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Abstract—Modular systems offer increased system versatility
and efficiency. Work-drive systems are a subset of mechatronic
systems, often modular, featuring a working function and a
driving function. Efficient module changes are a core challenge of
modularity as software adaptations are needed to accommodate
the various module functionalities, geometries and dynamics.
Traditional virtual commissioning reduces the development time
of products and systems. Additionally, quality improvements are
achieved by virtue of earlier and more thorough testing in a
risk-free environment. Specifically, control software developed
and tuned using a system’s virtual replica can be deployed
to the system with little or no modifications. Current virtual
commissioning solutions lack automated capabilities or solely
employ kinematic models. The digital twin framework proposed
in this paper for automated virtual re-commissioning uses a
dynamic multibody model to adapt software during module
changes in an operating environment with little to no help from
a human operator. The proposed framework is demonstrated in
simulation for low-level control loop re-commissioning. A sample
task sequence is executed in three test cases: 1) baseline 2) system
parameter change 3) low-level controller re-tune. The simulation
results show an increase in tracking error in 2) compared to 1),
illustrating the need for controller re-tune. This subsequently
brings back similar performance as the baseline case, i.e. a
decrease of 10% tracking error in 3) compared to 2).

Index Terms—Digital twins, Virtual commissioning, Work-
drive systems, CAD, Motion simulation

I. INTRODUCTION

In recent years, there has been a demand from the man-
ufacturing industry for increased efficiency and versatility of
production lines [1], [2]. Mechatronic systems are widely used

This research is part of the Work-Drive SBO project funded and supported
by Flanders Make, the strategic research centre for the manufacturing industry.

978-1-6654-7633-1/23/$31.00 ©2023 IEEE

in this field and are historically integrated systems with propri-
etary components. Modern modular mechanic systems allow
quick re-configuration and component sharing. Advantages
of modular mechatronic systems include reduced equipment
acquisition costs, improved work flexibility and more optimal
use of time and physical resources. Work-Drive systems are
a sub-type of mechatronic systems featuring both a driving
function and a working function. They are prime candidates
to benefit from modularity. Examples of such systems are a
robotic arm with end-effector as the working function, attached
to an automated guided vehicle (AGV) as the driving function.
In this paper, the studied system is a 6 degree of freedom
(DOF) robotic arm attached to a sliding linear platform. Fig. 1
shows the CAD representation of this modular Work-Drive
system.

A particular challenge of modular industrial systems is
time efficient module changes. Module swaps imply changes
in system kinematics and dynamics. These changes call for
adaptations of control parameters. For simple systems with
few module swaps and when modules are well known, state
of the art adaptive control may be successfully employed [3].
However, when the number of compatible modules is large
and when this pool of modules is likely to constantly evolve,
system re-commissioning is needed. This means model and
control parameters must be adapted. Traditionally, a human
operator familiar with the system would do this. However,
there is potential to accelerate this process through automated
virtual re-commissioning.

Increased computing power, access to large amounts of data
and high-end software tools have been a driving force in
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Fig. 1. CAD rendering of the linear track & 6 DOF robot arm

Industry 4.0 [4]. Central to this industrial revolution is the
digitalization of processes and systems. The traditional design
cycle of products and systems called for time intensive use
of costly prototypes. Virtual commissioning has been used in
recent years as a means of accelerating this design cycle [5].
Virtual commissioning can be defined as the verification and
validation of system components with their control algorithms
in simulation before implementation on the physical system
[6]. These simulations can be software-in-the-loop (SIL) or
hardware-in-the-loop (HIL). The appeal of virtual commis-
sioning is reduced development and validation time, the pos-
sibility for more thorough testing with increased variety of
validation cases, the ability to test the system before the hard-
ware is available, increased safety and reduced risk of damage
during physical commissioning later on [6]. In [7], it was
shown experimentally that virtual commissioning increased
the quality of a control logic program while simultaneously
reducing the debugging time. In complement to digitalizing
the commissioning cycle, the system supervision can also be
digitalized. A trending way of doing so is through a digital
twin (DT). Digital twins are typically linked with Internet
of Things, data driven modelling and recent developments
in communication technology [8]. Typical digital twin tasks
are real-time monitoring, optimal scheduling, model-based
control, prediction, fault diagnosis and predictive maintenance
[9], [10]. A network of digital twins may even expand the
capabilities of smart factories as presented in [11].
Previously, [12] developed a SIL simulation environment to
test and validate human-robot collaboration for AGVs. The
authors in [13] used virtual reality to commission multi-robot
manufacturing cells. These two applications used the game
engine Unity to create the virtual reality representation of
systems. A digital twin for a robot arm was developed in
[14] using the same gaming and VR tools. The kinematic
control was validated against the real robot. However, these
three applications lack mechanical dynamic modelling, i.e.
they only include kinematic motion and do not account
for forces in the system. In [15], a TwinCAT PLC mo-
tion program for a 6 DOF robot is virtually commissioned
through ABB’s RobotStudio software. RobotStudio makes use
of rigid body dynamics but does not allow modifications to

