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Abstract— In conventional robust motion control systems,
disturbance observer (DOB) nominal models are designed with
same order as the actual plant such that the nominal model
directly cancels with the actual plant dynamics. However, for
multi-DOF systems such as 6-DOF industrial robots, identifying
the higher-order model is laborious. Moreover, there is a high
risk of obtaining a nominal model with large deviation from
the actual plant due to severe parameter uncertainty. Thus,
a reduced-order nominal model is derived from the actual
plant model and compared with the one which same order
as the actual plant in this paper. The designed model is
simple, easy to identify and implement. From the analyses and
experiment results, DOB with the proposed nominal model
is not affected by severe robot model uncertainty and show
significant improvement in motion control performance in
terms of transient response and tracking accuracy.

I. INTRODUCTION

Disturbance observers (DOB) [1], [2] have been shown
to improve performance in motion control systems by esti-
mating and canceling the disturbances such as friction [3],
model uncertainties, unmodeled dynamics, and external un-
controlled forces [4]. Because of this, the DOBs have been
utilized in motion control systems in both single degree-
of-freedom (DOF) [5] and multi-DOF systems [6]–[8]. The
disturbances are estimated by subtracting the command input
from the result of product of the output response and the
inverse of a nominal model [9], [10].

In conventional DOB-based control systems, the nominal
model is designed with the same order as the actual plant
model. Thus, the nominal model should be as accurate as
the actual plant dynamics since severe model uncertainties
make it hard to completely suppress the disturbances to
achieve accurate control performance [11]. Moreover, it is
difficult to guarantee closed-loop system stability if large
model uncertainties exist [4]. Another important advantage of
DOB-based control over other control methods is preserving
the nominal performance [12]–[14]. However, guaranteeing
the nominal performance recovery characteristic is difficult
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if the nominal model deviates largely from the actual plant
due to parameter uncertainties [12].

With single-DOF systems, such as motor models, it is
easy to identify the accurate nominal model since the model
is simple and has few parameters. However, multi-DOF
systems such as 6-DOF fixed position/velocity-controlled
industrial robots have complex non-linear models which
makes it difficult to identify an accurate DOB nominal
model [15] or apply linear design techniques.

To this end, this paper focuses on designing simple and
easy to identify nominal model for DOB with application to
motion control improvement for a fixed position/velocity-
controlled multi-DOF industrial robot system. The major
requirement for DOB designed with the proposed nominal
model is that it should be robust against severe robot model
uncertainty. The contribution of this paper is summarized as

1) First, a simplified linear task space model of the tar-
get 6-DOF velocity-controlled industrial robot is de-
rived empirically by nonparametric system identification
method and validated.

2) Then, a linear DOB which estimates disturbances using
the command velocity, measured velocity output, and
an inverse model is designed and implemented in task
space built around the position/velocity control loop.

3) Finally, a reduced-order nominal model is derived from
the actual complex motion-controlled robot dynamic
model and a guideline for determining its single design
parameter is presented.

The rest of the paper is organized as follows. Section II
describes the robot and presents the system measurement and
model identification. Section III presents the improved con-
trol architecture from which the nominal model is proposed.
Theoretical closed-loop analysis and verification through
experiments are then conducted in Section IV. Finally, the
conclusion is given in Section V.

II. ROBOT SYSTEM DESCRIPTION, MEASUREMENT, AND
LINEAR MODEL IDENTIFICATION

A. Description and Task Space Modeling of the Fixed
Position/Velocity-Controlled Industrial Robot

The target robot is a COMAU RACER-7-1.4 industrial
manipulator shown in Fig. 1. In this paper, only linear
Cartesian DOFs, i.e., joints 1/2/3 of the robot, are under
consideration to provide linear motions along the x/y/z-
axes. The linear motion is typically more important for
performance than rotational motion. The position control
interface of the robot is used, where the position commands
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Fig. 1. Detailed 3D view of the COMAU RACER-7-1.4 robot showing
the joints under consideration. Inset is the actual robot.

Fig. 2. Task space model for the velocity-controlled robot. Vi, V , dV ,
and F are command velocity, response velocity, external disturbances, and
feedback force, respectively.

can be sent in joint or Cartesian coordinates and the robot
position/velocity can be measured in task space but the robot
can not be directly controlled. Control is commanded in the
robot’s Tool Center Point (TCP), where the total control is
diagonal and each DOF is independent.

