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Abstract— Deriving a robot’s equations of motion typically
requires placing multiple coordinate frames, commonly using
the Denavit-Hartenberg convention to express the kinematic
and dynamic relationships between segments. This paper
presents an alternative using the differential geometric method
of Exponential Maps, which reduces the number of coordinate
frame choices to two. The traditional and differential geometric
methods are compared, and the conceptual and practical
differences are detailed. The open-source software, Exp[licit]TM,
based on the differential geometric method, is introduced. It
is intended for use by researchers and engineers with basic
knowledge of geometry and robotics and aims to serve as a
supportive resource during the study of differential geometric
approaches. Code snippets and an example application are pro-
vided to demonstrate the benefits of the differential geometric
method and assist users to get started with the software.

I. INTRODUCTION

In standard robotic textbooks, orthonormal coordinate
frames are used to describe robot kinematics and dynamics
[1], [2]. When the Denavit-Hartenberg (DH) convention is
used, predetermined rules have to be followed to position the
coordinate frames and express the translational and rotational
relations between them.

While this approach remains widely prevalent in
university-level robotics courses, it has several limitations.
First, multiple conventions exist to define the coordinate
frames. Within these conventions, different numbers of rules
have to be applied. Some conventions need special treatment,
e.g., for parallel axes where the description is not unique.
Second, a large number of coordinate frames has to be
placed. This becomes especially unwieldy for robots with
many degrees of freedom (DOF). Third, the kinematics and
dynamics are expressed with a fixed set of coordinate frames
on the robot bodies. If the kinematics change, such as in
re-configurable robots, a new set of DH-parameters must
be assigned [3]. This requires additional efforts, including
distinguishing between revolute and prismatic joints [4].
Fourth, the choices of task-related stationary and body-fixed
frames are restricted which is disadvantageous for algorithms
which describe the dynamics of multiple points on different
robot bodies, e.g., for whole-body control [5].
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In contrast, Differential Geometry and Lie Group Theory
can be used as a mathematical framework which lifts the
coordinate-level descriptions to the more abstract space of
manifolds [6]. Robot kinematics and dynamics can be de-
scribed as actions on those manifolds [7]. This mathematical
abstraction leads to a formulation that requires the least num-
ber of coordinate frames to represent the robot’s kinematics
and dynamics. The theoretical strengths of geometric meth-
ods have been shown in excellent textbooks [4], [8], [9] and
tutorial papers [10]–[12]. Papers that compare traditional and
geometric methods emphasize algorithmic and computational
aspects [11], [13], [14] but detailed discussion of conceptual
and practical differences (e.g., the brief overview in [4]) is
rare.

Many powerful software tools exist for simulating and
controlling robots [15]–[17]. Since these tools typically offer
extensive features, they present an ’overhead cost’ in learning
how to use the software [18], [19]. This might impede
first-time users, such as students who want to simulate a
simple robot for a robotics class. For powerful software
tools that use differential methods [19]–[22], the extensive
features might make it harder for non-experts and beginners
to compare those methods with traditional ones like DH.

The main contribution of this paper lies in bridging the gap
between theoretical understanding and practical application,
by comparing traditional and differential geometric methods
in robotics. Section II introduces the background of the
traditional and differential geometric methods, highlighting
the conceptual differences in deriving robot kinematics and
dynamics. The first part of Section III compares the two
methods in terms of modularity, flexibility, and the number of
coordinate frames required. The second part of Section III fo-
cuses on practical implementation. We introduce the software
Exp[licit]TM1, a simple MATLAB robotic toolbox. It serves
as a supportive resource during the study of differential
geometric approaches in robotics. By stripping away the
complexity often associated with more advanced differential
geometric software, Exp[licit] should provide a straightfor-
ward, hands-on experience.

