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Abstract—In many industrial scenarios, such as automotive
production lines, sheet stamping parts are widely used. However,
due to the weak texture and strong reflections of these typical
parts, pose estimation is hard to achieve, resulting in difficulties
of grasping automatically. To deal with this problem, we propose
a novel point pair feature (PPF) based pose estimation method to
facilitate grasping. Firstly, a three-level structure downsampling
method is introduced to seek the balance between the number of
model points and significant features. Secondly, in order to reduce
the interference of placement plane and other objects in the
scene, a two-dimensional voting accumulator is constructed with
weighted voting. Based on the voting results, the probability map
is accordingly established, which guides keypoints sampling and
voting again. Finally, edge points and model points are enrolled
for pose verification to remove the wrong results. Our method is
implemented in physical experiments, and the results show that
the proposed method can be effectively applied to pose estimation
of sheet stamping parts such as tire lock plates. Moreover, the
ablation study demonstrates the criticality of each process.

Index Terms—Pose estimation, Point pair features, Sheet
stamping parts.

I. INTRODUCTION

Recently, with the improvement of sensor accuracy, object
recognition and pose estimation have developed rapidly, which
can be used for bin picking, augmented reality, autonomous
driving, etc [1]. For bin picking task, pose estimation is mainly
to recognize the target object from the scene and estimate
its pose relative to the camera. Then, the pose of the object
relative to the manipulator is obtained according to the results
of hand-eye calibration, and we can control the manipulator to
grasp. Sheet stamping parts are usually composed of simple
geometric primitives such as plane, and have a wide range
of applications in the automobile production. Due to the
characteristics of parts with weak texture, strong reflection
and multi-plane, pose estimation and manipulator automatic
grasping are facing challenges. Therefore, it is necessary to
develop appropriate pose estimation method for sheet stamping
parts to realize the automation of automobile production line.

The existing pose estimation methods are mainly divided
into template matching based methods, learning based
methods and feature based methods [2]. For the unstructured
environment, due to parts stacking, the traditional template
matching algorithm requires plenty of memory [3]. The
deep learning approach performs poorly because of the
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imperfections and errors in the point cloud captured. In feature
based methods, most 3D feature descriptors describe local
features, while point pair feature (PPF) describes the model
globally, which has rotation invariance and high robustness.
Therefore, the point pair feature matching algorithm is used
as the basic algorithm to estimate the pose of sheet stamping
parts. In PPF based method, there are three main sections that
affect the efficiency and accuracy of the algorithm, namely
preprocessing, voting and pose verification.

Because models and scenes are usually represented by
numerous points, downsampling the model is an important
step in the preprocessing section of the offline stage, and the
completeness of the model description by the downsampling
points directly affects the results. PPF matching algorithm
was first proposed by Drost et al. in [4]. Voxel filtering was
applied to downsample the model, and each voxel only retained
its center point. In [5], the points whose angles between
the normals were larger than 30 degrees in the same voxel
were reserved, which reduced the loss of valid information. In
[6], the visible points from N viewpoints were extracted and
aligned using the CAD model of the target, and then reduced
model description through voxel filtering. In [7], poisson disk
sampling was used to improve the efficiency of matching and
prevent point pairs from being too close.

Sheet stamping parts are composed of simple geometric
primitives typically, usually with many planar point pair
features, thus vulnerable to the interference of the plane in the
scene. In [7], the voting weight was calculated according to the
angle between the normals of the point pair. The smaller the
angle, the smaller the voting weight. In [8], the direction of the
point used the tangent direction. The edge points of the scene
were only chosen to calculate point pair features, thus partly
reducing the influence of the plane. [9] adopted RANSAC
approach to extract planes from the scene and removed them
larger than the model diameter, but this method is difficult
to separate thin parts from the plane. In [10], deep learning
method was used to segment the instance, and then sampled
and matched in the masks, which resulted in efficient sampling
of point pairs. In [11], each point pair was ray tracing in four
directions, and these distances obtained were added to the PPF.

