
  

  

Abstract— This research presents a method for improving the 

navigation capabilities of autonomous mobile robots (AMRs) in 

indoor environments. Indoor navigation is challenging due to the 

presence of various obstacles such as floors, walls, furniture, and 

doors. While depth sensing devices can effectively recognize 

geometric conditions in corridor environments, they struggle 

with reflective surfaces and slim objects. Our proposed solution 

is to fuse depth and RGB inspections using a dual -ResNet 

architecture in the visual detection ConvNet. This improves 

performance compared to traditional depth -only approaches. 

Field tests have shown that our system operates at a speed of 30 
frames per second and guides the AMR through various 

corridor routes at 2 m/s, all on an embedded PC. 

I. INTRODUCTION 

Autonomous Mobile Robots (AMRs) hold great potential 
for logistics automation and flexible service. In particular, 
their ability to navigate autonomously in indoor environments 
is crucial as these scenarios are prevalent in human-centered 
work and living spaces. Previous research has developed an 
end-to-end auto-steering system for a self-balanced two-
wheeled mobile robot using a deep Convolutional Neural 
Network (ConvNet) to map the depth image of the front view 
to direct steering actions [1, 2]. The approach showed 
preliminary success in navigating through office corridors and 
fleets of machine tools. However, it was found that the depth 
camera had limitations, such as the difficulty of properly 
capturing glass doors and mirror walls and a higher failure rate 
when encountering lower fences or slim structures that are 
perceivable in color but easily dictated by depth noise. 
Additionally, the previous ConvNet controller, which was 
trained to classify only three types of scenarios [2], had 
difficulty recognizing and properly reacting to more complex 
real-world situations. 

To address these limitations, this study proposes a four-
layer framework including the inspection, intelligence, task, 
and command layers to enhance the performance of the auto-
steering system. By recruiting both RGB and depth pixels, as 
shown in Fig. 1, and designing the ConvNet architecture to 
accommodate two independent visual inputs for convolutional 
feature extraction, the input dimensionality is increased. The 
network then fuses the extracted features and performs 
integrated network classification for an output of 
approximately twelve typical visual scenarios. The more stable 
RGB input helps to capture presentations of untraversable 
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obstacles such as low decorations and glass structures as well 
as identify slim structures such as iron railings. As the 
intelligence layer accurately inspects and characterizes the 
field situations, more delicate manipulation of the robot is 
possible, resulting in more successful navigations in various 
environments. The proposed framework was implemented on 

a mobile robot J4.[3], and a series of field tests were 
conducted to verify its performance.  

The main contributions of this research are:  

(1) A new RGB-D fusion ConvNet for end-to-end auto-
steering in indoor corridor environments, which addresses 

the limitations of previous depth-only approaches.   

(2) An evaluation of the proposed visual detection 
framework, which demonstrates its superiority over 

previous approaches. 
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Fig. 1. The proposed end-to-end auto-steering system adopted both RGB 
and depth inputs for an integrated deep ConvNet which improves the 

AMR’s navigation performance. 
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(3) A thorough examination of the performance of the 
proposed AMR navigation system through extensive field 

tests.  

II. RELATED WORK 

Autonomous navigation is a crucial capability for AMRs. 
Among various approaches, Simultaneous Localization And 
Mapping (SLAM) has received significant attention and has 
led to the development of numerous models [4 - 7]. SLAM 
systems use sensors to perceive the environment and estimate 
the robot’s position simultaneously. Mapping is a critical step 
in SLAM, as an accurate geometric map helps reduce the 
localization error of the robot and plan the navigation path. 
However, one drawback of this approach is that it can require 
a large amount of data storage and significant computational 
resources.   

Recent advances in deep learning have opened up 
opportunities for more accurate perception through computer 
vision. End-to-end actions from vision to steering have 
become more promising [8-12]. The autonomous navigation 
task was divided into two parallel modules - topological 
localization and automatic steering [1, 2]. While the automatic 
steering module focuses on making sound judgments and 
actions in response to various field conditions, the topological 
localization module [13, 14] uses ConvNet-based scene 
recognition to indicate the robot’s location. As the topological 
map does not carry detailed geometric features, the model is 
much lighter and easier to operate in real-time.  

Chen and Li [15] developed a task-oriented steering 
framework to generate suitable actions for more general 

scenarios. Navigation tasks were categorized as moving 
forward, corner left turn, and corner right turn. When a specific 
task is issued, the ConvNet-based visual detector examines the 
depth condition in front of the robot and outputs one of the 
three possible actions, steering left, zero adjustments, and 
steering right. Each navigation task has its ConvNet detector, 
which was trained with abundant field images reflecting all 
possible navigation scenarios in indoor corridor environments.  