II. DERIVATION OF ROBOT KINEMATICS AND DYNAMICS

This section presents a detailed comparison of both ap-
proaches. The theoretical derivation is focused on the For-
ward Kinematic Map, Jacobian Matrix, and Mass Matrix of
an open-chain n-DOF robot. A computational comparison
with the RVC MATLAB toolbox [17] also includes the

1https://explicit-robotics.github.io/
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Fig. 1: Computation times of RVC and Exp[licit] for five kinematic and dynamic calculations. For the Mass Matrix, Gravity,
and centrifugal/Coriolis terms, the MEX-file option of RVC was invoked. First row: Comparison for Forward kinematics map
(left) and Hybrid Jacobian (right) with respect to end-effector by using native Matlab scripts; Second row: Comparison for
Mass Matrix of RVC (left) against Mass Matrix of RVC-MEX and Exp[licit] (right); Third row: Comparison for Gravity
vector for RVC and RVC-MEX (left) against Gravity vector of Exp[licit] (right); Fourth row: Comparison for Coriolis Matrix
of RVC (left) against Coriolis Matrix of RVC-MEX and Exp[licit] (right). Note that RVC and RVC-MEX overlap in the
Coriolis Matrix plot.
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gravity and centrifugal/Coriolis terms (fig. 1). More details
about the computational comparison are presented in sec. III-
B.7.

A. Preliminaries

The set of all robot configurations q constitute the man-
ifold Q and the set of all homogeneous transformations
H constitute the manifold SE(3). To represent the robot’s
workspace motion, either a stationary or body-fixed coor-
dinate frame has to be chosen.2 We assume one stationary
frame {S}, attached to the fixed base of the robot. Moreover,
we denote {B} as a body-fixed frame, which can be attached
to any point of the robot. Often, {B} coincides with the tool
center point (i.e., the end-effector) of the robot. In this case,
we denote {B} as {ee}.

For a given joint configuration q ∈ Q, the orientation and
translation of {ee} with respect to {S} can be derived via
the Forward Kinematic Map, Q → SE(3) and represented
by the Homogeneous Transformation Matrix SHee(q) =(

SRee
Spee

0 1

)
∈ SE(3). Here, SRee ∈ SO(3) is the

Rotation matrix of {ee} with respect to {S} and Spee ∈ R3

is the translation from {S} to {ee}.
For a given joint velocity q̇ ∈ Rn, the workspace velocity

of the robot’s end-effector can be derived via the Hybrid
Jacobian Matrix3 HJ(q) ∈ R6×n, and represented by a
6D-vector of workspace velocities, called Spatial Velocity
SVee =

(
Svee
Sω

)
∈ R6. Here, SVee incorporates the linear

velocity Svee ∈ R3 of the origin of {ee} with respect to {S}
and the angular velocity Sω ∈ R3 of the end-effector body,
both expressed in {S}.

The total kinetic co-energy L(q, q̇) ∈ R of an n-DOF
robot is the sum of all contributions of kinetic co-energy
stored by individual bodies: L(q, q̇) = 1

2 q̇
TM(q)q̇ [4]. The

matrix M(q) ∈ Rn×n is called the Mass Matrix of the robot.

B. Traditional Method

1) Forward Kinematic Map via DH-convention: The DH-
convention [23] is widely used to derive the Forward Kine-
matic Map. It is a set of rules to place body-fixed frames
on the robot, and to derive the parameters that describe the
kinematic relation between adjacent frames [4]. Within the
multiple DH-conventions [24], [25], we outline the modified
DH-convention which consists of four DH-parameters: link
length a, link twist α, link offset d, and joint angle θ [1],
[4], [17].

To derive the DH-parameters, multiple frames have to be
placed on each link using the following rules (fig. 2):

(i) Define frames {1}, {2}, · · · , {n} on each link, ordered
from the base to the end-effector of the robot. Choose
axis Ẑi of frame {i} to be aligned with the i-th joint.
For a revolute (prismatic) joint, direction of Ẑi is along
the positive direction of rotation (translation).

2From now on, we use “frame(s)” to refer to “coordinate frame(s)”.
3We elaborate the notion “Hybrid” in the next subsection. Moreover,

superscript H denotes “Hybrid,” rather than referring to a frame.
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Fig. 2: Frames attached to an open-chain robot, using the
DH-conventions.

