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Abstract— This paper presents a novel navigation system for 

unstructured outdoor environments that does not rely on pre-

existing maps. The system employs a responsive action design 

that combines a deep Convolutional Neural Network (ConvNet) 

for evaluating traversable regions based on RGB inputs, GNSS 

for global coordinates, and a compass. The Global Sense (GloS) 

module and the Traversable Region Abbreviation ConvNet 

(TRAC) work in tandem, with the former tracking the 

destination’s relative position and the latter determining the 

robot’s position within the traversable region. The action maker 

then executes Grand Direction and Local Maneuver 
simultaneously until  the destination is reached. The system also 

uses deep learning-based semantic segmentation to analyze 

front-view images, which are then passed to the lightweight 

TRAC for real -time execution on an embedded system. Our 

experiments show that TRAC achieved an accuracy of over 70% 

at a frame rate of 30 fps. We have implemented the proposed 

system on a mobi le robot and conducted fie ld tests on a 

university campus, demonstrating the feasibility of map-free 

navigation with the proposed system. 

I. INTRODUCTION 

The rising demand for B2C logistics has spurred interest in 

autonomous mobile systems, such as ground and aerial 

vehicles, for transportation. Autonomous ground vehicles 
must navigate through various environments, including indoor 
spaces and outdoor areas like city streets, highways, and 

unstructured environments like campuses, parks, and factory 
compounds. While city streets and highways provide clear 
guidance through the use of lane lines and traffic signs, 

unstructured environments pose a greater challenge due to the 
diverse conditions and lack of clear boundaries. Navigation in 

these environments typically requires the use of Simultaneous 
Localization and Mapping (SLAM) techniques for map 
generation, as detailed path planning through readily available 

maps is often not feasible. The need for quick delivery to 
previously unvisited territories further complicates navigation 
in unstructured environments. 

In this paper, we propose a general-purpose architecture 

for autonomous mobile robots (AMRs) to navigate 
unstructured environments without pre-constructed maps. 
Our architecture uses GNSS (Global Navigation Satellite 

System) coordinates and a compass for position and direction, 
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respectively. We developed a visual-servo system using an 

onboard camera and a Convolutional Neural Network 
(ConvNet)-based classifier to detect traversable regions (ℛ) 

in real-time. The two-level action-making architecture guides 
the robot's movement, with Grand Direction tracking the 

destination direction and Local Maneuver guiding the robot 
within the traversable region, as depicted in Fig. 1. Our 
contributions include: a map-free navigation system for 

guiding AMRs in unstructured outdoor environments using 
RGB vision and global positioning, an automated method for 
training the ConvNet-based front-view inspector through 

semantic segmentation, and experimental data from field 
trials demonstrating the effectiveness of the system. 

II. RELATED WORK 

Computer vision technologies for end-to-end vehicle 
steering have been extensively researched, with early systems 
like ALVINN [1] and MANIAC using neural networks for 
road-following steering. LeCun et al. [2] demonstrated the 
feasibility of end-to-end steering for off-road obstacle 
avoidance using a ConvNet, followed by numerous deep 
learning methods developed for autonomous driving, 
including for indoor [3-6] and outdoor [7, 8] navigation and 
exploration in unstructured environments [9]. Some addressed 
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Fig. 1. To conduct map-free autonomous navigation in unstructured 
outdoor environments, the proposed system employs GNSS and compass 
to track the destination’s location, while the Traversable Region 
Abbreviation ConvNet provides the real-time field information for 
movement controls. 
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the importance of social compliance [5, 10]. The mediated 
perception [8] and behavior reflex [2, 3] approaches have been 
widely used, with direct perception proposed as a lightweight 
alternative by Chen et al. [8]. In this study, we propose a 
framework that inputs RGB images of the robot’s front view 
to a deep ConvNet for real-time navigation in unstructured 
environments. 

