multiple 
modalities, because the number of dimensions is different for 
each category. The subgroups were set up as follows: 

① Eye position subgroup consisting of two-dimensional 

eye position information (𝑥, 𝑦); 

② Head position sub-group consisting of three-

dimensional head position information (𝑥, 𝑦, 𝑧); 

③ Head angle sub-group consisting of three-dimensional 

head angle information (𝛼, 𝛽, 𝛾); 

④ Eye velocity sub-group consisting of one-dimensional 

eye velocity information (𝑣𝑒𝑦𝑒); 

⑤ Head position velocity subgroup consisting of three-

dimensional head position velocity information  
(𝑥′, 𝑦′, 𝑧′); 

⑥ Head angle velocity sub-group consisting of three-

dimensional head angle information (𝛼′, 𝛽′, 𝛾′); and 

⑦ Product of gaze position (𝑥, 𝑦)  and head position 
(𝑥, 𝑦, 𝑧) subgroups, yielding six-dimensional data. 

By adding the last subgroup (consisting of the results of 
multiplying the head and gaze position data), we can consider 
their interaction (e.g., viewing position and body states at the 
time of gazing). In addition, by outputting the CAM scores along 
with the head position, visual feedback is expressed in a format 
that is easier for humans to understand. The CAMs for each 
person and skill level are overlaid on top of one another so that 
the overall trend can be seen. 

D. Training of the CNN with CAM model 

The data used for training and validation were split according 
to the two evaluation methods described below. The model was 
trained using an online learning method in which the input data 
for each person and each trial were entered individually, and the 
weights were updated sequentially. Each training session was 
conducted over a maximum of 1000 epochs, and its performance 
was evaluated on the test input data, which were separated from 
the training input data. To avoid overfitting the training data, an Figure 2. 3D refinery model used in VR experiments 
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L2 regularization term was added to the error function, and its 
coefficient parameter was set to 1×10-5. The model with the 
lowest error value, i.e., the best case, is used. The GPU used to 
train the model was an NVIDIA RTX A5000. The Adam 
algorithm [19] was used to update the network weights. The 
initial learning rate was set as 5 × 10−4 and the parameter for 
adding the inertia term was set as 0.9 and 0.999, as in [19]. The 
initial value of He [20] was used to initialize the weights. 

The trained model was evaluated using two cross validation 
methods: the leave-one-super-trial-out (LOSO) method; and the 
leave-one-user-out (LOUO) method introduced in [21]. In the 
former method, the i-th trial of each subject was used as the test 
data and the other data as the training data for cross-validation. 
This method confirmed whether the model correctly classified 
the new data when a participant performed a new trial. This was 
performed for 10 trials, and the sum of the predictions of all 
models was evaluated. In the latter case, all trials for the j-th 
person were used as test data, and the weights were updated 
using the other data. This method tested the generalization 
performance of the model to correctly handle the data when a 
new participant performed trials. This was done for the nine 
participants in the same manner, and the combined predictions 
were evaluated. The accuracy of the evaluation was calculated 
based on the confusion matrix. 

E. Proposed of the feedback training system for novice field 

operators 

After completing the above processes, we constructed a 
feedback training system for novice field operators that 
visualizes the different components of experienced behavior 
based on the output from the CAM architecture. Here, the first-
person video data is used along with the data used to train the 
model (Figure 4(a)). In a previous study, it was shown that 
scrutinization of a video from the first-person view of 
experienced workers could improve the inspection skill of 
novices [22]. Hence, by observing the work of experienced field 
operators and comparing it with their own, novices can learn 
how to improve their inspection behaviors from this system. In 
the use case of the system, novice field operators perform the 
inspection task in the VR environment (Figure 2); then, the most 
different part of their behavior within all inspection durations is 
fed back to them, and they can check which specific part of their 
inspections should be improved (Figure 4(b)).  

The specific process is as follows. First, novice field 
operators perform inspection tasks using the VR system. Then, 
the array of scores, based on the input model and contributed by 
the CAM model to the decision-making process, can be obtained. 
The part of the data with the greatest contribution to 
classification over each 120 s inspection is identified, and the 
novice is shown “when and where” the novice–expert difference 
is most obvious through videos of both field operators at the 
corresponding time. In particular, the segment with the highest 
continuous importance in the time-series data is extracted, and 
this section of the video, including the three seconds before and 
after the segment, is clipped. Through this system, novices can 
confirm which part of their inspection behavior should be most 
improved by referencing the corresponding experienced field 
operator’s behavior. 

IV.  RESULTS AND DISCUSSIONS 

Tables 1 and 2 show the results of the evaluation of the CNN 
for the classification between experienced (E) and novice (N) 
field operators. Each evaluation index exhibited a high ratio. 
Mean accuracy was 98.9% for LOSO, and 88.8% for LOUO. 
One potential reason the LOSO method had larger values than 
the LOUO method may be the number of participants. Since the 
total number of participants in this study was relatively small 
(nine participants), the individual differences between each 
group may have affected the performance. 

