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Abstract— This paper presents an Integrated Physics-Data-
Based (IPDB) modeling and control scheme of the combined
longitudinal-lateral vehicle dynamics. A nonlinear bicycle vehi-
cle model is used to derive the linear parameter-varying (LPV)
system representation, where four vehicle motion variables
are considered as scheduling parameters. Taking advantage of
kernels from LPV representation, the combined longitudinal-
lateral dynamics are further expressed by the data snapshots
of states, inputs, and scheduling parameters, which formulate
the IPDB model. After that, the IPDB model is used to
design a state-feedback gain-scheduling tracking controller to
follow a reference trajectory. For validation purposes, the
proposed modeling and control method is implemented on a
QCar experimental platform. First, the IPDB model of coupled
longitudinal-lateral dynamics is derived from experimental data
and is further validated with excellent model accuracy under
various driving conditions. Furthermore, an IPDB model-based
gain-scheduling controller is synthesized and compared with
the baseline Stanley controller in the experiment to track a
given trajectory. The experimental results demonstrate that the
IPDB model-based controller renders better tracking control
performance.

I. INTRODUCTION

The modeling and control of combined longitudinal-lateral
vehicle dynamics play an important role in autonomous
vehicles, which is essential for achieving optimal vehi-
cle performance, safety, and maneuvering capability. While
longitudinal and lateral dynamics are traditionally treated
separately [1], [2], the coupling nature of vehicle motions [3]
necessitates a holistic understanding and control strategy that
addresses both motions simultaneously.

The challenges in modeling and controlling combined
longitudinal and lateral dynamics arise from the complex
interactions between front/rear tires and roads, and the
coupling of nonlinear longitudinal-lateral dynamics under
various driving conditions [4]. The traditional model-based
approach relies on accurate models to design controllers.
Longitudinal velocity, lateral velocity, and yaw rate are
usually considered as states in the dynamic model, with
considerations of longitudinal and lateral tire forces at the
front and rear tires. Continued efforts have been witnessed
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to obtain models with higher accuracy, which often result in
more and more complex model representations, parameter
estimation algorithms, and control laws [5].

With the coupled dynamic model, various control methods
have been reported to achieve accurate and robust tracking
of given reference trajectories. Two loosely coupled low-
complexity model-based controls were used for longitudinal
and lateral motion in the yielding maneuvers [6]. A dissi-
pative feedback control law was implemented based on the
coupled model and was validated in test-bed experiments [7].
Model predictive control (MPC) has been embraced by the
coupled longitudinal-lateral model, tire models, and pow-
ertrain models [8], [9], [10]. In particular, an envelope-
MPC with dynamic objective and safety requirements was
proposed and tested to yield improved stability under extreme
conditions [11]. It is also demonstrated in the literature
that the coupled longitudinal-lateral control can improve the
vehicle-following performance in the platoon control than
the decoupled control strategy [12].

Nonetheless, the complex nonlinear model often comes
with heavy computations in nonlinear model predictive con-
trol or complex nonlinear control law. Besides, some of the
vehicle parameters, especially the tire frictions, are difficult
to estimate or identify, which makes it difficult to obtain
accurate models. These limitations bring challenges to the
practical implementations of complex nonlinear model-based
control in coupled longitudinal-lateral vehicle dynamics.

Data-driven modeling and control provide another alter-
native to address the coupled longitudinal-lateral dynam-
ics. A simple linear data-driven model from experimental
data was found to outperform both linear and nonlinear
physical models under real-world driving conditions [13],
which sheds light on using such models in real-time control.
A neural network (NN) model-based adaptive control was
proposed for coupled longitudinal-lateral control in [14].
The controller was synthesized using a proportional and
derivative control coupled with an online adaptive neural
module to compensate for model mismatch, strong nonlin-
earities, and coupling effects. The closed-loop stability of the
combined control scheme was analyzed using a Lyapunov-
based method. Adaptive dynamic programming was pro-
posed in [15] for the data-driven optimal control of coupled
longitudinal-lateral vehicle dynamics. However, many of
these data-driven methods have only been demonstrated in
the simulation scenarios and are limited to certain driving
conditions.