A linear model will be considered to allow frequency-
domain analysis, with the effect of nonlinear dynamics
considered in Section IV.B. Let the velocity-controlled robot
in Fig. 1 be represented by the simple block diagram in Fig. 2
for a linear single-DOF in task space [8], [16]. The velocity
controller, Rc(s), computes a controlled force input to the
linearized robot dynamics, Rd(s), where Td(s) is the time
delays between the internal and external robot controllers.
Note that feedback force, F , is due to e.g., payload or contact
with environment. Therefore, the effect of F is ignored in
this paper since only free space motion with no payload and
environment contact is considered. To this end, the transfer
function for the fixed inner velocity control loop can be
derived for Fig. 2 as

R(s) =
Rc(s)Rd(s)

1 +Rc(s)Rd(s)
. (1)

Representing the complex robot system in Fig. 1 with
Fig. 2 and (1) is a big assumption considering the non-
linearity and coupling issues associated with the robot, which
cannot be ignored. To abate these issues, identification of the
task space model R(s) in (1) is conducted empirically by
nonparametric system identification technique as discussed
in the following subsection.

Fig. 3. Robot poses for system measurement and identification.

B. Task Space System Measurement and Model Identification

1) Task Space Robot System Measurement: Under posi-
tion control, a Schroeder multisine [17, §5], [18] is utilized
as an excitation signal and supplied to the position-controlled
robot as the desired position. Six robot poses are considered
as illustrated in Fig. 3 and for each pose, five experiments
are conducted in each of the x/y/z-directions. This is done
for two reasons: 1) to cover all range of robot operation
space and 2) to account for uncertainty due to robot model
variations which is crucial for accurate model identification.

The desired and measured position information are then
differentiated using a low-pass filter (LPF) with high cutoff
frequency to obtain the corresponding velocity information.
The frequency response functions (FRFs) from command
velocity to the measured velocity are calculated for all the
robot poses and grouped in terms of axis of excitation. Their
bode magnitude characteristics along with the averages are
plotted in Fig. 4. It can be observed that, irrespective of the
pose, the robot responds differently depending on the axis
of excitation. And for each axis, similar pattern is observed,
however, variations occur after the cross-over frequency
which can be attributed to the effect of change in elbow
joint pose. The variations occur in terms of antiresonance
and resonance modes which are observed after around 13 Hz
in the measured FRF. This can attributed to joint flexibility
originating from the flex-splines of the harmonic drives
installed in the robot in Fig. 1. Thus, it can be concluded
from these results that the robot system in Fig. 1 can be
considered as a flexible joint robot (FJR) system [19], [20]
with motor-side and link-side dynamics with finite stiffness,
i.e., flexibility, between them.

2) Task Space Linear Model Identification: To begin, the
closed loop model, R(s) is identified by fitting as shown by
the black-dashed lines in Fig. 4(bottom) as follows.

To include the antiresonance and resonance modes exhib-
ited after around 13 Hz in the measured FRF, the robot dy-
namics, Rd(s), are modelled as a two-mass system illustrated
in Fig. 5. The task space model in Fig. 5 is analogous to the
flexible joint robot (FJR) representation in joint space [21].
Where the first and second masses, i.e., Rd1(s) and Rd2(s)
are comparable to the joint space motor-side dynamics and
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Fig. 4. Velocity-controlled robot system measurement experiment results.

link-side dynamics, and Ks(s) is the stiffness dynamics that
connects Rd1(s) and Rd2(s). These models are defined in
Laplace domain as shown below

Rd1,2(s) =
1

Mr1,2s+Br1,2
and Ks(s) =

ks
s
, (2)

where M•, B•, and ks are mass, damping, and stiffness, re-
spectively. Considering Fc as the input and V the output, the
two-mass system in Fig. 5 can be reduced to a single transfer
function describing the task space linear robot dynamics as

Rd(s) =
V
Fc

(s) =
Rd1(s)[1 +Ks(s)Rd2(s)]

1 +Ks(s)[Rd1(s) +Rd2(s)]
, (3)

where V and Fc are the Laplace transforms of V and Fc,
respectively. The equivalent task space controller, Rc(s), is
modelled as a proportional-integral (PI) controller as

Rc(s) = kp +
ki
s
. (4)

Equations (3) and (4) are substituted in (1), then fit with
the measured FRF as shown by the black dashed-lines in
Fig. 4, from which numerical transfer functions are identified

Fig. 5. Robot dynamics modelled as a two-mass system.

and given below

Rc(s) = 2000 +
40000

s
, Td(s) = e−0.003s,

Rd(s) =
0.01125s2 + 0.3656s+ 112.5

s3 + 35s2 + 1.258e4s+ 1.063e5
, (5)

and are used in the analyses in the Sections that follow.