Navigating in unstructured environments presents distinct 
challenges compared to street navigation, such as the diversity 
of visual features that cannot be condensed into a few 
representative landmarks. Additionally, while street maps are 
commonly available, map generation for unstructured 
environments requires additional effort. For example, 
Provodin et al. [7] proposed an image segmentation method 
that uses a stereo system to distinguish the drivable region in 
off-road environments. Other approaches include 3D mapping 
to identify traversable regions using wheel odometry, 2D laser, 
and RGB-D data [11], and fusing LiDAR measurements and 
RGB perceptions in a dual-input ConvNet [8]. SLAM has also 
been widely used for unstructured environments [12], where 
sensors perceive the environment and build a map to 
simultaneously estimate the robot’s position.  

Accurate geometric mapping can be beneficial for path 
planning and localization, but it often comes at the cost of large 
data storage and computational resources. In contrast, the map-
free approach is particularly attractive for exploring areas 
where detailed maps and the time to generate them are 
unavailable. Wireless sensor networks have been used for 
map-free navigation [13], but deploying such networks can be 
time-consuming. To address the challenges of cluttered indoor 
environments, a map-free navigation system using a depth 
camera, deep neural networks, and reinforcement learning was 
proposed for a quadrotor [14]. The approach of Muñoz-Bañón 
et al. [15] divided autonomous navigation into node-based 
global path planning and local path planning, where a 
topological map reduced the need for a detailed geometric map 
but still required some preparation. Local path planning deals 
with navigation between nodes, 3D LiDAR scans were utilized 
to generate detailed local models, and the Naive-Valley-Path 
method was proposed to produce a naive cost map 
representation and infer an optimal path. A part of our 
approach addresses a similar problem of local path planning, 
but instead of utilizing depth sensors, we proposed an 
approach based on semantic segmentation [16] of pure RGB 
vision. However, semantic segmentation can be difficult to 
execute in real-time on embedded systems, thus we adopted 
the direct perception approach to transfer the learned 
knowledge of semantic segmentation to a more lightweight 
ConvNet that can run in real-time. 

III. METHOD 

The goal of this study is to create an automatic navigation 
system for outdoor unstructured environments that does not 

require any prior knowledge of the field. The proposed system 
includes two levels of decision-making: tracking the global 
direction of the destination and navigating locally within the 

traversable region, and three sensory components: a GNSS 
system that provides the robot’s coordinates, an onboard 
compass that indicates the robot’s moving direction, and a 

visual recognition system that detects the condition of the 
front environment. An integrated action maker receives input 
from the three sensory components and generates immediate 
action commands based on the active action policy.  

A.  Navigation Framework 

Fig. 2 illustrates the navigation framework. Upon 
initialization, the onboard GNSS module measures the robot’s 
global coordinates. By comparing the coordinates of the 

destination and the robot, the spatial vector from the robot to 
the destination is obtained. The angle between the destination 

vector and the robot’s heading direction is then calculated, 
and the robot is rotated to face the destination as its initial pose. 

The robot then navigates to the destination by exploring 
the traversable region using the traversable region 

abbreviation ConvNet (TRAC) and the global sense (GloS) 
module jointly. At any instance 𝑖, the robot is located at 𝑥𝑖, 
TRAC generates key geometric measurements 𝜔𝑖  of the 
traversable region in front of the robot, while GloS 

continuously updates the relative position of the destination 
𝜎𝑖. Based on this information, the action maker generates 

suitable actions according to the action policy π,  

π(𝑢𝑖|𝑥𝑖) = π̃(𝑢𝑖|𝜔𝑖 ,𝜎𝑖)Φ(𝜔𝑖|𝐼𝑖)Γ(𝜎𝑖|𝑥𝑖)         (1) 

where Φ denotes TRAC, and Γ denotes GloS. 