In view of these issues, this paper extends the physics-
data-based (IPDB) approach in [16], [17] to modeling the
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coupled longitudinal-lateral dynamics and further designs
IPDB controller to follow reference trajectories. The nov-
elties of this paper are three-fold: -

1) The IPDB approach has been well demonstrated in the
earlier works on lateral dynamics, while in this paper, the
IPDB approach is extended to the combined longitudinal
and lateral vehicle dynamics, which is more practical in
real driving scenarios.

2) The IPDB model is derived from the nonlinear dynamic
equation, linear time-varying expressions of tire forces,
and embedded into the linear parameter-varying (LPV)
representation. Four variables are selected as the schedul-
ing parameters, which produce kernels between states,
inputs, and scheduling parameters. The vehicle-related
parameters are kept in the system matrices, separated from
the measurable vehicle motion variables, and are further
expressed by the experimental data.

3) A gain-scheduling path-following controller is synthesized
from the IPDB model and is validated in the experimental
platform. The proposed IPDB control is compared with the
traditional Stanley controller and renders better tracking
performance.
The remainder of this paper is organized as follows.

Section II presents the details of the IPDB modeling for
combined longitudinal and lateral vehicle dynamics. Section
III designs an LPV tracking controller using error dynam-
ics based on the proposed IPDB model. In Section IV,
the experiment equipment is introduced and the proposed
modeling approach and controller are validated. Finally, the
conclusions are drawn, and future work is discussed.

II. IPDB MODELING OF INTEGRATED
LONGITUDINAL-LATERAL DYNAMICS

A. Combined Longitudinal and Lateral Dynamics

The combined longitudinal and lateral vehicle dynamics
can be obtained using Newton-Euler law as follows.

m(v̇x − vyγ) = Fx
f cosδ f +Fx

r −Fy
f sinδ f

m(v̇y + vxγ) = Fx
f sinδ f +Fy

f cosδ f +Fy
r

Izγ̇ = (Fx
f sinδ f +Fy

f cosδ f )L f −Fy
r Lr

(1)

where vx (m/s) denotes longitudinal velocity; vy (m/s)
represents lateral velocity; γ (rad/s) is yaw rate; m (kg) is
vehicle mass; δ f (◦) is the steering angle at the front wheel;
I (kg ·m2) is yaw moment of inertia; L f (m) is distance from
center of gravity to front axle; Lr (m) is distance from center
of gravity to rear axle; Fx

i (N) is longitudinal forces with i
denotes ’ f ’ or ’r’ representing front or rear tire; and Fy

i (N)
is lateral forces.

The longitudinal and lateral forces are modeled to be
linearly related to slip ratio or slip angle with time-varying
longitudinal or lateral tire stiffness coefficients, as follows.

Fx
i ≈ C x

i (t)λi, λi =
riwi−vx

riwi

Fy
f ≈ C y

f (t)α f , α f = δ f −
vy+L f γ

vx

Fy
r ≈ C y

r (t)αr, αr =
Lrγ−vy

vx

(2)

where C x
i (t) (N) and C y

f (t) (N/rad) are time-varying longi-
tudinal and lateral stiffness coefficients, which are nonlinear
functions of factors of tire-road interactions; λi is wheel slip
ratio; wi (rad/s) is the tire rotational speed; ri (m) is the
effective tire radius; and αi is the tire slip angle.

The vehicle dynamics (1) follow the general representation
of the LPV system as follows.