(ii) For i = 1, 2, ..., n− 1, find a line segment that is mutu-
ally perpendicular to axes Ẑi and Ẑi+1. The intersection
between this line and Ẑi is the origin of frame {i}.
Moreover, axis X̂i is chosen to be aligned with this
line segment, pointing from Ẑi to Ẑi+1.

(iii) Attach the origin of frame {ee} to the end-effector. To
simplify the derivation of the DH-parameters, the Ẑee

axis is usually chosen to be parallel to Ẑn [1]. From Ẑn

and Ẑee, X̂n is defined using step (ii). Finally, choose
X̂ee such that valid DH-parameters can be defined [4].

(iv) The Ŷ axes of frames {1}, {2}, · · · , {n}, {ee} are
defined using the right-hand convention.

(v) Attach frame {S} to the robot base. Usually, it is
chosen to coincide with frame {1} when joint 1 has
zero displacement.

After assigning n + 2 frames, {S}, {1}, · · · , {n},
{ee}, the 4(n + 1) DH-parameters can be expressed. With
these parameters, the Homogeneous Transformation Matrix
i−1Hi ∈ SE(3) between frame {i − 1} and {i} is defined
for i = 1, 2, ..., n + 1, where {0} ≡ {S} and {n + 1} ≡
{ee}. Finally, by concatenating these matrices, the Forward
Kinematic Map, SHee(q) can be derived:

SHee(q) =
SH1(q1)

1H2(q2)...
n−1Hn(qn)

nHee (1)

2) Jacobian Matrix by separating linear and angular
velocities: To derive the Jacobian Matrix, the traditional
method separately relates joint velocities to linear and an-
gular workspace velocities [2]. We denote the linear and
rotational part of the Jacobian as J(q)v ∈ R3×n and
J(q)ω ∈ R3×n, respectively.

To derive J(q)v , the position Spee has to be extracted
from SHee(q) (sec. II-B.1). Since Spee is an analytical
function of q, J(q)v collects the partial derivatives of Spee,
with respect to the coordinate components of q. Often, J(q)v
is called an “Analytical Jacobian” [2].

The matrix J(q)ω is commonly derived using a geometric
method and specifying the frames based on DH-convention
[2] (sec. II-B.1). More specifically, for i = 1, 2, ..., n:

• If the i-th joint is a revolute joint with unit-rotation
axis iω̂i expressed in {i}, the i-th column of J(q)ω is
SRi

iω̂i =
Sω̂i.
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• If the i-th joint is a prismatic joint, the i-th column of
J(q)ω is a zero vector.

To calculate the spatial velocity SVee, J(q)v and J(q)ω
can be vertically concatenated:

SVee =
HJ(q) q̇ (2)

Due to the analytical derivation of J(q)v and the geometrical
derivation of J(q)ω , we call HJ(q) the Hybrid Jacobian
Matrix.

3) Mass Matrix via Hybrid Jacobians: To derive the Mass
Matrix of the robot, it is necessary to attach n additional
frames to the center of mass (COM) of the n bodies. These
will be denoted as {C1}, {C2}, · · · , {Cn}, ordered from
the base to the end-effector of the robot. The moment of
inertia of the i-th body with respect to {Ci} is denoted iIi ∈
R3×3. To express iIi in {S}, the rotation matrix SRi is used
(sec. II-B.1): SIi =

SRi
iIi

SRi
T .

For each body i, the Hybrid Jacobian Matrix HJi(q) is
derived to describe the linear and angular velocity of {Ci}
with respect to {S} (sec. II-B.2). Note that for each matrix
HJi(q), the columns from i+1 to n are set to be zero since
they do not contribute to the motion of body i [2].