An effective pose verification method can delete the
mismatched pose, thus making the results more accurate. In
[5], the object was rendered according to the estimated pose
and filtered based on the matching number of pixels. The final
verification was carried out by judging the coverage between
the areas with significant depth change and the transformed
model. In [12], voxel-based pose verification method was
proposed to detect multiple parts efficiently owing to boolean
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Fig. 1. Illustration of the proposed pipeline. (a) In preprocessing, downsample the model and the scene. (b) Hash map construction based on model point
pair features. (c) The probability map is established according to the voting results, which guides the keypoints sampling and voting again. (d) Improved pose
verification method is conducted to eliminate invalid results.

operation, which reduced program runtime. In [13], if the
distance between the corresponding points of the transformed
model and the scene, and the angle between their normals
were both less than the threshold, they were considered to
be matched, and the number of matched points is calculated
for evaluation. In [14], semantic PPF method could remove
the ambiguity of the pose hypotheses because the semantic
information could be applied to match the right surface.

However, in the above works, the downsampling methods
lack the explicit extraction of edge points, which will lead to
the loss of details. Also, because the sheet stamping parts have
many planar point pair features typically, and the thickness
of the part is within the sensor error range, the placement
plane and other object surfaces in the scene may obtain higher
erroneous votes. Furthermore, due to the highly reflective
features of parts, point cloud captured by the structured light
camera are incomplete. The general pose verification methods
tend to perform poorly in complex scenes where parts stacking.

In this paper, we mainly focus on the pose estimation
of sheet stamping parts in the case of scattered stacking,
and propose a PPF based method with optimized voting and
verification strategies. Firstly, the model is downsampled by
our three-level structure downsampling method. Then, through
weighted voting and probability map construction, keypoints
are obtained, and the voting strategy is executed again to obtain
the initial pose. Finally, according to pose verification method
considering edge points and model points, the wrong poses can
be removed. The results show that the proposed method can
be effectively applied to estimate the pose of sheet stamping
parts in industrial applications quickly and accurately, which
has the ability to complete the bin picking task of 50 parts.

The remainder of this paper is organized as follows. In
Section II, the proposed method consisting of preprocessing,
weighted voting, probability map building and pose verification
are explained in detail. Then, experimental results and
discussion are given in Section III. Section IV concludes the

paper, and outlines the future work.

II. METHODOLOGY

Drost-PPFM [4] proposed by Drost et al. performed model
matching on point pair features, and then estimated the pose
of the target object in the scene. Given a point pair (pr, pi)
whose normals are respectively nr and ni, the distance vector
between two points is d = pi−pr. The four-dimensional point
pair feature descriptor is shown in Eq. (1).

F (pr, pi) = (‖d‖2,∠ (nr, d) ,∠ (ni, d) ,∠ (nr, ni)) (1)

The method we proposed mainly consists of four sections,
and its pipeline is shown in Fig. 1. First of all, the model and
scene are preprocessed to obtain the hash map described by
the model point pairs. Then, the weighted voting is performed,
and the probability map is constructed according to the voting
results. The keypoints are sampled according to probability and
voted again to obtain initial poses. Finally, cluster each initial
result, perform iterative closest point (ICP) for each average
pose, and get the final results through pose verification.

A. Preprocessing

Since both model point cloud M and scene point cloud S
have a large amount of data, effectively reducing the number
of points can speed up matching. However, the traditional
downsampling algorithm based on voxel filtering only retains
the center of gravity of each voxel, which will obviously lead
to the absence of significant features of the model, such as the
cambered surface, thus making the registration worse.

In order to solve this problem, we propose a three-level
structure downsampling method. According to the algorithm
proposed by Bendels et al. [15], we get the model edge points.
For each voxel vi of model, we not only retain the point pc,i
closest to the center of vi, but also store the points pn,i whose
angles between their normals and other storage normals are
larger than 30 degrees and the equidistant edge points pe,i
of M in vi. Consider the voxel index space V of M, three
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levels of downsampling point setMd = {pc,i, pn,i, pe,i, i ∈ V}
with size Nm. Use the same method to obtain the scene
downsampling point set Sd with size Ns.