ẋ = A(ρ)x+B(ρ)u (3)

where x =
[

vx vy γ
]T ∈ Rnx denotes system state vec-

tor; control input uT = [u1,u2], and u1 = δ f is steering angle,
u2 = 1 is an extra ’virtual’ input resulted from the LPV
formulation; ρ ∈ Rnρ is the scheduling parameter vector,

ρ =
[

γ
1
vx

λ f δ f

]T
; A(ρ),B(ρ) are dependent on the

vehicle-related parameters.
The LPV formulation in this work is innovative from

the existing LPV models of longitudinal/lateral dynam-
ics [18] in the following aspects: 1) The vehicle-related
parameters (Cx

f ,C
x
r ,C

y
f ,C

y
r ,L f ,Lr,m, Iz) are separated from

the motion-related variables (vx,vy,γ,δ f ,λr,λ f ). The vehicle-
related model parameters depend on the tire, road, and vehi-
cle conditions, which are needed in the model but are often
hard to estimate or identify. The motion-related variables,
however, are measurable by on-board sensors. 2) We keep the
vehicle-related parameters in the model matrices and encode
the dependency of motion-related variables into the LPV
representation. 3) Four measurable motion-related variables
are chosen as the scheduling parameters, which renders an
affine-dependent LPV model.

By discretizing the system with sampling time Ts, the
following discrete-time LPV model can be obtained, where
ρk is the scheduling parameter vector at time instant k.

xk+1 = Ak(ρk)xk +Bk(ρk)uk (4)

B. IPDB Model Representation

The vehicle-related parameters, such as vehicle mass, yaw
moment of inertia, tire stiffnesses, etc., in A(ρ),B(ρ) are
subject to change under varying operating conditions, and it
is usually challenging to accurately identify these parameters.
To overcome these difficulties, this paper adopts the IPDB
modeling approach that models the system dynamics with
data while preserving the explainable property of physical
laws. For more details regarding the IPDB modeling, readers
are referred to our previous work [17], [16].

Remember that Ak(ρk) and Bk(ρk) are affine dependent
on the scheduling vector ρk, of which the element is ρik.
Using the Kronecker product, the nonlinear LPV system can
be rewritten into (5),

xk+1 = (A0k +
4

∑
i=1

Aikρik)xk +(B0k +
4

∑
i=1

Bikρik)uk

= Ak

[
xk

ρk ⊗ xk

]
+Bk

[
uk

ρk ⊗uk

] (5)

where Ak is the lumped transition matrix Ak =
[A0k,A1k,A2k,A3k,A4k] and Bk is the lumped input
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matrix Bk = [B0k,B1k,B2k,B3k,B4k]. The lumped states have
additional term ρk ⊗ xk, which is the Kronecker product
kernel between states and scheduling parameter, and lumped
inputs have additional term ρk ⊗ uk, the kernel between
inputs and scheduling parameter. These two kernels encode
the nonlinearity stemming from the physical laws and LPV
formulation.

Assuming that the signal traces with length nd can be
recorded from vehicle onboard sensors, the following ma-
trices can be defined to facilitate the IPDB modeling.

Uk =
[

ud
k−nd

ud
k−nd+1 . . . ud

k−1

]
∈ Rnu×nd

Xk =
[

xd
k−nd

xd
k−nd+1 . . . xd

k−1

]
∈ Rnx×nd

X+
k =

[
xd

k−nd+1 xd
k−nd+2 . . . xd

k

]
∈ Rnx×nd

U(ρk) =
[

ρd
k−nd

⊗ud
k−nd

. . . ρd
k−1 ⊗ud

k−1

]
∈ Rnρ nu×nd

X(ρk) =
[

ρd
k−nd

⊗ xd
k−nd

. . . ρd
k−1 ⊗ xd

k−1

]
∈ Rnρ nx×nd

(6)

Using the linear property with respect to inputs and states
in (5), the system matrices

[
Bk Ak

]
can be extracted

from the data snapshots

[
Bk Ak

]
= X+

k


Uk

U(ρk)
Xk

X(ρk)


†

(7)

As a result, the system evolution can be represented by the
data snapshots in (8), which is called the integrated physics-
data-based model, i.e., the IPDB model.

xk+1 = X+
k


Uk

U(ρk)
Xk

X(ρk)


†

︸ ︷︷ ︸
Ωk


uk

ρk ⊗uk
xk

ρk ⊗ xk

 (8)

According to different data snapshot selection strategies,
different variants of IPDB models can be obtained. In the
sequel, the fixed-window IPDB model is used, which is
obtained by selecting data snapshots in a fixed window.