These results suggest that the proposed method, using CNN 
with CAM and data on gaze position, head angle, and head 
position, classified the inspection behavior between experienced 
and novice with an accuracy of over 90%. Therefore, the 
visualizations and feedback on highly-contributing data for 
classification are likely to be useful to novices. 

Figure 5 shows two examples of CAM results obtained when 
a novice performed inspection activities in a VR space. Once the 
novices’ data are input, the system generates and displays the 
heat map of the three-dimensional head position data and the 
color of the heat map represents the magnitude of the 

Figure 4.Overview of feedback system (a) Model training and video 
processing to make feedback (b) Users can get CAM and videos 

feedback and review the difference and experts’ specific inspection skills 
Figure 3. Overview of proposed CNN Model 
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contribution to the classification. For large differences between 
the current data and those of experienced field operators, the 
color is near red. Therefore, novices can confirm which specific 
parts of their inspection behavior is different from that of 
experienced field operators and should therefore be improved. 
Since this map is presented each time the novices perform, they 
can improve different behaviors in each case (Figure 5 ). 

Figure 6 shows an example of the use case of the feedback 
training system constructed in this study. When a novice inspects 
a drainage area, the inspection is performed from eye level in a 
standing position (Figure 6 (a)). However, the CAM result points 
to that behavior as a major contributor to the prediction result of 
novice (Figure 6 (b)). Thus, the novice can learn that it is 
possible to improve skills by changing that behavior. This 
specific knowledge of inspection skills cannot be extracted by 
conventional statistical analysis techniques; hence, we consider 
that one of the contributions of this study is the proposition of a 
new analytical framework that focuses on the specific skills of 
experienced field operators with high classification accuracy. 

Additionally, in this system, novices can also review videos 
of the corresponding inspection time from the first-person view 

of the experienced field operators (Figure 6 (c)). In this way, the 
novice can reflect on what was different between his own 
movements and those of the expert. Specifically, the novice can 
know that the expert inspects the drainage area from a lower 
angle. While the previous study only used the gaze position data 
for the training system, the method of this study can provide 
multi-variable feedback including both head position and gaze 

Figure 6. The use case of our feedback system: (a) Novice see the drainage area from eye level (b) Novice can get feedback from Class Activation Map  (c) 

First-person videos of experts show that the experts are looking at the drainage area from a lower perspective. 

Figure 5. Two examples of results: input data is from the same novice participant (a) the fifth performance (b) the eighth performance. 

TABLE 2 Confusion matrix (LOUO) 

TABLE 1 Confusion matrix (LOSO) 
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position variables using XAI for multivariate analysis, which is 
difficult to achieve using conventional techniques. However, this 
study has some limitations. First, the number of participants was 
limited; hence, future work should be done to verify the 
performance of the CNN with the CAM model using a larger 
database. Second, based on the differences between the results 
obtained from LOSO and LOUO, the variance between 
individuals significantly affects the model learning owing to the 
small number of participants. Moreover, if the number of 
experienced field operators increases, we can also extract more 
common (general) features of their skills. Another limitation is 
that the validity of the feedback from the CAM was not 
evaluated. The evaluation methods can be based on both 
quantitative evaluation metrics, such as deletion and insertion 
[23], and qualitative feedback from experienced operators. 

In addition, we only proposed a new feedback training 
system with XAI, and thus the training effects of the system must 
still be verified experimentally. Furthermore, to compare the 
training effects of the proposed method and the conventional 
method, we only verified the importance of specific knowledge 
of experienced skills. Finally, because we used a virtual 
environment for the experiment and feedback system, the 
fidelity of the VR system must still be verified in the future. 

V. CONCLUSION 

This study aims to construct a virtual reality system for 
identifying expert skills in a visual inspection task in a refinery 
using Explainable AI (XAI) techniques. Since most previous 
studies applied statistical analysis, such as t-tests, to the mean 
value of the experimental data, there is a lack of specificity in the 
existing body of research, and it is difficult to provide feedback 
on the most important part of the collected data to novices. To 
address the above issue, we introduced a CNN with a Class 
Activation Map (CAM) technique, a type of XAI, to analyze the 
experimental data of experienced and novice field operators and 
identify the most important data contributing to classification of 
experienced vs. novice behavior for 120 s inspections. Using this 
method, field operators were classified with a mean accuracy of 
99.1%, and the classification criteria were successfully 
visualized as a heat map for each experimental trial. Based on 
these results, we proposed a training system for training novices 
in “experienced” inspection skills. Although several issues need 
to be addressed in the future, we believe that the new analytical 
framework for identifying specific expert skills proposed in this 
study has the potential to solve the specificity problems of this 
research area and enable effective inspection training. 
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