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Abstract—The field of soft robotics has been experiencing
rapid growth, with researchers and engineers showing increasing
interest due to the unique capabilities of these robots. Soft robots,
characterized by their soft bodies and flexible structures, have
demonstrated great potential in addressing real-world challenges
across various domains, including medical applications. Effective
modeling and control are vital for fully harnessing the potential
of soft robots, particularly in applications involving human
interaction. However, creating models for soft robots made of
soft materials, diverse shapes, and actuators poses significant
challenges. Moreover, accurate fault detection in soft robots
necessitates precise modeling. This paper introduces a novel
machine learning approach, termed deterministic learning, for
training a soft robot model using a radial basis function neural
network. The research explores the fault detection process by
simulating four distinct faults that could impair system control
performance, such as diminishing tracking accuracy or inducing
instability. Furthermore, the paper examines the identification of
fault occurrences during the operation of soft robots.

Index Terms—soft robotics, radial basis function neural net-
work, deterministic learning, fault detection.

I. INTRODUCTION

Soft robots are generally constructed using soft materials
like silicone and rubber, which provide them with unique
characteristics. Their flexible bodies enable bending and twist-
ing with high curvatures, allowing them to adapt to various
environments and tasks. Due to their extensive applicability,
ranging from underwater settings to the medical field, more
research has been conducted on soft robots such as [1], [2],
[3], [4], [5] and [6].

Although flexibility offers certain advantages for soft robots,
it also complicates the modeling of their dynamics. Soft
robots possess infinite-dimensional structures with unknown
degrees of freedom, leading researchers to propose contin-
uous mathematical models for describing their dynamics.
Some of these models include the Constant-Curvature method
[7], Cosserat-Rod-theory-based method[8], and Finite Element
Method (FEM) [9]. However, due to linear approximations and
simplifications, none of these methods can precisely represent
the dynamics of soft robots. Therefore, they are not suitable
for fault detection experiments which demand a more accurate
approximation model for high nonlinear dynamics of soft
robots. Developing a model-based fault detection method [10]
that considers the robots’ dynamic behavior for improved fault

detection accuracy is also challenging due to the inherent
physical properties of soft robots.

To prevent performance degradation and ensure safety, it is
essential to identify abnormal behavior and faults during robot
operation [10]. This necessity has spurred the development
of fault diagnosis techniques specifically tailored for soft
robots ([11] [12] [13]). However, these techniques may not be
applicable when faults remain concealed due to the infinite-
dimensional nature and highly nonlinear models of soft robots
[14].

The most accurate model of soft robots’ nonlinear dynamics
can be derived by using neural networks (NN). For instance,
[15] which trained a neural network to predict a soft robot’s
quasi-static physics, [16] which uses artificial NN to learn the
input-output model of a soft robot, and [17] used NN for
linear movement pattern. These methods have not used the
high dimensional system states for simplicity and having less
computational effort.

On the other hand, online data-driven model learning has
proven to be more efficient in soft robot dynamics modeling
when accounting for unknown nonlinearities [18]. This sug-
gests that utilizing data-driven machine learning to capture
the robots’ dynamic motions can result in more accurate
approximations of their models. Studies by [19] and [20] have
demonstrated that machine learning can handle complex soft
sensor information by modeling and predicting the external
environment. [21] and [22] have used the data-driven approach
with the continuum kinematics model to improve the modeling
accuracy.

In this paper, we apply deterministic learning (DL) ([23]
[24]) a novel machine learning method, to identify the motion
dynamics of a recently developed soft robot using radial basis
function neural networks. Deterministic learning theory can
be utilized to find the system dynamics of general nonlinear
systems [25] and [26]. A brand new Soft Trunk Robot (STR)
which is designed and developed in our previous research
[27] is investigated for unknown dynamic estimation using DL
with radial basis function NN (RBFNN). After collecting the
motion data of the STR following a predefined trajectory, its
nonlinear dynamics model is obtained using DL. Then a fault
detection procedure is studied involving four different faults
that occurred in the STR to detect fault occurrences for each
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fault.
The rest of the paper contains the following sections: section

II delves into the DL theory in detail. Section III presents
the formulation of RBFNN. Section IV introduces the STR
design details and actuation. The average weight procedure
is discussed in section V. The fault detection procedure and
corresponding results are provided in section VI. Finally,
section VII concludes the paper.