III. GAIN-SCHEDULING CONTROLLER DESIGN

In this section, a gain-scheduling LPV controller is
designed based on the IPDB model for the combined
longitudinal-lateral vehicle dynamics. The tracking error
dynamics is first formulated, and the controller is synthesized
via the LMI (Linear Matrix Inequality) for H∞ performance.

A. Tracking Control Scheme

The overall control scheme is shown in Fig.1. The path
planner generates a path in x,y directions for the vehicle to
follow, and the kinematic controller generates the reference
trajectory of the velocity and yaw rate. In this work, the pure
pursuit kinematic controller is used. With the IPDB model,
the gain-scheduling IPDB controller is designed to steer the

vehicle to track the reference trajectory. The vehicle status
information is feedback to the dynamic tracking controller
with states vx,vy,γ and steering angle δ f , and the vehicle
location information x,y,θ are feedback to the kinematic
controller to follow the desired path.

path planner
Kinematic
Controller

(Pure-pursuit)
Vehicle

Dynamic tracking control

IPDB 
model

𝝆

IPDB 
control

𝑥𝑟
𝑦𝑟

𝑣𝑟
𝛾𝑟

𝑥
𝑦
𝜃

𝑣𝑥
𝑣𝑦
𝛾
𝛿

Fig. 1. Scheme of combined longitudinal-lateral vehicle control.

The tracking error dynamics need to be derived to design
the tracking controller. Denote ek = xk − rk as the tracking
error between states and the references states, ∆uk = uk −
ur,k as the error between control inputs and reference input,
the tracking error dynamics along the reference trajectory
(rk,ρk) can be derived by the first-order approximation as

ek+1 = Ak(ρk)ek +Bk(ρk)∆uk +Ewk
zk =Cek +D∆uk

(9)

where wk denotes the model mismatch or the regression
residual in (7) due to data noises, and zk as the weighted
performance output that consists of state tracking error and
control inputs.

In addition, C = [Q1/2I;0] and D = [0;R1/2I] that render
zT

k zk = eT
k Qek +∆uT

k R∆uk with weighting matrices Q,R. The
weighting matrices can be tuned to achieve the desired
responses of tracking error and control efforts.

B. Controller Synthesis Conditions

With the IPDB model (9), a gain-scheduling state-
feedback controller ∆uk = K(ρk)ek is to be found that can
stabilize the system and achieve robust performance. The
following LMI can be used to synthesize the controller
matrix, where ∗ makes the symmetric matrix. Note that, the
state-feedback LPV controller synthesis condition has been
well studied, and the following LMI is stemmed from the
classic work [19]. Hence, the proof is omitted here.

Theorem 1: Given a positive scalar γ∞, if there exist
parameter-dependent matrices P(ρk) > 0, F(ρk) such that
the following LMI holds for ρk,ρk+1 ∈ P ,


P(ρk+1) Ξ(ρk) E 0

∗ P(ρk) 0 P(ρk)C
T −F(ρk)

T DT

∗ ∗ −γ∞I 0
∗ ∗ ∗ −γ∞I

> 0,

(10)
where Ξ(ρk) = Ak(ρk)P(ρk)−Bk(ρk)F(ρk), then the con-
troller K(ρk) = F(ρk)P

−1(ρk) can stabilize the system (9)
and achieve ∥zk∥2 ≤ γ∞∥wk∥2.