TRAC is a ConvNet-based visual detector trained to 
observe the RGB environment in front of the robot 𝐼𝑖 and 

return 𝜔𝑖 , such as the distances from the left or right 
boundaries of ℛ to the robot. As will be clearer in III-C, the 

action maker issues motor commands to adjust the robot’s 

relative position in ℛ , with a goal of approaching the 
destination without leaving the traversable region.  The 

robot’s trajectory of 𝑁  instances is represented by the 
following equation:  

    

Fig. 2.  Illustration of the proposed navigation framework including 
TRAC and GloS. 
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π(𝜏) = 𝑝(𝒙1)∏ 𝑝(𝒙𝑖+1|𝒙𝑖 ,𝑢𝑖)
𝑁
𝑖=1 ∫ π(𝑢𝑖|𝒙𝑖) 𝑑𝒙𝑖   (2) 

At any given time 𝑡, Φ assigns a confidence score to each 

possible visual class 𝑣𝑛 for the input vector 𝐯𝐭; the class with 
the highest score will be the predicted class, 

 𝑣𝑡 =𝑎𝑟𝑔𝑚𝑎𝑥𝑛(Φ(𝐯𝐭,𝑣𝑛)).                     (3) 

To achieve accurate results, the aim is to have the 
predicted class as close as possible to the ground-truth  𝑣𝑡/𝑔 , 

𝑣𝑡
∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑣̂𝑡‖𝑣𝑡 −𝑣𝑡/𝑔‖2

.                 (4) 

GloS integrates the GNSS module and the compass to 
accurately predict the robot’s pose relative to the destination. 
We adopted the RTK (Real-Time Kinematic positioning) 

system [17] to enhance the precision of global positioning. 
Our experiments show that with a base station placed within 
a radius of 1 km, the positioning of the rover station can be 
obtained with a precision of 6 m. 

B.  Traversable Region Abbreviation ConvNet 

Due to the large number of visual varieties in outdoor 
unstructured environments, deep learning-based semantic 
segmentation models trained with sufficient examples appear 
to be a promising solution [16, 18]. However, semantic 
segmentation still requires high computational resources and 
can be difficult to perform in real time on embedded systems. 
Additionally, the approach often involves a high demand for 

manual labor in collecting and annotating training data. To 
address these issues, we developed TRAC to transfer the 
results of semantic segmentation to a much lighter ConvNet 
that satisfies the requirements for high frame rate and low 
computational resources.  

Specifically, we adopted a semantic segmentation module 
to analyze the collected environment images in order to 
separate the traversable regions at the pixel level.  We then 
extracted key metrics from the resulting ℛ , such as the 
distances from the image center to the left and right borders of 
ℛ. By annotating the original environment images with these 
metrics, we trained a visual detector using ResNet-18 as the 
backbone.  

  The data preparation process for training is shown in Fig. 
3. We collected a total of 160,000 images, which included 
various scenarios on a university campus. The images were 
divided into 32 classes using a semantic segmentation module 
[19]. The road and sidewalk classes were designated as 
traversable and assigned the color white, while the rest of the 
image was assigned the color black. We performed erosion and 
dilation operations to remove any image noise. Using the 
camera's viewing angles and vertical position as reference, we 
constructed a 3D model to measure the distance from the 
center of the image to the left and right boundaries of the road. 
As illustrated in Fig. 3, the features one meter in front of the 
camera are represented by the 87th pixel from the bottom of a 
480-pixel image. We used an 11x11-pixel kernel to examine 
the image at a constant height and obtain the distance of the 
detected boundary to the center of the image. The road 
boundaries were captured two meters ahead of the robot for 
TRAC judgment. The left and right sides were detected 
separately and divided into five categories based on the 
distance D. The division was not proportional, as described in 
(5), with increased vigilance near the boundaries. 

Label 0:                       𝒟 < 107 mm 

Label 1:  107 mm≤ 𝒟 ≤ 268 mm 

Label 2:  268 mm≤ 𝒟 ≤ 488 mm 

Label 3:  488 mm≤ 𝒟 ≤ 763 mm 

Label 4:  763 mm< 𝒟                                       (5) 
 

 