II. PRELIMINARIES

The RBFNN can be described as equation
fnn(Z) =

∑N
i=1 wisi(Z) = WTS(Z), where Z ∈ ΩZ ⊆ Rq

described as input vector, and W = w1, ..., w
T
N ∈ RN as

weight vector. N indicates the number of NN nodes,
S(Z) = [s1(||Z− µi||), ..., sN (||Z− µi||)]T with si(·) is a radial
basis function, and µi(i = 1, ..., N) is distinct points in the
state space.

The Gaussian function si(||Z− µi||) = exp
[
− (Z−µi)

T (Z−µi)
η2
i

]
is generally used for radial basis functions, where
µi = [µi1, µi2, ..., µiN ]T is the center and ηi is the width
of the receptive field. The Gaussian function categorized
by localized radial basis function s in the sense that
si(||Z− µi||) → 0 as ||Z|| → ∞.

It has been shown in [28] and [29] that for any
continuous function f(Z) : ΩZ → R where ΩZ ⊂ Rp is a
compact set, and for the NN approximator, where the
node number N is sufficiently large, there exists an ideal
constant weight vector W ∗, such that for each ϵ∗ > 0,
f(Z) = W ∗TS(Z) + ϵ(Z), ∀Z ∈ ΩZ , where ϵ(Z) is the
approximation error. Moreover, for any bounded trajectory
Zζ(t) within the compact set ΩZ , f(Z) can be approximated
by using a limited number of neurons located in a
local region along the trajectory: f(Z) = W ∗T

ζ Sζ(Z) + ϵζ ,
where Sζ(Z) = [Sj1(Z), ..., Sjζ(Z)]T ∈ RNζ , with
Nζ < N , |sji| > ι, (ji = j1, ..., jζ), ι is a small positive
constant, W ∗

ζ = [w∗
j1, ..., w

∗
jζ ]

T , and ϵζ is the approximation
error, with

∣∣∣|ϵζ | − |ϵ|
∣∣∣ being small.

III. NEURAL NETWORK TRAINING SETUP

Generally, obtaining accurate motion control of a robot
requires developing its model first. For this purpose, a newly
developed machine learning algorithm called the discrete-time
Deterministic Learning (DL) algorithm will be employed for
model learning.

Considering f(x; p) as the unknown dynamics of the sys-
tem, x as system state with x(t0) = x0 initial condition and
p vector as the constant parameter of the system, the general
form of a nonlinear dynamical system can be expressed as
follows:

ẋ = f(x; p) (1)

The discretized representation of this equation using Euler
approximation can be written as follows:

x[k + 1] = x[k] + Tsf(x[k]; p), x[0] = x0. (2)

f(x[k]; p) is the unknown system dynamics to obtain from
system states, and Ts is the time increment for each step.

Using discrete-time deterministic learning theory [24], the
unknown dynamics of the system can be identified with the
following algorithm:

x̂[k + 1] = x[k] + a(x̂[k]− x[k]) + TsŴ
T [k + 1]S(x[k]) (3)

Where x̂ = [x̂1, x̂2, ..., x̂n] and 0 < |a| < 1 are the state
vector and constant parameter respectively. Ts = 0.12 seconds
is discretization time. ŴTS(x[k]) is the radial basis function
neural network while Ŵ is the neural network weight which
is updated using the learning law below:

Ŵ [k + 1] = Ŵ [k]− αP (e[k]− ae[k − 1])S(x[k − 1])

1 + λmax(P )ST (x[k − 1])S(x[k − 1])
(4)

Where e[k] = x̂[k]− x[k] the matrix P = PT > 0 has the
maximum eigenvalue λ and α ∈ (0, 2) is the learning gain for
the design.