Assume that the diameter of the model is D, and set the
length of the downsampled voxel to δVD, where δV = 0.04.
The three-level structure downsampling method can increase
the number of tire lock plate downsampling points from 632
to 1281, as shown in Fig. 2. It can be seen that our method
retains much information about the upper and lower surfaces,
the cambered surface and the edge of the part.

(a) Traditional method (b) Our method

Fig. 2. Comparison of downsampling methods. (a) Traditional voxel filtering
downsampling. (b) Our three-level structure downsampling method.

According to the camera projection imaging principle, when
the angle between the normals of two points pr and pi is within
[180◦−ε, 180◦+ε], such as one point on the inner surface and
the other point on the outer surface, they will hardly appear
in the same view. Therefore, for these point pairs, we do not
calculate the point pair features, so as to reduce the storage.

B. Weighted Voting and Probability Map

Because sheet stamping parts often have many planar
features, the point pair features on the placement planes of
the scene have a bad influence on pose estimation, which
often leads to wrong matching. When generating model hash
map in offline stage, the distance and angle elements in
PPF are discretized with a quantization step size of ∆ddist
and ∆dangle. As shown in Fig. 3, when the PPF descriptor
extracted from the scene is F (sr, si) = (r ± ∆ddist

2 , 90◦ ±
∆dangle

2 , 90◦ ± ∆dangle

2 , 0◦ ± ∆dangle

2 ), it can correspond
to multiple point pairs of the model, such as (pr,1, pi,1),
(pr,2, pi,2) and so on, thus generating matching ambiguity.

When building the voting accumulator, we adopt the
improved method mentioned in [5]. For any reference point
sr ∈ Sd, we only build the point pair with the point si whose
distance from sr is less than D

2 . Reducing the number of
votes of planar point pair can lighten the interference of plane
to a certain extent. At the same time, point pair with large
angle of normals provide approximate information gain for
pose estimation and should have the same weight. Therefore,
we propose a discrete weighted voting method to achieve the
above purposes. Due to the noise of the sensor, when the angle
∠ (nr, ni) between the normals of (sr, si) in the scene is less
than 30 degrees, vote 1 for the corresponding model point and
the rotation angle in the voting accumulator. Otherwise, it is
considered that the point pair is not in the same plane, and
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Fig. 3. Planar point pair features in sheet stamping part.

vote 5. The voting rule is described in Eq. (2).

V (mr, α) =

{
1, if∠ (nr, ni) < 30◦

5, if∠ (nr, ni) ≥ 30◦
(2)

According to the voting results, a large number of estimated
pose will be generated, but many of them are inaccurate.
Relatively speaking, the higher the number of votes obtained,
the higher the reliability, which can be considered to be closer
to the ground truth. Inspired by [9], when a scene reference
point gets a high number of votes, it means that this point is
more likely to be located on the target, which can provide more
accurate results. They build the probability map based on the
scene reference points, but we consider that the pose center is
more effective in the face of large plane interference.

Therefore, we propose the probability map representation
for pose center. The whole architecture is given in Algorithm
1. For the kth reference point sr,k in Sd, the model reference
point mr,k and pose transformation matrix Tk are obtained
according to the highest number of votes Vmax,k. The nearest
neighbor search algorithm is applied to find the nearest point
sc,k of the tranformed model center point mc,k in the scene,
and a scoring ball Sb,k with diameter D is established with
sc,k as the center. The updated score at each point sj in Sb,k

decreases according to the Euclidean distance from sc,k, where
the score of sc,k is Vmax,k. Assuming that the score of scenario
point sj after the kth vote is S(sj)k, the score after next vote
is updated as shown in Eq. (3). After all voting, normalize
the score of each point in S, and finally obtain the probability
map representation for pose center, as shown in Fig. 4, where
the probability from 0 to 1, color from blue to red. It can be
seen that there are obviously four regions of interest with high
probability in the scene, corresponding to the four parts, which
can well sense the distribution of target.