Fig. 3.  The training process of TRAC involving semantic segmentation 
and key parameter annotation. In this example, the label for left TRAC is 
0; the label for right TRAC is 4. 
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Fig. 4. These images are samples used to train the left and right TRAC 
models, which were captured by the single camera mounted on the robot. 
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Fig. 4 presents examples of the training images  used for 
TRAC. Two sets of data, each containing five categories, were 
assembled to indicate the left and right boundary information 
separately. Fig. 5 illustrates the ConvNet of TRAC, which 
adopts ResNet-18 [20] as its backbone. TRAC uses two 
separate networks, one for left boundary prediction and the 
other for right boundary prediction. As TRAC detects the 
robot’s position relative to the borders of ℛ, such information 
allows the subsequent action maker to determine steering 
actions for maneuvering the robot along ideal paths. Labels 0 

and 4 indicate the two extreme conditions of being very close 
to the border and being far from the border. Label 0 typically 
signals the need for steering away from the border, while Label 
4 is used to indicate the possible presence of a road intersection. 
In this way, TRAC not only provides measurements to 
facilitate in-path navigation, but also informs the higher-level 
path planning about available options for direction correction 
towards the destination.  

C.  Decision-Making and Robot Control 

We implemented the proposed system on a mobile robot 

J4. [21], which is a two-wheeled self-balanced mobile robot 
with its direction controlled by differential speed and its 
movement by altering the position of the center of gravity [5]. 
The self-balanced mobile platform allows it to traverse both 
indoor and outdoor environments [22]. An RGB-D camera – 

 

Fig. 5. Illustration of the architecture of TRAC, which utilizes ResNet-18 
and outputs five classes. TRAC runs in parallel with two separate 
networks, one for detecting the right border and one for the left border.  
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Fig. 6. Illustration of the design of the mobile robot, J4. utilized for the 
field tests. 
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Fig. 7. Block diagram of the action-making procedure, in which Grand Direction directs the robot toward the target, and Local Maneuver guides the robot 
to navigate within ℛ. 
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Intel RealSense D415 was adopted as the visual device see 
Fig. 6). Although the camera has depth detection capability, it 
was not used here.   

Autonomous navigation involves executing action 
commands through the use of a block diagram, as shown in 
Fig. 7. The navigation process involves two parallel levels of 
decision-making: the Grand Direction level and the Local 
Maneuver level. The Grand Direction level uses GloS to 
determine the real-time relative position of the destination and 
to adjust the robot’s path as needed. The Local Maneuver level 
guides the robot to move within ℛ and uses the outputs from 
TRAC to ensure a safe distance from the boundaries of ℛ. The 
robot typically travels along the boundary of ℛ  near the 
destination until a new path is required by the Grand Direction 
level.  

The proposed map-free navigation is depicted in Fig. 8. The 
first step is for GloS to identify the destination’s direction and 
rotate the robot to face toward the destination. The robot then 
moves towards the destination until it encounters the boundary 
of ℛ . Along the way, GNSS provides the distance 𝜎𝑖 and 
direction    from the current position to the destination, while 
the compass provides the robot’s direction   . Based on the 
TRAC results, different levels of direction fine-tuning 
(  1,  2,   ) are issued. For example, a more delicate 
maneuver is necessary near the road edge, and thus   2 is 
smaller than    .  In the left scenario shown in Fig. 8, the robot 
encounters the left boundary while in the right scenario, it 
encounters the right boundary. In these situations, the Local 
Maneuver level directs the robot to stay within the boundary 
of ℛ by adjusting its steering along the borders. However, this 
may cause the robot to deviate from its intended destination. 
To address this issue, the Grand Direction level continuously 
evaluates    and issues a turning command when TRAC 
indicates a more suitable path. In the left scenario of Fig. 8, the 
robot turns left, while in the right scenario, it turns right. By 
coordinating the actions of the Grand Direction and Local 
Maneuver levels, the robot can eventually reach its desired 
destination. 

IV. EXPERIMENTS 

 We conducted two sets of experiments: one to evaluate 

TRAC, and the other to test the actual navigation in the field. 
TRAC was trained on a server computer equipped with an 

AMD Ryzen 9 3900X 12-Core Processor, 64G RAM, and an 
NVIDIA GeForce RTX 2080Ti GPU. During the training, 1% 

of the images were set aside for validation. After 150 training 

epochs, the training accuracy reached 0.98, and the validation 
accuracy was around 0.88. The total training time was 
approximately 180 minutes.  