IV. THE SOFT TRUNK ROBOT

A. Design and Fabrication

Our case study for this experiment is the Soft Trunk Robot
(STR) (shown in Fig. 1) which is made of silicone rubber to
enable a flexible motion in a 3-dimensional space.

The STR has consisted of 6 contiguous flattened spheres
mounted from the base and tapering off to the tip point. Placing
six 3D-printed retainers with the same pattern in between each
sphere separately, not only stabilized the STR’s movement but
also holds the four strings all around the trunk to have precise
motion. Each string is released and tied up by a stepper motor
from the on-top base to actuate the STR. Therefore, the tip
point can achieve a sphere-like motion range all around the
STR.

The motors are coordinated in pairs to optimize the motion
range and enable the tip point to reach the target with
minimum oscillation. Each motor automatically either releases
or pulls its corresponding string to reach the desired target
optimally without unnecessary tension on the strings. This also
improves the accuracy of the STR’s positional states.

B. Actuation and State Definition

The STR is actuated by four stepper motors responsible for
pulling or releasing strings attached to the tip. The STR tip
point can be bent toward each direction by pulling the corre-
sponding strings and releasing others. Thus, all motors work
simultaneously in a heterogeneous environment to achieve
precise trajectories.

Since the STR has a 3d motion plan, the x and y axis are
defined across each pair of motors and the z-axis is defined
toward the central axis from top to bottom. Stepper motors
are fixed on the top base diagonally. Fig. 2 shows defined pair
motors and their corresponding axis.

In order to make the STR motion more efficient and simple,
each opposite motor works in pairs. Motors 1 and 3 from the
first pair and motors 2 and 4 from the second pair, with each
pair working independently. The first pair of motor bends the
robot on the y-axis while the second pair bend on the x-axis,
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Fig. 1. Soft Trunk Robot.

Fig. 2. Pair motors design overview and corresponding axis.

as shown in the picture. Correspondingly, the z-axis is defined
from top to bottom of the robot.

The system inputs consist of two variables (u1 and u2) and
each corresponds to one pair of motors. Positive and negative
values indicate whether the first or the second motor of each
pair is pulling or releasing the string respectively. For instance,
if the first input value (u1) is negative, it indicates that the
second motor of the first pair is pulling its string, while the
first motor is releasing its corresponding one. As the STR has
a 3D motion plan, there are three positional data (x,y,z) to
be collected as system positional states. Counting each pair
of motors as one state as input and the three positional states,
the overall state of the system includes u1, u2, x, y, and z.

V. DYNAMIC ESTIMATION USING THE AVERAGE OF NN
WEIGHTS

To obtain the best estimation of the system dynamics,
a well-trained NN weight of the model from an original

trajectory is needed. The original trajectory for this experiment
was generated by five continuous similar loops that start
and end in a predefined position. Each loop consists of 120
steps, resulting in an overall trajectory of 600 steps. The
NNs dimension is defined as 12, and with 5 system states,
the number of NN nodes becomes 248,832. Also, in the
training procedure, NN weights progressively converge to their
optimal value Therefore, the latest learned NN weights are
more reliable compared to the previous ones, and the average
values of NN weights from the latest steps of the learning
process (including all NN nodes) was derived to be used in the
estimator. In fact, The average of NN weights, being a more
balanced weight, helps the estimator achieve a more accurate
prediction. The average of the latest 120 NN weights from the
trained model was calculated as average weights:

W̄ =
1

kb − ka + 1

kb∑
k=ka

Ŵ [k] (5)

Where [ka, ..., kb] represents the range of steps (481-600) cho-
sen to calculate the average weight W̄ , using the corresponding
neural network weights Ŵ [k] from these steps.