S(sj)k+1 = S(sj)k +

⌊
‖sj − sc,k‖2

D/2
Vmax,k

⌋
(3)

For the obtained probability map representation for pose
center, we conduct keypoint sampling according to the discrete
probability distribution. A point sj is obtained by simple
random sampling from the scene. If the probability Pj of the
point sj is greater than the random probability Prandom, sj is
retained as a keypoint. Repeat the above operations until the
size of keypoint set K is 1/100 of the size of Sd. In this way,
K can not only have a certain global view, but also focus on
the local region of interest. The weighted voting is performed
again to obtain the initial estimated pose set T1.
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(a) Original image (b) Probability map

Fig. 4. Construction of probability map. (a) Image captured by simulation
camera. (b) The probability map representation for pose center.

Algorithm 1 Keypoints Sampling with Probability Map
Input: Model PPF hash map; Model downsampling point set
Md; Scene downsampling point set Sd.

Output: Keypoint set K.
1: Initializing: (S(s1)0, . . . , S(sNs)0)← 0
2: for k = 1 to Ns do
3: Tk ← weighted voting with Eq. (2)
4: mc,k ← transformed model center point mc

5: sc,k ← the nearest point of mc,k

6: Nb,k ← the size of point in Sb,k

7: for j = 1 to Nb,k do
8: S(sj)k updated with (3)
9: end for

10: end for
11: Nk ← the size of K
12: while Nk < 1/100Nm do
13: sj ← random sampling in Sd
14: compute random probability Prandom

15: if Pj > Prandom then
16: sj is added to K
17: end if
18: end while

C. Pose Clustering and Verification

Since the keypoints may be in the background, and the
sensor noise will interfere with the PPF matching, there are still
some wrong poses in T1. In order to remove some inaccurate
results, we select clusters according to the number of votes
for each pose. Suppose that after the keypoints voting, the
highest number of votes is V otesmax, only the poses with
more votes than 0.5V otesmax are retained, and other results
are considered inaccurate and deleted. The Euclidean distance
DT of the translation vector and the angle difference αT of
the quaternion between each pose and the cluster centers are
used as the metrics. If DT is less than the threshold ∆DT

and αT is less than the threshold ∆αT , the pose will be
merged into the existing cluster, otherwise a new cluster will
be created. The translation vector of each cluster takes the
mean value of the translation vector of all poses in it, and
the rotation is represented by the eigenvector corresponding
to the maximum eigenvalue of matrix A in Eq. (4), where ni
represents the number of poses and qj represents the quaternion
corresponding to each pose in the cluster. The clustered pose
transformation set T2 is obtained. For each pose in T2, ICP is

applied to refine the pose to obtain the set T3.

A =
1

ni

ni∑
j=1

(
qTj · qj

)
(4)

Since the edge points provide much information in model
matching, we propose a pose verification method fusion of
edge points and model points. The Canny operator is used for
edge detection of the RGB image, and the edge is mapped
to S to obtain the edge points. For Ti ∈ T3, transform the
downsampling points and equidistant edge points of the model
into the scene. KD-tree is applied for nearest neighbor search.
If the transformed model downsampling point mi,j has an
adjacent point sj ∈ S, and the angle between their normals is
smaller than 30 degrees, it is considered that they correspond,
and the total number of corresponding points Ndi is obtained.
Voxelize the edge points of scene point cloud. If there are edge
points in the voxel where the transformed equidistant model
edge point are located, it is considered that this edge point
is matched successfully, and the number of all matched edge
points Nei is finally obtained. The final score of each pose is
calculated in Eq. (5), where ωd and ωe are weight coefficients.
In this paper, 1 and 3 are used respectively. Retain the poses
with 0.5 times the highest score as the final estimation results.