A. TRAC Accuracy 

To assess the performance of TRAC, we gathered 20,000 
new images of different environments not used for training 
purposes. We then applied the same segmentation procedure 
to these images to obtain ground-truth labels. TRAC was 
tested on these images, and the outcomes are presented in Fig. 
9. The Left TRAC produced an average recall, precision, and 
accuracy of 0.62, 0.63, and 0.62, respectively. The Right 
TRAC generated 0.61, 0.61, and 0.60. The detections of labels 
0, 3, and 4 showed higher accuracy, which are also more 
critical for successful operations. For instance, label 0 
indicates an approaching boundary, and label 4 denotes the 
availability of a junction. In both the left and right models, 
these three labels had an accuracy of more than 70%. Errors in 
semantic segmentation that caused mislabeled training images 
might be the reason for the less satisfactory outcomes on labels 
1 and 2.  

B. Field Tests 

We conducted field tests at a university campus, as shown 
in Fig. 10, to evaluate J4.’s ability to navigate between 
various structural features, such as grass, wood decks, stairs, 
untraversable brick ground, and sculptures. We selected five 
locations on the map and tested each route ten times, counting 
a trial as successful if the robot remained inside the traversable 
region without human intervention. All computations were 
performed on the onboard PC, using an Intel 9th gen i7 CPU 
and 16 GB DDR4. We converted the TensorFlow model of 
TRAC to an IR model using the Intel OpenVINO Toolkits, 
obtaining an average inference speed of 30 fps. 

Table I summarizes the field test results, indicating an 
overall success rate of approximately 65%. Some routes had 
success rates higher than 90%, while the worst was below 50%. 
Detection errors on stairs and wood decks were the primary 

cause of failure for the routes between A and C. J4. 
performed well in detecting grass and plantings, resulting in a 
higher success rate for routes of B to D and C to B. Enlarging 
the training database can enhance TRAC's performance in the 
future. Another significant factor that affected the success rate 
was the existence of small lanes that led the robot to dead-ends, 
resulting in unresolvable circling. For example, when 

 
Fig. 8. Illustrations of the navigation process with the coordination of 
Grand Direction and Local Maneuver levels. 

: starting pose : destination : Main Direction : Path Maneuver

  
(a) Left TRAC confusion matrix (b) Right TRAC confusion 

matrix 
 

Fig. 9. The performance of TRAC. 
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navigating from E to B, the robot sometimes turned left into a 
dead-end and was unable to resolve the situation. A possible 
solution is to improve TRAC and GloS to recognize dead-ends 
or automatically move out of them after a few circling attempts.  

V. CONCLUSION  

In summary, this article proposes a novel navigation 
system for unstructured outdoor environments that eliminates 
the need for pre-existing maps. The system utilizes GNSS, 
compass, and camera for sensory input and includes a two-
level action-making architecture. TRAC, a real-time visual 
inspection tool for the traversable region, is introduced, 
achieving an accuracy of over 70% at 30 fps. Field tests 
achieved an overall success rate of 65%, with misclassification 
of stairs and wood decks causing critical failures. The study 
suggests future research to enlarge the TRAC training database 
and equip the system with dead-end escape capabilities. The 
video of the field tests can be accessed through this link: 
https://www.youtube.com/watch?v=LbKAEqbKTXA.  
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TABLE I. RESULT SUMMARY OF THE FIELD TESTS 

Section Success 

rate 

Distance 

(m) 

Features 

A  B 70% 150 grass, plantings, road sign 
B  A 70% 150 grass, plantings, road sign 

A  C 40% 84 
stone barrier, wood deck, 

buildings 

C  A 50% 84 
stone barrier, wood deck, 
buildings 

B  C 70% 145 
grass, plantings, road sign, 

wood deck, stairs, buildings 

C  B 90% 145 
grass, plantings, road sign, 
wood deck, stairs, buildings 

B  D 100% 88 grass, plantings 
E  B 30% 198 grass, plantings, road sign 
A  E 60% 308 grass, plantings, road sign 

C  E 70% 303 
grass, plantings, road sign, 
wood deck, stairs, buildings 

B  E 50% 198 grass, plantings, road sign 

 

 
Fig. 10. Illustration of the testing field and the test routes. 
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