the torque, velocity and position controllers. [6], proposes
a CAD-based model for virtual commissioning of a delta
pick and place robot. The trajectory tracking is then tested
against the physical system. However, this CAD-based model
approach fails to provide real-time supervisory capabilities.
Current modular mechatronic systems either lack automated
virtual re-commissioning or solely consider kinematics when
re-commissioning software components. The proposed digital
twin framework for virtual re-comissioning contributes to
existing literature by featuring a CAD-based multibody model
that allows automated re-commissioning of low-level control
loops during module changes. Fig. 2 graphically presents this
framework for the 6 DOF robot & linear track system. The
virtual replica is comprised of a CAD-based co-simulation
and Docker containers hosted in an Ubuntu virtual machine.
When this virtual replica runs in parallel to the system,
it offers valuable insights. For typical mechatronic systems,
virtual replicas monitor tracking errors, working point and
parameter changes in addition to component condition using
sensor signals. A supervising entity then acts based on these
observations to optimally adapt control parameters, end a
process and signal the repair or replacement of components. In
the proposed framework, it will signal the need for virtual re-
commissioning of software components. Specifically in this
paper, the re-commissioning of low-level controllers will be
demonstrated.

This paper is structured as follows: the NX - Simulink
co-simulation is presented in § II-C, while the task control
algorithm and trajectory planner are presented in § II-D
and § II-E. § II-F describes the world model and object
tracking. Simulation results and the accompanying discussions
are presented in § III. Conclusions and future research topics
are available in § IV.

II. MODEL DESCRIPTION
A. Application description

The Work-Drive system of interest is comprised of a 6 DOF
robot arm attached to a sliding linear track. A second linear
track with sliding platform is located underneath and emulates
a conveyor belt. Fig. 1 shows a CAD representation of this ex-
perimental setup. The robotic arm and its end-effector execute
work functions such as gripping objects from the bottom linear
track. Various end-effectors can be attached to the robotic arm,
enabling a wide range of work functions to be performed.
The top linear track executes the drive function. During task
execution, the robot arm and end-effector must avoid collisions
with the two tracks and their supporting elements. Two ceiling-
mounted cameras and a robot arm mounted camera monitor
the position of the target object. The latter can then be placed
at various locations on the sliding platform, replicating the
stochastic positioning of objects on a conveyor belt in certain
industrial applications.

B. Architecture

In Fig. 3, the developed software architecture is shown.
It is based on two virtual machines (VMs) running on a
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Fig. 2. Proposed Digital Twin Framework for virtual commissioning. Human
and algorithm icons by shivaniga_jipara and mithun on https://www.freeicons.
io (accessed 10 November 2021).

common host computer. The Ubuntu VM contains the optimal
trajectory planner, the task controller, the world model and the
web graphical user interface (GUI). These software modules
run as Docker images. The first three are coded in Python
and the last in HTMLS5. After virtual commissioning, they
are implemented on the real system with minimal structural
modifications. The Simulink - Siemens NX co-simulation
runs inside the Windows 10 VM. Siemens NX runs a CAD
based motion simulation while Simulink runs the cascaded
velocity and position control loops. The two VMs run on
a single physical machine and are forced onto the same IP
range. The web GUI, task controller, trajectory planner, world
model and Simulink each have their own ROS2 node. They
publish and subscribe to each other’s ROS2 topics. This is
denoted by the pink lines in Fig. 3. All messages are time-
stamped, each computer clock is periodically re-synchronized,
ensuring system synchronization. On the physical system, it
is proposed that the virtual replica shown in Fig. 3 runs in
parallel to the real system along with a supervising entity
as displayed in Fig. 2. When this supervising entity detects
changes, for example a full module swap, the virtual replica
is used to re-commission the controllers for the new system
kinematics and dynamics. The new parameters are then sent
to the physical system, on the left side of Fig. 2. During
the time re-commissioning takes place, the physical system

enters a safe mode with stricter motion constraints. Once re-
commissioning is fully automated, this would be in the order
of tens of seconds.