Finally, for a given mass mi ∈ R of the i-th body, M(q) ∈
Rn×n can be calculated by:

M(q) =

n∑
i=1

mi Ji(q)v
T
Ji(q)v

+

n∑
i=1

Ji(q)ω
T SIi Ji(q)ω

(3)

C. Differential geometric method

1) Forward Kinematic Map via the Product of Exponen-
tials Formula: For the geometric method, only two frames
{S} and {ee} have to be chosen and assigned to the initial
joint configuration of the robot q0 ∈ Q. The initial Ho-
mogeneous Transformation Matrix is denoted SHee(q0) ≡
SHee,0 ∈ SE(3). In practice it is useful to select {S} and
{ee} to have equal orientation (i.e., rotation matrix equals
the identity matrix) such that only the translation between
{S} and {ee} has to be identified to calculate SHee,0.

In the next step, the Unit Joint Twists4 Sη̂i ∈ R6 of each
joint at initial joint configuration are expressed with respect
to {S}. Depending on the type of the i-th robot joint, Sη̂i ∈
R6 is defined by:

• If the i-th joint is a revolute joint, the unit-axis of
rotation is Sω̂i. Any point Spηi

∈ R3 along Sω̂i can be
selected to define Sη̂i = (−[Sω̂i]

Spηi
, Sω̂i)

T . Here,
[Sω̂i] ∈ so(3) is the skew-symmetric matrix form of
Sω̂i [4]. The operation [Sω̂i]

Spηi is equal to Sω×Spηi .
• If the i-th joint is a prismatic joint, the unit-axis of

translation is S v̂i and therefore Sη̂i = (S v̂i,0).
Note that the n Joint Twists Sη̂i are defined with respect to a
single frame {S}. For most robots, the unit-axes of rotation

4For simplicity, we will omit the term “Unit” in what follows.

(or translation) can be identified by visual inspection. The
positions Spηi can be determined by using CAD-programs.

Finally, the Product of Exponentials Formula [26] can be
used to derive the Forward Kinematic Map:

SHee(q) = exp ([Sη̂1]q1) exp ([Sη̂2]q2)

· · · exp ([Sη̂n]qn)
SHee,0

(4)

In this equation, [Sη̂i] ∈ se(3) is a 4×4 matrix representation
of Sη̂i [8]. Given Sη̂ = (Sv, Sω̂) and q ∈ R, a closed-form
solution of exp([Sη̂]q) can be formulated [4]:

exp([Sω̂]q) = I3 + sin q[Sω̂] + (1− cos q)[Sω̂]2

G(q) = I3q + (1− cos q)[Sω̂] + (q − sin q)[Sω̂]2

exp ([Sη̂]q) =

[
exp([Sω̂]q) G(q)Sv

0 1

] (5)

2) Jacobian Matrices via The Adjoint Map: For the
geometric method, two Jacobian matrices exist: the Spatial
Jacobian SJ(q) ∈ R6×n and the Body Jacobian BJ(q) ∈
R6×n [8]. The Spatial (respectively Body) Jacobian relates
joint velocities q̇ to the Spatial (respectively Body) Twist Sξ
(Bξ) [4], [8]:

Sξ =

[
Svs
Sω

]
= SJ(q)q̇ Bξ =

[
Bvb
Bω

]
= BJ(q)q̇ (6)

Here, Sω (respectively Bω) is the angular velocity of the
body, expressed in {S} (respectively {B}); Svs is not the
velocity of the origin of {S}, which is zero; it is the linear
velocity of a point on the robot structure, viewed as if it
travels through the origin of {S} [4], [8]; Bvb is the velocity
of the origin of {B} with respect to {S}, expressed in {B}
[4], [8].

The columns of SJ(q) and BJ(q) are derived using the
Joint Twists η̂i and the Adjoint Map AdH : R6 → R6

associated with H ∈ SE(3). As shown in [4], [8], [27], the
Adjoint map is used to transform twists and wrenches be-

tween two frames. In matrix notation, AdH =

(
R [p]R
0 R

)
,

with [p] ∈ R3 being the skew-symmetric matrix form of
position array and R ∈ SO(3) being the rotation matrix.

For planar robots, η′
i can be identified by visual inspection.

