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Abstract— Iterative learning control (ILC) yields accurate
feedforward input by utilizing experimental data from past
iterations. However, typically there exists a trade-off between
task-flexibility and tracking-performance. This study aims to
develop a learning framework with both high task-flexibility
and high tracking-performance by integrating rational ba-
sis functions with frequency-domain learning. Rational basis
functions enable learning of system zeros, enhancing system
representation compared to polynomial basis functions. The
developed framework is validated through a two-mass motion
system, showing high tracking-performance with high task-
flexibility, enhanced by the rational basis functions effectively
learning the flexible dynamics.

I. INTEGRATING RATIONAL BASIS FUNCTIONS
WITH FREQUENCY-DOMAIN ILC

In this study, the combined ILC (C-ILC) framework where
1) the rational basis function FF input fB

j+1 ensuring high
task-flexibility, and 2) the frequency-domain FF input fF

j+1

only learning the residual dynamics, are simultaneously
learned and combined as

fj+1 = fB
j+1 + fF

j+1 = F(θj+1)rj+1 + fF
j+1. (1)

The entire scheme is illustrated in Fig. 1.

A. Learning of basis function FF input fB
j+1

The performance criterion for fB
j+1 is given by

V (θj+1) =
1

2
∥êθj+1∥2, θj+1 = arg min

θj+1

V (θj+1), (2)

where êθj+1 = êj+1 + ĴfF

j+1
and Ĵ = (I + ĜK)−1Ĝ.

From (2), the optimal parameter update is derived as

θj+1 = Qjθj + Lj(ej + ĴfF

j
), (3)

where the optimal learning matrix Lj and robustness matrix
Qj are iteratively calculated from (2).

B. Learning of frequency-domain FF input fF
j+1

Update of fF
j+1 is given by

fF
j+1 = Q(fF

j + Lej) + fB
j − fB

j+1, (4)

with learning filter L and robustness filter Q designed by the
user.
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Fig. 1: Updating procedure of combined ILC (C-ILC). The
flow of the time-domain update for fB

j+1 ( ) and frequency-
domain update for fF

j+1 ( ) are illustrated.

0 5 10 15 20 25

10
0

10
1

10
2

10
3

28 29

1

1.2

1.4

Fig. 2: The developed C-ILC (rat) ( ) achieves as high
task-flexibility as B-ILC (rat) ( ), higher than C-ILC (pol)
( ) when task changes at j = 15. In terms of tracking-
performance, F-ILC ( ) and both C-ILC frameworks ( ,

) achieve high performance far exceeding both B-ILC
frameworks ( , ).

II. EXPERIMENTAL RESULTS

The error norms per trial in the developed C-ILC (rat) and
previous ILC methods are compared in Fig. 2. The results
show that C-ILC (rat) performs high tracking-performance
against repetitive tasks; even exceeding that of frequency-
domain ILC (F-ILC), while ensuring high task-flexibility
against changing tasks; identical to that of rational basis
function ILC (B-ILC (rat)).
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