C. Co-Simulation & Low-Level Control

For virtual commissioning of control algorithms, a highly
realistic model is required. In this application, the CAD
software Siemens NX was employed as it features multibody
dynamics solvers that accurately model the system forces and
movements. In Siemens NX, the motion bodies and joints are
parametrized. Additionally masses, moments of inertia and
friction characteristics are tuned. Finally, the NX block is
prepared for co-simulation by specifying the timestep and the
block in- and outputs. It is compiled into a Simulink block
and integrated into the control scheme. The outputs of the NX
block are the velocity © and position {2 of each controlled
joint, emulating the output of each joint’s drive motion object.
The inputs are torque commands of the joints Tsp, the same
as are fed to the servo drives.

Given an accurate model and sufficient stability margins, the
low-level control scheme presented in Fig. 3 can be transferred
from the virtual commissioning environment to a PLC or drive
piloting the physical system. This control scheme is a state of
the art servo drive positioning loop with cascaded position and
velocity feedback controllers. A velocity feedforward action
Qpp improves the tracking performance for spline shaped
trajectories. The sampling rates of the signals and controllers
are selected to be the same as those implemented inside the
servo drives. Controller saturations enforce actuator limits, i.e.
torque and velocity are constrained to stay within motor and
gearbox operating limits. The trajectories received from the
optimal trajectory planner are bounded to stay within track
and joint positioning limits.

D. Task-Level controller

The task controller (TC) configures the trajectory planner
described in § II-E using pre-defined application description
files. The TC itself takes instructions from an operator through
an GUIL. Communication in and out of the TC happens through
the remote procedure call (RPC) protocol implemented in the
ActionLib inter-process communication mechanism of ROS2.
Specifically, the TC sends the planner as a json file. In this
file, the states, initial states, transitions and RPC parameters
are specified.

Petri Nets are a well-known formalism to represent plans
where concurrent activities take place. In the case of the TC,
the simultaneous actions are the work and drive functions.
Petri Nets are characterised by places and transitions. Tokens
in each place represent the state of the system. In this case, the
number of tokens present is either 0: no action is requested,
1: an action is requested in which a single planning action
coordinates both the work and drive actors, 2: work and drive
are commanded to act in a concurrent way. The planner signals
the end of the action. The Petri Net is represented with a graph,
encoded with the dot language. This is shown in Fig. 4.
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Fig. 3. Schematic representation of the control scheme developed for the virtual commissioning of mechatronic systems

Fig. 4. Petri Net representing the example plan reported in § III. The state
reported is the final step, when one Token is state s4

Align Grasp Dropoff

E. Optimal Trajectory Planner

Trajectory planning is approached as a nonlinear optimal
control problem (OCP) with a free end-time that is numeri-
cally solved. The various tasks commanded by the task-level
controller of § II-D give rise to concrete numerical settings
for the parametric constraints of a template OCP, next to a
possibility for structural additions to the set of constraints.
The template OCP is comprised of:

1) the planning horizon time 7" as objective

2) a kinematic model of the linear track derived from the

CAD dynamic model & robot arm
3) trajectory constraints that limit joint positions, velocities,
accelerations and jerks to arbitrary bounds b
4) nonlinear trajectory constraints for collision avoidance,
with input robot pose ¢(t) and obstacles w
5) a boundary constraint for the initial configuration g of
the robot
In a task to align a gripper with a (moving) target d, the
structural additions consist of boundary constraints on the
position, velocity and orientation misalignment error at the
end of the planning horizon. When the planner is started, a
prediction is made about the configuration of the robot at
that time in the future where a numerical solution to the

planner OCP is expected to be finished. This prediction is
taken as the numerical value of the parametric constraint 5) in
the template. Time-stamped messages from the world model
inform the planner about current and past poses and velocities
of the robot, target and obstacles.

The specification of the OCP is performed using Rockit
[16] which implements various numerical solution strategies.
A direct approach is used (first discretise, then optimise)
with IPOPT [17] to solve the resultant nonlinear program,
and CasADi [18] to handle the algorithmic differentiation
and code-generation of the required constraint and objective
evaluation functions and their derivatives. These compiled
evaluation functions are parametric and hence constructed
offline for each possible task individually. Since the kinematic
model gives rise to a trivial set of differential equations, the
system dynamics are eliminated from the OCP. Instead, joint
position trajectories ¢(t) are represented directly as 4*" order
B-splines of which the coefficients serve as decision variables
for the nonlinear program. As collision constraints, signed
distances between robot links and obstacles w are computed
(both represented as capsules) and summarise non-collision
into a single scalar trajectory constraint using the LogSumExp
function [19].