In general, the i-th column η′
i of SJ(q) is:

η′
i =

{
Sη̂1 i = 1

AdSHi−1

Sη̂i i = 2, ..., n
(7)

In this equation, SHi−1 can be derived via the
Product of Exponentials Formula, i.e., SHi−1 =
exp ([Sη̂1]q1) exp ([

Sη̂2]q2) · · · exp ([Sη̂i−1]qi−1).
The i-th column η†

i of BJ(q) can be derived via η′
i. With

{B} attached to the j-th body and i ≤ j:

η†
i = Ad(iHj

SHB,0)−1
Sη̂i (8)

This shows the relation between SJ(q) and BJ(q). Here,
iHj can be derived via the Product of Exponentials Formula
(eq. (7)). Matrix SHB,0 ∈ SE(3) is the Homogeneous
Transformation of {B} with respect to {S} at initial joint
configuration q0. For j = 1, 2, ..., n − 1, the columns of
BJ(q) from j + 1 to n are zero.
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3) Mass Matrix—Mapping Generalized Inertia with Body
Jacobians: For the geometric method, the translational and
rotational body contributions do not have to be separated.
Instead, using the n frames {C1}, {C2}, ..., {Cn} (sec. II-
B.2), we define their corresponding Body Jacobian Matrices
BJ1(q), BJ2(q), ..., BJn(q) (sec. II-C.2). Moreover, we use
mi and iIi to define the Generalized Inertia Matrix Mi =(
miI3 0
0 iIi

)
∈ R6×6 for each body i. In practice, {Ci} are

aligned with the principal moments of inertia. Hence, Mi

can be identified by using CAD-programs. Finally, the robot
Mass Matrix can be calculated by:

M(q) =

n∑
i=1

BJi(q)
T Mi

BJi(q). (9)

III. EXP[LICIT]: CONCEPT, FEATURES AND USE-CASES

This section is split into two parts. First, we highlight
the conceptual and practical differences between the tradi-
tional and geometric methods. To demonstrate the practical
differences, we use a Franka robot.5 Second, we introduce
Exp[licit], a MATLAB-based robot software which leverages
the advantages of the geometric method. By using Exp[licit],
the model parameters of the Franka robot can be derived.
The modular structure of Exp[licit] will be described by
using code snippets and an example application. Finally, we
compare the computational efficiency of Exp[licit] with the
MATLAB-based open-source robotics software “Robotics,
Vision and Control” (RVC) which is based on the DH-
convention [17].

A. Conceptual and practical comparison between traditional
and geometric methods

1) Forward Kinematic Map: The DH-convention provides
a minimal parameter representation (four parameters) to
define the Homogeneous Transformation Matrix [4]. This
comes at a cost: a set of rules has to be carefully stipu-
lated, which requires an extensive preparation in placing and
transforming n+ 2 frames. If adjacent axes intersect or are
parallel to each other, additional rules have to be considered
to handle these exceptions for step (ii) in Section II-B.1 [1].
Since rotations and translations are only allowed along/about
axes X̂ and Ẑ, the choices for frames {S} and {ee} are
restricted.

In contrast, the geometric method requires only two
frames: the fixed inertial frame {S} and the body-fixed
frame {B}. Compared to the DH-approach, there are no
restrictions on their position and orientation. The Product
of Exponentials Formula provides considerable flexibility.
To calculate the Joint Twists at initial configuration, any
point on the twist axis can be chosen (sec. II-C.1). Once the
Joint Twists are defined, the Forward Kinematic Map can
be derived for any point on the robot structure (sec. III-B.6).
This conceptual advantage yields a reduced computation time
for the Forward Kinematic Map (sec. III-B.7)

5https://www.franka.de/

The practical benefit of the geometric method for the
Franka robot can be seen in fig. 3. Compared to the DH-
convention with nine frames [28], only two frames are
needed. For our choice of initial configuration, the calcu-
lation of SHee,0 is straightforward since only the position
of the end-effector has to be calculated. For our example,
Spee,0 = (0.088, 0, 1.033) and SRee,0 = I3.

The Joint Twists of the Franka robot are shown in table I.
As can be seen, for a robot with revolute joints and an
appropriate choice of initial configuration, the geometric
approach requires at most four parameters (three translational
parameters and one rotational parameter), similar to the DH
approach. For prismatic joints, the geometric approach needs
only three parameters.