According to [24], motion dynamics from the neural net-
work can be accurately approximated by fully estimating
dynamics information and average weights based on the fol-
lowing equation:

X̄[k + 1] = X̄[k] + TsB(X̄[k]−X[k]) + Ts(W̄ )TS(X[k]) (6)

With the real state of the trajectory as X[k],
B = diag[0.5, 0.5, 0.5, 0.5, 0.5] as a diagonal matrix, the
estimated states of the original trajectory is defined as X̄[k]

in state estimator process.
Fig. 3 shows that the estimated dynamics align with the

actual ones for all state values. The convergence of the corre-
sponding error to a small neighborhood of zero in just a few
steps demonstrates the estimator’s precision in predicting the
model dynamics. This outcome is achieved by implementing
the adaptive learning algorithm with the average weights.
Therefore, based on the accurate modeled dynamics of the
robot, a fast FD can be achieved.

VI. FAULT DETECTION PROCEDURE AND RESULTS

In the fault detection process, our objective is to identify
when a fault happens. To achieve this, we use the fully
estimated dynamics information associated with the original
trajectory and implement the actual state of a faulty trajectory
in the estimation process. When a significant error arises along
the original trajectory, it indicates a faulty trajectory. The
process diagram in Fig. 4 illustrates the learning process and
FD in detail.

As shown in Fig. 4, by employing RBF NN, the unknown
dynamics of the original trajectory is identified with the DL
algorithm. The average of converged NN weights is then used
in the estimator process along with the faulty trajectory motion
dynamics. The fault detection procedure can be represented by
calculating the norm error and determining a threshold.
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Fig. 3. Dynamics comparison between actual system states and predicted
system model states for x, y, and z coordinates from top to bottom respec-
tively).

Fig. 4. Process diagram of the learning procedure.

A. Fault Implementation

Four different faults are defined to occur for this experiment:

1) Hanging an external weight from the tip point.
2) Holding the trunk near a fixed object by an elastic band.
3) Fastening a cable tie over the robot and tightening the

strings to one sphere.
4) Motor shut down due to the power source issue or being

disabled.

Fig. 5 shows how each fault is generated. Each of these
four faults affects the actuation of the STR in different ways.
Understanding how these faults affect the robot’s performance
is crucial for developing an effective fault detection procedure
and ensuring the safe operation of the robot in real-world
applications. The comparison between the actual system dy-
namics and approximated dynamics of faulty trajectories and
their related errors are plotted in Fig. 6 and Fig. 7.

The estimation results before the fault occurrence of Fig. 6
and Fig. 7 demonstrate that the error converged to a small
neighborhood of zero because the trajectory is identical to the
original trajectory up to that point, and the dynamic estimation
results are highly similar. However when a fault happens,
the dynamics of the robot change, leading to a deviation
in the state estimation results, and causing an increase in
the corresponding error. In fact, The error seems to amplify
noticeably following the fault event. This characteristic is
utilized for fault detection procedures.

Fig. 5. Four defined faults: 1. Weight hanging. 2. Elastic band. 3. Cable tie.
4. Motor Shutdown(unplugged).

Fig. 6. Dynamic comparison between the actual system dynamics and
approximated one of faulty trajectory and their corresponding error for x,
y, and z position from top to bottom respectively. Fault 1 (left) and Fault 2
(right).

Fig. 7. Dynamic comparison between the actual system dynamics and
approximated one of faulty trajectory and their corresponding error for x,
y, and z position from top to bottom respectively. Fault 3 (left) and Fault 4
(right).
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B. Fault Detection Procedure

The estimation error generated by the fault needs to be
analyzed for the FD procedure. To detect a fault accurately, the
estimation error has to exceed a predefined limit. To address
what the exact limitation value is, we define the norm error of
the estimation error and then a fault detection threshold can
be implemented. The norm error is the absolute average of
the estimation error for a maximum of 120 steps. the reason
to consider the norm of the error is that the oscillation error
would be neglected when using the norm of the estimation
error.