F. World Model

Planning and control modules require knowledge about the
physical environment in order to retrieve suitable key points
that avoid collisions with (potentially dynamic) obstacles.
Environment knowledge can come from many sources of
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information. Static objects that belong to the setup can be
measured a priori and collected in a static map, while moving
or unknown objects need to be monitored during execution
using perception sensors such as cameras. The task of the
world model is to consume all these sources of information and
abstract the data into a structured and semantic representation
of the environment. As such, it needs to fuse incoming object
measurements that stem from multiple sensors with model-
based object predictions provided by the world model itself,
based on previous measurements and/or prior information. In
the digital twin, the input data streams are provided to the
world model module by simulated cameras with object de-
tection capabilities, using the same communication paradigm
as in the physical setup. This allows to easily interchange
between simulation and real-life operation, without any adap-
tations to the world model needed.

Additional to the sensor fusion capabilities, the world
model also acts as a database server that can be queried
for information. Indeed, the goal of the world model is to
provide the planning and control modules with the necessary
information about the environment, i.e. planner constraints. To
this end, several services are implemented to retrieve relevant
information about obstacles from specific classes, obstacles
that are located in a certain spatial region of interest or even
prediction of obstacle positions for a given timestamp.

III. RESULTS

To illustrate the benefits of virtual re-commissioning, a sam-
ple task sequence was run using the full simulation solution.
This task sequence is comprised of an aligning task during
which the robot’s end-effector is aligned with the moving
target then tracks it, a pick task during which the target
object is grasped and a drop-off task to a pre-determined
location. Three test cases are performed. 1) is the baseline
in which the controller parameters are tuned to the nominal
robot arm parameters. 2) simulates a work module change,
the robot arm’s links and platform are made heavier by a
factor 1.3. During 2) the same task sequence is ran with the
baseline controller parameters. In 3) the low-level controllers
are re-tuned to the new system dynamics. Other modifications
to the work and drive functions like kinematic parameters,
additional degrees of freedom or a different end-effector would
necessitate virtual re-commissioning of the task-level, planner
and world model modules. However, the focus of this paper
is to showcase virtual re-commissioning of the low-level
controllers.

The low-level controllers are evaluated based on their track-
ing performance. Due to the multi-joint motion of this modular
system, this tests both the setpoint tracking performance and
disturbance rejection of the controllers. Table I presents the
root mean squared error (RMSE) of the position controller
for each joint and for the three test cases. The tracking
performance of the position controllers are used since they
are the external controllers in the position-velocity controller
cascade. A poor tracking performance of the internal (ve-

locity) controller will be apparent in the external (position)
controller’s tracking RMSE.
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Fig. 5. Position tracking error for the task sequence described in Fig. 4

Decreased setpoint tracking performance is illustrated
graphically in Fig. 5. Whereas the blue curve (increased weight
case) has larger deviation from the zero axis, indicating larger
tracking error, than the baseline case (black dashed line) for
all joints except J6. The latter has very low weight and is a
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simple cylinder spinning around its revolution axis. Therefore
the effects of a mass increase are smaller compared to the
other joints, i.e. the three curves are super-imposed in Fig 5.
Re-tuning the position and velocity controllers of each joint to
have similar overshoot and settling time as the baseline case
reduces the RMSE of each joint to within 10 percent or lower
than the baseline value. In Fig. 5, this is shown by the orange
line (re-tuned controllers) being closer or super-imposed to the
black curves of the baseline case. From Table I, it is apparent
when comparing the baseline case to the increased link mass
case that the modified system dynamics degrade the tracking
performance as indicated by the increased RMSE for all joints.
Specifically, the RMSE increases by at least 10 percent for all
joint except J5 and J6, the two smallest and lightest joints.
Without re-commissioning the low-level controllers, track-
ing performance is degraded, this means rougher positioning
accuracy and increased time to reach position setpoints. For
industrial applications the combination of these two have
further consequences on overall process efficiency, mainly due
to increased task completion time and increased failure rate.

TABLE I
ROOT MEAN SQUARED ERROR OF TEST CASES [1073]
Joint Number | Baseline | Increased Mass | Controllers Re-Tune
TP [mm] 22.4 28.5 204
J1 [°] 317.6 359.2 313.2
12 [°] 239.7 296.0 219.3
I3 [°] 205.1 225.9 205.8
J4 [°] 363.0 424.5 362.6
J5 [°] 138.9 182.0 156.6
J6 [°] 279.8 279.9 279.8

IV. CONCLUSIONS

The benefits of virtual re-commissioning were illustrated
for work-drive systems using a multibody CAD-based simu-
lation framework. First, the commissioning of software com-
ponents was described. Then a concrete example of virtual
re-commissioning is presented for the low-level controller.
Re-commissioning allowed position tracking to return to the
baseline performance after increasing by 10% or more when
changing the system dynamics, i.e. increasing the weight of
each joint by 30%. However, virtual re-commissioning is not
solely limited to low-level controller tuning. Certain system
changes such as end-effector changes may require adjustments
to other software components. Future work will focus on
implementation on a live system and automated detection &
re-commissioning.
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