Traditional Approach

𝑎 (m) 𝑑 (m) 𝛼 (rad) 𝜃 (rad)
!𝑯" 0.0 0.333 0 𝑞"
"𝑯# 0.0 0.000 −𝜋/2 𝑞#
#𝑯$ 0.0 0.316 −𝜋/2 𝑞$
$𝑯% −0.0825 0.000 −𝜋/2 𝑞%
%𝑯& −0.0825 0.384 −𝜋/2 𝑞&
&𝑯' 0.0 0.000 −𝜋/2 𝑞'
'𝑯( 0.088 0.000 −𝜋/2 𝑞(
(𝑯)) 0.0 0.107 0 0

Geometric Approach
!/𝜼" (0, 0, 0, 0, 0, 1)
!/𝜼# (0.333, 0, 0, 0, −1, 0)
!/𝜼$ (0, 0, 0, 0, 0, 1)
!/𝜼% (−0.649, 0, 0.0825, 0, 1, 0)
!/𝜼& (0, 0, 0, 0, 0, 1)
!/𝜼' (−1.033, 0, 0, 0, 1, 0)
!/𝜼( (0, 0.088, 0, 0, 0, −1)

TABLE I: Parameters for a Franka robot.

2) Jacobian Matrices: For the traditional method, the
Hybrid Jacobian Matrix HJ(q) is separated into linear and
angular parts. Before the linear part of HJ(q) can be
derived, a choice for end-effector frame {ee} has to be made.
Although recalculating the velocities for a different frame
on the end-effector body is straightforward, changing the
frame to another point on any other robot body will require
recalculating the position using the Forward Kinematic Map.

The geometric approach derived two different Jacobian
matrices, SJ(q) and BJ(q). The basis of the derivation are
the Joint Twists at initial configuration. Hence, no separation
into linear and rotational parts is needed. SJ(q) and its
output Sξ (eq. (6)) only depend on one frame {S}. By using
the Adjoint Map, Sξ can be mapped to any point on the robot
structure. By choosing a point equal to the origin of {ee},
the Spatial Velocity can be derived:

SVee =

(
I3 −[Spee]
0 I3

)
SJ(q)︸ ︷︷ ︸

HJ(q)

q̇. (10)
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Fig. 3: Franka robot at initial configuration. The DH-convention is shown in (A) and the geometric method in (B). Only
two frames are required for the geometric method (B). The frames shown in (A) are derived from [28].

Here, no modification of the Forward Kinematic Map is
needed, which improves the length and clarity of the code
and reduces the computation time of HJ(q) (sec. III-B.7).

3) Mass Matrix: For both approaches, the frames {Ci}
have to be attached to the COM of the robot at the initial
configuration. For the traditional method, the orientation of
these coordinate frames is restricted to obtain a valid set of
DH-parameters. Commonly, {Ci} is chosen to be aligned
with frame {i} (fig. 3A) and separately rotated by SI =
SRi

iISRT
i .

For the geometric approach, the orientation of body frames
{C1}, {C2}, ..., {Cn} can be freely chosen. For each COM,
the Body Jacobians are derived, again using the Adjoint Map
(eqs. (7), (8)).

While the traditional method divides the derivation into
linear and rotational contributions, the geometric method
uses the generalized inertia matrices Mi (eq. (9)) to derive
the Mass Matrix. Even though Mi may not be aligned with
{S}, it need not be separately transformed. The transforma-
tion is incorporated in the map BJi(q).

B. Exp[licit]: Implementation of geometric method

The software can be installed from our Github repository:
https://github.com/explicit-robotics/Explicit-MATLAB/. The
documentation of the software can be found here:
https://explicit-robotics.github.io/.