Scorei = ωd �Ndi + ωe �Nei (5)

III. EXPERIMENTS

In this section, the experiments verify the necessity of each
module in our proposed algorithm, and then compare it with
other algorithms. Finally, the proposed method is applied to
bin picking experiments in real scenes. The sheet stamping
part used in the experiment is the tire lock plate, which is
applied to fix the tire and the vehicle.

A. Ablation Study

We conduct ablation study to verify the necessity of each
component proposed above, including four experiments: using
our method as shown in Fig. 5(a), downsampling the model
with traditional voxel filtering as shown in Fig. 5(b), no
weighted voting and establishment of probability map as shown
in Fig. 5(c), and no pose verification as shown in Fig. 5(d). The
algorithms applied to the last three experiments are the same
as the proposed method except for the above changes.

As shown in Fig. 5(a), our method almost perfectly
matches all the target objects in the scene, achieving the
highest accuracy. When traditional voxel filtering is used for
downsampling, the model is smaller with only 632 points so the
program runs faster, but the result has a certain deviation from
the ground truth, which is caused by ignoring the details of the
part. Compared with our method, the method with traditional
voxel filtering has an average greater error of 0.213mm and
0.035rad in translation and rotation respectively, and obtains
the second highest accuracy. The latter two methods have
obvious mismatches, so only qualitative analysis is carried out.
When the weighted voting and probability map construction
are not carried out, the object recognition is seriously affected
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(a) Ours (b) Without Section Ⅱ.A

(c) Without Section Ⅱ.B (d) Without Section Ⅱ.C

Fig. 5. Ablation study. (a) Our method. (b) With traditional downsampling.
(c) Without weighted voting and building probability map. (d) Without pose
verification.

by the placement plane, and PPF matching generates many
wrong poses. Even if the pose verification is carried out, the
effect is still poor, because the wrong poses are matched
with other objects in the scene, which ultimately leads to
the pose verification failure, as shown in the red marking
areas in Fig. 5(c). When the pose verification is not applied,
the incorrect poses cannot be removed effectively. There are
obvious mismatches in Fig. 5(d), which shows the necessity
of optimized pose verification. Therefore, the above three
improvements can improve the accuracy of pose estimation.

B. Comparisons

In order to calculate the accuracy of the proposed algorithm,
we use three kinds of sheet stamping parts for testing, and the
Blender software is applied to construct 20 simulation scenes
respectively, in which the parts are stacked in disorder. The
RGB image and point cloud are obtained through simulation,
and some of the scenes are shown in Fig. 6.

As the final task is oriented to bin picking, we use the
three results with the highest score in each scene to compare
with the ground truth to calculate the translation and rotation
errors. Taking the X direction as an example, the error of the
algorithm in this direction is shown in Eq. (6), where xi,j and
xti,j represent the prediction result and ground truth of the jth
pose in the X direction of the ith scene respectively.

ex =
1

180

60∑
i=1

3∑
j=1

|xi,j − xti,j | (6)

The proposed algorithm is compared with Drost-PPFM [4],
Fast-PPFM [12] and PPF-MEAM [8]. All algorithms finally
adopt ICP for pose refinement. The experimental results are
shown in Table I. The results show that in the three degrees
of freedom of translation, our method has the highest accuracy
in the prediction of X direction and Z direction, which is at
least 2.168 times and 1.324 times higher than other methods,
respectively. At the same time, our method has the second
highest accuracy in Y direction prediction, whose error is only
0.085mm greater than the most accurate result. In addition,

Fig. 6. Three kinds of sheet stamping parts and some simulation scenarios.