 Our work aims to improve the model’s performance 
developed by [15] by incorporating two major differences. 
First, we extended the navigation system to a four-layer 
architecture, with the intelligence layer focusing on inspecting 
more specific scenarios. Instead of directly outputting three 
action options [15], the new framework classifies the view into 
approximately 12 scenario types, which later prompt suitable 
action commands by the action maker. Secondly, we included 
both RGB and depth signals to increase the input 
dimensionality. The new ConvNet architecture involved two 
ResNet-18 [16] pipelines, each extracting designated features 
before merging for final classification. By separating action-
making from the ConvNet, the visual detector is able to better 
focus on visual classification and improve detection results.  

III. METHOD 

 In this study, we proposed a four-layer task-oriented 
framework for autonomous navigation of AMRs, which aims 

to enable the robot to divide a routing job into fundamental 
navigation tasks such as Moving Forward, Corner Left Turn, 

 

Fig. 2. Illustration of the four-layer task-oriented auto-steering framework.  

Command Layer

Zero Adjustment

Steer Left

Steer Right

Task Layer

Moving Forward

Corner Right Turn

Corner Left Turn

Inspection Layer

Kinematics RGB+Depth

Intelligence Layer

Start

484



  

and Corner Right Turn, where sound judgments and can be 
made in response to various field conditions (see Fig. 2).    

 We identified approximately a dozen general scenarios 
for each navigation task, which would lead to specific actions. 

To achieve accurate visual inspection, we collected up to 250k 
training images and built an RGB-D fusion ConvNet using a 
dual-ResNet-18 architecture. This architecture allows for 

increased input dimensionality and improved feature 
extraction, resulting in more accurate visual classification. 

An action maker then determines the steering actions 
based on the inspection results and the robot’s kinematics. 

The commands issued by the action maker activate the robot’s 
actuators for propulsion, thus forming a closed-loop control 
scheme for autonomous visual-servo navigation.  

A.  Task-Oriented Auto-Steering 

The proposed system is primarily intended for indoor 
corridor environments, typically consisting of passages 
guided by walls, interiors, or large furniture. The navigation 

pattern in such environments can be broken down into three 
basic tasks: moving forward, turning left at corners, and 
turning right at corners. We approach the execution of a 

complete routing job as a series of fundamental tasks. Thus, 
the action policy π𝑙, which determines the proper reactions 𝑢𝑖 
to respond to certain environmental and robot conditions 
under the current navigation task, depends on the navigation 

task 𝑙 and includes an action maker π̃𝑙, and two sensory units 
Γ𝑙  and Κ . Specifically, Γ𝑙  receives the front views 𝐼𝑖  and 

classifies them into one of the visual categories  𝜔𝑖, while Κ 

measures the robot’s kinematic characteristics 𝑘𝑖  at the 
current state 𝑠𝑖, 

π𝑙(𝑢𝑖|𝐼𝑖 ,𝑠𝑖) = π̃𝑙(𝑢𝑖|𝜔𝑖 ,𝑘𝑖)Γ𝑙(𝜔𝑖|𝐼𝑖)Κ(𝑘𝑖|𝑠𝑖)      (1) 

where 𝑖 denotes any instance during the routing job.  

The trajectory τ  of a routing job is the result of the 

successive execution of navigation tasks, with each task 
taking into account the sensory probabilities, 

 

π(𝜏) =
𝑝(𝑥1)∏ 𝑝(𝑥𝑖+1|𝑥𝑖 ,𝑢𝑖)

𝑁
𝑖=1 ∬π𝑙(𝑢𝑖|𝐼𝑖 , 𝑠𝑖)𝑝(𝐼𝑖, 𝑠𝑖|𝑥𝑖)𝑑𝐼𝑖𝑑𝑠𝑖   

(2) 

where 𝑥𝑖 denotes the robot’s pose at the current instance. 

In the four-layer design illustrated in Fig. 2, the first step 

is to select one of the three navigation tasks to be executed. 
The interoceptive and exteroceptive devices on the robot then 

send signals to the intelligence layer, where scenarios are 
classified under the designated task. Steering actions are 
generated according to the intelligence outputs; depending on 

the scenario and the robot’s current speed, π̃𝑙  generates 
commands of different steering actions with various 
amplitudes.   

Γ𝑙 classifies 𝑁 scenarios for each navigation task, with 12 
scenarios defined for Moving Forward, 13 for Corner Left 

Turn, and 12 for Corner Right Turn. These scenarios, 
illustrated in Fig. 3, include a target path for the robot to 
follow and adhere to social movement norms, such as staying 

on the right side of a corridor. Four common structures are 
present in the scenarios: closed passages, T-junctions, 
crossroads, and dead-end corners. The robot is placed in 

different poses within these structures, and similar scenarios 
are grouped into a single category. For example, Scenario #5 

of Moving Forward depicts the robot veering to the left of the 
target path, necessitating a corrective steering to the right. A 
detection label is established within the ConvNet for each 

scenario, with indistinguishable scenarios from the front view 
grouped together under a single label, as seen in the Corner 
Left and Right Turn categories (see Fig. 3). 