Remark 1: Note that, the given LMI now is not compu-
tationally solvable because the LMI is infinite-dimensional
since ρk,ρk+1 ∈ P . S-procedure can be used to address the
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Fig. 2. The experimental setup of the Qcar platform.

parameter-dependent LMI [20]. Alternatively, one can fix the
structures of the variables and test the resulting inequalities
using the relaxation technique of homogeneous polynomially
parameter-dependent solutions [21]. The Robust LMI Parser
(ROLMIP) [22] was used to parse the LMIs and solver
SeDuMi [23] was used to solve the semi-definite program.
One can choose the polynomial degrees of the variables from
the trade-off relationship that higher degrees usually lead to
less conservative results at the price of heavier computations.
Due to the affine dependency of the IPDB model matrices,
it is natural that the gain-scheduling controller variables
P(ρk),F(ρk) are selected as affine-dependent as well, i.e.
P(ρk) = P0k +∑

n
i=1 Pikρik, F(ρk) = F0k +∑

n
i=1 Fikρik. If these

controller variables are selected as constant matrices, the
LMI can be directly solved, leading to a conservative design
of a fixed-gain controller K at the sacrifice of control
performance.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

A. Experimental Setup

The experiment tests are conducted on the Quanser self-
driving car (QCar) platform, which consists of the OptiTrack
motion capture system, the delicately designed track, the
QCar vehicle, communication devices, and a workstation PC.
The configuration of the platform is illustrated in Fig. 2. The
OptiTrack motion capture system is equipped with 10 cam-
eras and employed to obtain real-time pose information of the
QCar, the QCar velocities/angular velocities are calculated
from the pose information. The collected positional data are
transmitted to the workstation PC through cables. The control
algorithm is first developed in the MATLAB/Simulink envi-
ronment on the workstation PC, then compiled into C code,
and finally executed on an embedded Linux-based system
powered by the onboard NVIDIA Jetson TX2 processor with
a quad-core ARM Cortex-A57 microcontroller. During the
tests, the onboard NVIDIA processor receives the command
from the workstation PC and generates appropriate Pulse
Width Modulation (PWM) signals. These PWM signals are
sent to the drive and steering servo motors to control the
motion of the QCar. The proposed IPDB modeling does
not require any vehicle parameters, therefore, the vehicle
configuration is omitted.

-2 -1.5 -1 -0.5 0
X (m)

-2

-1.5

-1

-0.5

0

Y
 (

m
)

Fig. 3. The path of Qcar in x-y track.

B. IPDB Model Validation

The IPDB approach to validate the combined longitudinal
and lateral vehicle dynamics is presented in this section.
The QCar is first controlled to complete a round track to
cover various vehicle operations. The global vehicle position
information is obtained through the OptiTrack system in real
time, and the velocities are calculated from the changing
positions. The logged signals are displayed in Fig. 4. In the
meantime, the vehicle operation state signals are presented
in Fig. 5. The vehicle longitudinal speed is obtained from
the global to local coordinate transformation, and the tire
slip ratio is calculated by combining the vehicle longitudinal
velocity and the wheel rotational speed. The steering angle
is converted from the steering motor. In addition, the vehicle
heading angle can also be obtained from the OptiTrack
system, from which the vehicle yaw rate can be calculated.

At this point, the data matrices described in (6) can be
formulated so that the system matrices [Bk Ak] in (7)
can be identified. The numerical values within the matrices
are omitted here, however, the model performances are
reported in Fig. 6. The IPDB modeling results are compared
to the Optical system measurements, and the error signals
between them are also presented. It is obvious that the
IPDB approach without knowing the vehicle configuration
parameters can reflect the coupled longitudinal and lateral
vehicle dynamics response with excellent precision. The
Root-Mean-Square-Error (RMSE) for longitudinal velocity,
lateral velocity, and yaw rate is calculated to be 0.0074m/s,
0.0013m/s and 0.0131rad/s, respectively, which is almost
trivial. This demonstrates the high accuracy of the IPDB
modeling approach.