TABLE I
POSE ESTIMATION ERROR OF DIFFERENT METHODS

Methods ex1 ey1 ez1 eroll
2 epitch

2 eyaw2

Drost-PPFM 1.581 1.563 1.826 5.207 1.649 0.642
Fast-PPFM 1.352 0.328 1.127 1.794 1.482 0.785

PPF-MEAM 1.249 0.615 0.633 1.072 1.107 0.576
Ours 0.576 0.413 0.478 0.740 0.597 0.590

1 the unit of variable is mm
2 the unit of variable is 10−2rad

for the three degrees of freedom of rotation, our method has
the highest accuracy at roll and pitch angles, 1.449 times and
1.854 times higher than the second highest accuracy, separately.
Finally, for the yaw angle, our method achieves the second
highest accuracy, which is 1.4× 10−4rad greater than the error
of the best result. The above results show that the proposed
algorithm has higher accuracy in the prediction of multiple
degrees of freedom, and the overall pose estimation results
are more accurate. It is worth mentioning that the precision
accuracy of PPF-MEAM [8] is close to that of the algorithm
in this paper, which also shows the effectiveness of edge
information in the pose estimation of sheet stamping parts.

C. Bin Picking

We apply the algorithm to the real scene for bin picking
experiment. The Universal Robot (UR) is equipped with an
electromagnet for grasping with structured light camera in a
way that eye to hand. According to the electromagnet structure
and the shape of the tire lock plate, the left, middle and right
planes of each part are taken as candidate grasping areas.
Because the algorithm will produce many results, we adopt the
height of the part Hi, the matching degree between the part
and the scene point cloud Mi, and the number of interference
points Ii above the part to comprehensively evaluate after
normalization, and finally select the candidate area with the
highest score as the target area with Eq. (7). At the same time,
if there is collision in this area, choose the pose with the second
highest score until it meets the requirement of no collision.

PScorei = ωH �Hi + ωM �Mi − ωI � Ii (7)

where ωH , ωM and ωI are weight coefficients, while 1, 1 and
2 are respectively adopted in this paper.
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(e) Bin picking

(a) Point cloud captured by the camera

(b) Results of Fast-PPFM

(c) Results of PPF-MEAM

(d) Results of our method

Fig. 7. The experimental process of bin picking. (a) Some point clouds
captured by the structured light camera. (b) Pose estimation results of
Fast-PPFM. (c) Pose estimation results of PPF-MEAM. (d) Pose estimation
results of our method. (e) Bin picking with our method.

Some results during the experiment are shown in Fig. 7. As
shown in Fig. 7(a), due to the high specular reflection of the
part slope, the point cloud captured has some defects, which
brings great challenges to the algorithm. When there are few
parts left, it can be seen from Fig. 7(b) that the Fast-PPFM
[12] is seriously disturbed by the placement plane and cannot
recognize the target from the scene. In contrast, PPF-MEAM
[8] can identify some targets when there are few sheet stamping
parts, because relatively accurate edge information can be
obtained, but it is not effective when there are many parts
stacked in disorder owing to the messy edges. In spite of this,
even in the face of incomplete point clouds, the algorithm
proposed in this paper can still guarantee better pose estimation
results, no matter when there are more or fewer parts as shown
in Fig. 7(d). Finally, our experiment shows that the proposed
algorithm can grasp a whole box of 50 parts stacked in disorder.

D. Discussion

Through ablation study, we verify the effectiveness of the
improvements in the proposed method, which can deal with the
interference of plane and other objects in the scene. Moreover,
as shown in Table I, compared with other three methods, our
method has the smallest prediction error at four degrees of
freedom. Even the errors of other two degrees of freedom are a
little larger than the best result. However, because the keypoints
are random sampling according to the probability map, when
there are many target objects in the scene, our method cannot
guarantee that keypoints are distributed on all targets, which
may lead to incomplete pose estimation in the scene.

IV. CONCLUSION AND FUTURE WORK

We propose a PPF based pose estimation method with
optimized voting and verification strategies for sheet stamping

parts recognition and grasping. The three-level structure
downsampling method can effectively extract salient features
of the model while reducing model points. Weighted voting
and probability map construction can reduce plane interference.
The pose verification method combining edge and model points
can filter wrong poses. Our algorithm has achieved good results
in real scenes and can complete bin picking tasks.

The future work is to explore more efficient pose estimation
methods. For the parts composed of simple geometric
primitives, we can use the graph matching method for target
recognition and pose estimation. Also, ensemble learning can
be applied to take advantage of multiple algorithms.
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