B.  RGB-D Fusion ConvNet 

We adopted an RGB-D camera to capture RGB and depth 

images simultaneously, which serve as the visual input for the 
intelligence layer in Fig. 2 to generate an accurate 

interpretation of the front-view condition. Each type of image 
is then inputted into a ResNet-18 pipeline for feature 
extraction, as shown in Fig. 4. The resulting vectors are 

concatenated and passed to a fully connected layer, producing 
an output of 𝑁 categories.  

   

 

(a) Moving Forward                                                (b)  Corner Right Turn                                                 (c) Corner Left Turn 

Fig. 3.  Scenario classifications of the three navigation tasks.  Indistinguishable scenarios, indicated by the grey background, are grouped under a single label.   
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 To acquire training images for the ConvNet, we manually 

operated the robot in various corridor environments and 
recorded the front views at different scenarios, as shown in 
Fig. 5. The images were then divided into 𝑁 groups, each 

belonging to a specific scenario. The training image set, 𝑉 

contains a total of 𝑚 sets of images, with each set containing 
an RGB and a depth image that can be categorized in 𝑁 
scenarios,   

𝑉：(𝒗𝟏
𝒄 ,𝒗𝟏

𝒅,𝑦1),⋯ , (𝒗𝒎
𝒄 ,𝒗𝒎

𝒅 ,𝑦𝑚) ∈ ℝ2𝑞× {𝜎1,⋯ , 𝜎𝑁}. (3) 

where 𝒗𝒋
𝒄 denotes a vector of 𝑞 features corresponding to the 

j𝑡ℎ  RGB image, 𝒗𝒋
𝒅  denotes a vector of 𝑞  features 

corresponding to the j𝑡ℎ depth image, and 𝑦𝑗 denotes the class 

of the j𝑡ℎ image. After training, the model assigns each image 
to its corresponding category,  

Γ：ℝ2𝑞 ⟼{𝜎1,⋯ , 𝜎𝑁}.                      (4) 

The goal of the model training is for the predicted category 
at any instance 𝑖 to be as close as possible to the ground truth 
𝑦𝑖/𝑔 , 

 

 
Fig. 4.  The architecture of the dual-input ConvNet designed for combining RGB and depth information. 
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Fig. 5. Samples of the training annotations. 
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Fig. 6. Training results of the ConvNet classifier as a function of the 
training set size. 
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Fig. 7. A comparison of scenario detection results by various models. 

From left to right: model of [2], single input of depth images, and the 
proposed RGB-D framework. 
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𝑦𝑖
∗
= 𝑎𝑟𝑔𝑚𝑖𝑛

𝑦𝑖
‖𝑎𝑟𝑔𝑚𝑎𝑥

𝑛
(Γ𝑙(𝒗𝒊

𝒄⨁𝒗𝒊
𝒅,𝜎𝑛))−𝑦𝑖/𝑔‖

2

. (5) 

 An examination of multiple training iterations showed 

that the validation accuracy improves with an increase in the 
size of the training set. As seen in Fig. 6, when the total 
number of training images was 50,000, the validation 

accuracy of the model was 60%, indicating a 40% gap in 
relation to the training accuracy. However, when the total 
number of training images increased to 250,000, the 

validation accuracy became nearly equal to the training 
accuracy, approaching 100%.  

C.  The Robot 

We implemented the proposed navigation system on the 
mobile robot, J4.β [2, 3, 15], which has a compact design, 
dynamic balancing capabilities, high velocity, and adaptability 
to various terrains. As a self-balanced two-wheeled mobile 
robot, J4.β changes its direction through differential speed. 
The output signal of the action maker was fed to the controller 
of the mobile platform, and the original handlebar was 
replaced by an electronic signal generator. The original version 
of J4.β adopted a Raspberry Pi 4 for the computation of the 
deep neural networks. However, the original depth-only 
scheme generated outputs at approximately 3 fps, while the 
dual ResNet-18 framework produced a lower output rate of 
approximately 2 fps. To overcome this limitation, we adopted 
an embedded system with an Intel 9th gen i7 CPU and 16 GB 
DDR4 for the RGB-D fusion ConvNet, resulting in a higher 
inference speed of 20 fps. By converting the TensorFlow 
model to an IR model using the Intel OpenVINO Toolkits, the 
inference speed was further increased to around 30 fps. The 
performance comparison of different embedded systems is 
presented in Table I.  