C. Gain-Scheduling Controller Design and Experimental
Results

First, the range of four scheduling parameters are selected
based on the experimental data. Yaw rate γ ∈ [−1,1], 1

vx
∈

[1,10], slip ratio λ f ∈ [−0.4,0.4], δ f ∈ [−0.5,0.5]. Note that,
the upper bound of 1

vx
is approximated to avoid infinity when

the longitudinal velocity is near 0.
The weighting matrices are tuned in experiments and the

following matrices are finally taken. Q = diag(1,1,100),
R= 1, which lead to C = diag(1,1,10,1) and D= [0,0,0,1]T .
These matrices are employed in the controller synthesis
conditions in Theorem 1 to solve for controller variables
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Fig. 4. (a) Longitudinal position and speed; (b) Lateral position and speed.
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Pik,Fik. After that, the controller variables were stored and
used to online calculate controller gain K = F(ρk)P

−1(ρk)
with the real-time measurement of scheduling parameter ρ .
The controller computation (inverse and matrix multiplica-
tions) was performed in Simulink and the controller gain is
transmitted to Qcar by wireless communication.

The proposed controller is implemented on the experimen-
tal platform and was compared with a Stanley controller,
which is often used in lateral control. The experimental
results are plotted in Figs. 7-8, and the numerical analysis
of control performance is summarized in Table I.

It can be seen that the proposed IPDB controller achieves
similar tracking performance in vx as the Stanley controller
since the longitudinal dynamics are mainly controlled by the
wheel speed. However, the proposed control has much better
control performance in vy and γ than the Stanley controller,
which achieves better tracking and can reduce the track-
ing error to a smaller order of magnitude. The underlying
reason is that the IPDB controller captures the combined
longitudinal-lateral dynamics and schedules controller gains
based on vehicle status, rather than the Stanley controller just
considers the lateral dynamics without considering coupled
longitudinal dynamics. This can be observed as well in the
comparisons of control inputs, if one notices that different
steering strategies are adopted by two controllers to adjust
the pose of the vehicle.

In particular, at the first seconds, see zoom-in figures
in Fig. 7, the proposed IPDB-based controller has faster
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Fig. 6. Combined vehicle dynamics model validation: (a) Longitudinal
velocity; (b) Lateral velocity; (c) Yaw rate.

TABLE I
COMPARISON OF CONTROLLER PERFORMANCES.

Singals
RMSE RRMSE (%)

IPDB Stanley IPDB Stanley

vx(m/s) 0.773 0.776 2.45 2.46

vy(m/s) 0.022 0.62 0.062 0.462

γ̇(rad/s) 0.07 0.158 0.4 0.98

γ(rad) 0.04 0.13 0.035 0.12

convergence to track the reference trajectory than the Stanley
controller. It can also been observed in the yaw rate and
lateral velocity tracking during 7-15 seconds. The Stanley
controller renders an obvious phase lag in the responses,
however, the IPDB-based controller can enable rapid con-
vergence and follow the reference trajectory.

V. CONCLUSION

This paper proposes a new method to model and con-
trol the coupled longitudinal and lateral vehicle dynamics
using the IPDB approach. Specifically, the nonlinear cou-
pled dynamic model originated from physical principles is
derived into an affine-dependent LPV representation, and
then the IPDB modeling approach using experimental data
is employed to establish the system transformation matri-
ces and reconstruct the coupled vehicle dynamics. On the
foundation of the IPDB model, an LPV gain-scheduling
tracking controller is designed to steer the vehicle to track a
given reference trajectory. The effectiveness of the proposed
modeling and control algorithm are validated experimentally
on the Quanser QCar platform with an optical measurement
system. The IPDB model is validated with excellent model-
ing accuracy, and the tracking controller designed based on
the IPDB model outperforms the baseline Stanley controller
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in both tracking accuracy and convergence speed.
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