1) Software structure: The core of the software is the
RobotPrimitives-class, which is used as the parent
class of the software. It provides the member functions
getForwardKinematics, getSpatialJacobian,
getHybridJacobian, getBodyJacobian,
getMassMatrix, getGravityVector, and
getCoriolisMatrix for deriving the robot parameters.
By inheriting the RobotPrimitives-class, a new robot
class can be defined that shares the attributes and the
member functions of the parent class. Each robot class
brings its kinematic and dynamic properties (e.g., axes of
rotation, link lengths, masses, etc.).

2) Initialization: Exp[licit] supports various 2D and 3D-
robots (fig. 4). In this paper, we will use a Franka

robot example (franka.m), which is inherited from the
RobotPrimitives-class. The initialization is shown be-
low:

% Call Franka Robot
robot = franka( );
robot.init( );

The init-function initializes all Joint Twists and General-
ized Mass Matrices for the initial configuration (fig. 3).

3) Symbolic member functions: All member functions
also accept symbolic arguments. This feature is helpful for
control methods that require an analytical formulation of the
robot’s equations of motion, e.g., adaptive control methods
[29]. An example to read out the symbolic form of the
Forward Kinematics Map can be seen below:

% Create symbolic column vector
q_sym = sym('q', [ robot.nq, 1 ]);

% Symbolic form of Hom. Trans. Matrix
H_ee_sym = robot.getForwardKinematics(

q_sym );

4) Visualization and Animation: For visualization, the
robot object can be passed to a 2D or 3D-animation object:

% Create animation
anim = Animation('Dimension', 3, 'xLim',

[-0.7,0.7], 'yLim', [-0.7,0.7], '
zLim', [0,1.4]);

anim.init( );
anim.attachRobot( robot )

The Animation-class heavily relies on MATLAB
graphic functions (e.g., axes, patches, lighting). The key
to our animation is to create a chain of transform objects
(hgtransforms) instead of transforming vertices. The
Animation-class has an optional input that allows the
recording of videos with adjustable playback speeds.

At run-time (simulation time t), the robot object (in
configuration q) and the animation can be updated:
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A B C

Fig. 4: Exp[licit] supports various 2D and 3D-robots. (A) Two planar robots: a Cart-Pole (left) and a Snake-Robot with
variable DOF (right). (B) Two robots can be combined by using the addKinematics-method of the RobotPrimitives-
class. In the example (B), the two robots of (A) are combined. (C) Currently supported 3D-robots: KUKA LBR iiwa (7 and
14 kg), YouBot, and Franka.

% Update kinematics
robot.updateKinematics(q);
anim.update(t);

5) Modularity through Joint Twists: The key to the mod-
ularity of Exp[licit] is the setJointTwists( )-function
of the RobotPrimitives-class. So far, Exp[licit] sup-
ports revolute and prismatic joint types, indicated by the
JointTypes( )-attribute. For each robot, the Joint Twists
are derived from the joint directions (AxisDirections)
and joint positions (AxisOrigins) in initial configuration.
All member functions of the RobotPrimitives-class
then re-use joints twists at runtime to map them from initial
to current configuration (eq. (4) for Forward Kinematics,
eq. (7) for Spatial Jacobian, and eq. (8) for Body Jacobian
and Mass Matrix).

6) Example simulation: By default, the simulation loop is
set to be real-time. It is beneficial to structure the simulation
script the following way: (1) calculation of all kinematic
and dynamic robot parameters; (2) trajectory generation; (3)
control law; (4) integration and update. For (1), the member
functions of the robot object can be used. Parts (2) and (3) are
generally user specific. For the integration (4), any integrator
can be used, e.g., MATLABs pre-built ode45.m.

To help users with parts (2) and (3), we implemented
a simple impedance controller [30] for a Franka robot
(main franka IC.m) that moves the end-effector around
a circular path, while keeping its elbow position (joint four)
fixed (fig. 5). Thanks to the modularity of the implemented
geometric method, the kinematics of any point on any body
can be selected by specifying the robot body (’bodyID’)
and the corresponding position on the body (’position’):

% Get end-effector kinematics (default)
H_ee = robot.getForwardKinematics( q );
J_ee = robot.getHybridJacobian( q );

% Get kinematics of point on the elbow (
body 4)

H_eb = robot.getForwardKinematics( q, '
bodyID', 4, 'position', [-0.1,0,0] );

J_eb = robot.getHybridJacobian( q, '
bodyID', 4, 'position', [-0.1,0,0] );

Fig. 5: Simulation of a simple impedance controller, using a
Franka robot.