C. FD Results

An intuitive approach to fault detection is defining a fixed
threshold above the norm error of the estimation error. In this
way, if the error happens, it can be detected as the norm error
value starts surpassing the predefined threshold. By setting a
threshold for the increased norm error resulting from a fault,
fault occurrence can be easily detected. If the norm error does
not exceed the threshold value, the trajectory is considered as
healthy (remaining the same as the original one). On the other
hand, if it remains larger than the upper threshold, it diagnoses
as a faulty trajectory.

Three different trials of each fault were conducted on the
robot. The procedure outlined in Fig. 4 was examined and their
norm errors were plotted for each positional state. Specific
threshold values were then defined for each trial separately.
Fig. 8 and Fig. 9 display the norm error and the threshold
corresponding to each fault for three different trials.

The norm error initially increased until it reaches the 120
steps in Fig. 8 and Fig. 9, remaining constant until the
error occurs. It undergoes another constant growth (after the
360th step) when a fault happens. The threshold value can
be determined for each positional state at the beginning of
the constant growth of the norm error when a fault occurs.
This value is defined after studying all three trials for each
fault independently. Additionally, a fault detection time can be
established for each fault. The fault detection time refers to the
time interval between the occurrence of a fault and the moment
when the norm error surpasses its designated threshold.

Table I presents the general threshold values of each fault
for the x,y, and z direction. The threshold values indicate the
limitation of norm error corresponding to each positional state
of each fault. The fault detection time also reveals how long
it takes for all norm errors corresponding to each positional
state to reach their threshold values after fault occurrence. The
maximum value among the trials is designated for FD time.
For instance, when a fault happens due to the cable tie, it takes
0.96 seconds to detect the fault.

Fault detection duration from Table I demonstrates how
quickly each fault can be detected. Since safety is one of
the highest priorities for soft robot applications for human
interactions, minimizing fault detection duration is crucial.

In this experiment by defining corresponding threshold
values and using the norm error for each positional state,
fault detection time is minimized. This accomplishment is also

because of the precise prediction of dynamic estimation using
deterministic learning with an average of constant RBFNN
weights. The fault detection process further ensures that dif-
ferent norm errors can be defined for different possible faults
with FD time.

Fig. 8. Three different norm errors of faulty trajectories and their corre-
sponding threshold for each state position (x,y,z). Fault 1 (left) and Fault 2
(right).

Fig. 9. Three different norm errors of faulty trajectories and their corre-
sponding threshold for each state position (x,y,z). Fault 3 (left) and Fault 4
(right).

VII. CONCLUSIONS

In this paper, we presented a novel machine learning
approach, deterministic learning, for modeling a soft trunk
robot using a radial basis function neural network. By em-
ploying average NN weights, the error between the actual
system dynamics and dynamic estimation converged to a small
neighborhood of zero, resulting in a more accurate model
estimation.

Subsequently, based on the model and the corresponding
error of dynamic estimation, we implemented a fault detection
process to identify the occurrence of four different faults.
For each fault, a threshold value was established for each
positional state to facilitate fault identification. Additionally,
fault detection time was determined for each distinct fault. The
results validated the accuracy of the model and demonstrated
the rapid detection of each fault through various trials.
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TABLE I
THRESHOLD VALUES FOR EACH DIRECTION AND FAULT DETECTION TIME

FOR EACH FAULT

Fault
Threshold Values (mm)

FD Time (s)
x y z

1. Weight hanging 1.19 1.52 1.85 1.20

2. Cable tie 0.72 0.88 0.96 0.84

3. Elastic band 0.59 0.69 0.92 0.96

4. Motor shutdown 0.73 0.71 0.83 1.08
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