IV. EXPERIMENTS 

 The aim of this experiment is twofold: firstly, to assess the 

accuracy of the proposed framework in recognizing objects in 
diverse scenarios, and secondly, to determine its practicality 
for deployment on an AMR in real-world situations. The 

neural network's ability to generalize was evaluated by 
collecting photographs of road segments distinct from those 
in the training set and using them as the test set. Furthermore, 

to evaluate the framework's actual ability during navigation, 
we identified and tested it on 10 unvisited road segments.  

A. Scenario Prediction Accuracy 

 To validate the effectiveness of the proposed method, we 
further compared the performance of the proposed framework 
with a single-input ConvNet and the three-label architecture 
described in [2]. The comparison was conducted using the 
same test set. The single-input ConvNet possesses the same 
output structure, but it only receives depth images as input. 
The model in [2] collapsed all scenarios into three action labels: 
steer left, zero adjustments, and steer right. The results are 
summarized in Fig. 7, where the proposed framework 
demonstrated superior performance compared to the other two 
models. It is worth noting that the models in [2] were trained 
with approximately 1000 depth images, significantly less than 
what was used for the proposed model. The single-input 
models were trained with the same training sets as the 
proposed model, except the RGB inputs were removed.   

B. Navigation Success Rate 

To evaluate the feasibility of AMR navigation in various 
corridor environments, we examined a total of 10 road 
sections, each with different widths and features and requiring 
correct detections of various scenarios to complete a route 

(see Fig. 8). Each section was tested ten times; a successful 
case was recorded when the robot completed the entire route 

without deviating significantly from the target path. The 
results are summarized in Fig. 9, revealing a 100% success 
rate in ordinary walled corridors, such as sections B, C, and 

D. Even when encountering an intersection or T-junction, the 
robot can smoothly pass through the area. Sections A and H 
presented more challenges, with the presence of railings in A 

and a narrow aisle in H. Nevertheless, J4.β successfully 

 
Fig. 8. Illustrations of the testing fields and routes. 
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TABLE I. COMPARISON OF THE SPEED PERFORMANCES 

 Raspberry 
Pi 4 + 

TensorFlow 

IPC +  
TensorFlow 

IPC + IR 

Photo-taking 30 fps 30 fps 33 fps 

Model execution 20 fps 43 fps 145 fps 

Whole process 2 fps 20 fps 30 fps 
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navigated the circular arc of section A, although it was never 
trained with scenarios of circular passages. With a 10% 

probability, failure occurred in H due to its low fault tolerance; 
however, this is a significant improvement from previous 
models. 

In addition, special corridor settings such as sections E, I, 

and J consisting of low walls, pillars, and picnic tables were 
tested. The results showed that J4.β had no problem 

navigating through sections E and I, with a success rate of 
100% for both cases. However, the success rate for section J 
dropped to 70%, as the robot might take a route that is too 

close to the picnic tables. This may be due to the low and 
discontinuous profiles of picnic tables being underrepresented 
in the input and resulting in misclassification. 

The obstacle avoidance capabilities of the AMR were 

tested in sections F and G, where a small cardboard box and 
a glass door were respectively presented. Section F had a 
success rate of 50%, while section G had a success rate of 

80%, indicating that the AMR was able to detect obstacles 
that were previously missed. Although the success rate was 

not 100%, the issue generally arose when returning to the 
target path after bypassing the obstacle. This problem could 
potentially be resolved by implementing more delicate 

maneuvering during that process. A video can be viewed at 
https://www.youtube.com/watch?v=jdfM_j9ZaD8.   

V. CONCLUSION 

this research proposes a novel visual method for enhancing 
the navigation of AMRs in indoor environments. The task-
oriented framework breaks down the routing task into 
fundamental movement tasks and is supported by a four-layer 
structure that addresses the challenges posed by diverse 
features in indoor environments. By fusing depth and RGB 
inspections with a dual-ResNet architecture, the intelligence 
layer improves visual classification. The proposed framework 
showed superior performance over depth-only architectures 
and previous models, successfully completing previously 
impossible navigations in side-by-side evaluations and field 
tests. 

Table II presents a concise comparison of the 

characteristics of RGB-D cameras, 2D LiDARs, and 3D 
LiDARs. RGB-D cameras are significantly less expensive 
than LiDARs and offer joint color and space detection 

capabilities, enabling them to detect meaningful color 
features and identify structures on the road. However, 

LiDARs provide wider field of views and are less susceptible 

to light interference.  
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Fig. 9. Success rates of various testing routes. 
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Table II A Comparison of RGB-D, 2D-LiDAR, and 3D-LiDAR 

Component RGB-D 2D-LiDAR 3D-LiDAR 

Cost (USD) 150~350 1000~7000 5000~12000  

Space capability 3D 2D 3D  

Color capability high no no  

Light interference yes no no  

Update rate 12~50fps 10~20fps 12.5~50fps  

Field of view small large large  
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