7) Comparison with MATLAB robotic toolbox: We com-
pared the computational speed of Exp[licit] with the RVC
MATLAB software [17], which uses the DH-convention.
For RVC, version RTB10+MVTB4 (2017) was used.6 By
using native MATLAB scripts, the computation time was
compared for the Forward Kinematic Map, Hybrid Jacobian,
Mass Matrix, centrifugal/Coriolis terms, and Gravity vector
of an n-DOF open-chain planar robot. The robot consisted of
n identical uniform-mass bars with length l = 1m and mass
m = 1kg. While Exp[licit] calculates the gravity and cen-
trifugal/Coriolis terms with a closed-form algorithm, RVC
uses recursive Newton-Euler methods (RNE). Both Exp[licit]
and RVC used .m-MATLAB scripts. For the mass matrix,
gravity and the centrifugal/Coriolis effects, the RVC-Method
can invoke MEX-files to improve the computation speed.
MEX-files are native C or C++ files that are dynamically
linked to the MATLAB application at runtime.

For the RVC software, the robot was constructed from
the SerialLink-class which consists of n Revolute-
classes. For Exp[licit], the robot was constructed from the
SnakeBot-class (fig. 4A). Robots with various DOF were
constructed and tested. The test was performed with a
MacBook air (M1 Chip, 16GB Memory), using MATLAB
2022a. The timeit() function was used to measure the
computation time.

6https://petercorke.com/toolboxes/
robotics-toolbox/
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The results of our computational comparisons are shown
in fig. 1. For almost all computations, Exp[licit] was faster
than the RVC software. Only for more than 70 DOF, was
the gravity vector of the RVC MEX-file option faster than
Exp[licit]. For both softwares, the computation of the For-
ward Kinematic Map and the Hybrid Jacobian showed a
linear trend. The RVC software was capable of computing
the Forward Kinematic Map of a 15-DOF robot within
1ms, whereas Exp[licit] required less than 0.5ms for more
than 100 DOF. For the Hybrid Jacobian, the RVC software
required more than 1ms for a 15-DOF robot, while Exp[licit]
could accomplish the same for 80 DOF. The computation
of the Mass Matrix showed an exponential trend for both
softwares. While Exp[licit] outperformed RVC for MATLAB
scripts by a factor of 100, RVC had a much better perfor-
mance using MEX-files. Nevertheless, it was still slower than
Exp[licit]. A similar trend was seen for the gravity vector:
RVC’s performance was improved by invoking MEX-files and
showed better performance for more than 70 DOF. However,
for the centrifugal/Coriolis terms, Exp[licit] drastically out-
performed RVC.

These results highlight the computational advantages of a
geometric approach, theoretically discussed in [31].

IV. SUMMARY AND CONCLUSION

This paper summarized and compared a traditional and
a geometric method to derive the kinematic and dynamic
parameters of an open-chain robot. We highlighted the
conceptual and practical differences between the two ap-
proaches. While the geometric method demands a more
abstract perspective (i.e., mapping of Joint Twists), we
demonstrated several advantages compared to traditional
methods. In summary, the advantages of the geometric
method are: 1) Flexibility to express kinematic and dynamic
relations without predefined rules and exceptions (sec. III-
A); 2) Highly modular structure, since Joint Twists can be
reused throughout the calculation (sec. III-B.5); 3) No more
than two frames to describe robot kinematics and dynamics
(fig. 3).

We introduced Exp[licit], a MATLAB-based toolbox that
implements the geometric method and leverages its ad-
vantages. While acknowledging that our software does not
encompass the extensive features of advanced robotic simu-
lation tools [19]–[22], its strength lies in its simplicity and
its focus on educational outcomes. It is tailored to foster
an initial understanding and spark interest in the field of
differential geometry for roboticists.
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