III. DOB DESIGN AND DERIVATION OF PROPOSED
NOMINAL MODEL

A. The DOB Structure

It is a big assumption to utilize the task space linear model
in Fig. 2 to represent the non-linear complex robot system.
Thus, it is expected that the non-linearity and coupling effects
not considered in linear model derivation are large and need
to be suppressed. In addition, the external velocities, dV ,
act on the robot system, causing deviation from expected
motion control performance. Therefore, the DOB is designed
to suppress the effects of the external velocities and eliminate
the residuals of non-linearities and coupling effects.

A block diagram illustrating the DOB design and imple-
mentation is presented in Fig. 6 where the estimated lumped
disturbances are given by d̂. To make P−1

n (s) proper, the
Q-filter is designed as a LPF, as shown below

Q(s) =
ωQ

s+ ωQ
, (6)

where ωQ is the Q-filter cutoff frequency.
In conventional DOB designs, the generalized DOB nom-

inal model, Pn(s), is designed with the same order as the
plant, in this case, the plant is the robot dynamics, Rd(s).
However, this is not possible for the case in Fig. 6 since
the DOB is implemented in the outer loop as compared to
the conventional inner-loop DOB implementations [22]. This
is because the velocity control inner-loop of the industrial
robot is closed and can not be accessed for control design
improvement. Thus, in the next section, the nominal model
is designed from the closed-loop plant P (s).

B. Design and Limitation of the Full-Order DOB Nominal
Model

From the DOB structure in Fig. 6, the nominal model,
Pn(s), is designed as the closed-loop dynamics of the
velocity control loop, i.e., R(s) in (1) as shown below

P ∗
n(s) = R(s) =

Rcn(s)R
∗
dn(s)

1 +Rcn(s)R∗
dn(s)

, (7)

1097



Fig. 6. DOB-based velocity control block diagram where Q(s) is the Q-
filter and Pn(s) is the generalized DOB nominal model to be designed.

where Rcn(s) is the nominal model of Rc(s) in (4), and
for simplicity of design and analysis, let Rcn(s) = Rc(s)
from now on-wards. The focus of this paper is on design of
R∗

dn(s) - the nominal model of Rd(s) in (3).
The conventional way is to design R∗

dn(s) in (7) with same
order as the actual dynamics Rd(s) in (3) as shown below

R∗
dn(s) =

Rd1n(s)[1 +Ksn(s)Rd2n(s)]

1 +Ksn(s)[Rd1n(s) +Rd2n(s)]
. (8)

However, the nominal model in (7) is laborious to identify
due to many parameters for (8), moreover, these increase
model uncertainty. In addition, implementation of the DOB
with (7) to the existing robot platform is also challenging.

C. Development of the Proposed Nominal Model

To mitigate the drawbacks of P ∗
n(s) in (7), the nominal

model with simple and different structure from (7) is pro-
posed as shown below

P prop
n (s) =

1

τns+ 1
. (9)

Compared to (7) and the conventional 1-DOF single mass-
based DOB models of mass-damper structure [22], the pro-
posed model in (9) has a LPF structure with one parameter -
the time constant, τn. This makes it more elegant, simple, and
less susceptible to model uncertainty. Note that, τn is a task
space parameter and is designed by the following criteria.

To begin with, R∗
dn(s) in (8) can be simplified as fol-

lows. Firstly, divide through the numerator and denominator
of (8) by Ksn(s). Since ks is relatively large, the terms
with K−1

sn (s) are small and ignored. The result is further
simplified to give a reduced-order version of R∗

dn(s) given
by the expressions below

R∗∗
dn(s) =

Rd1n(s)[K
−1
sn (s) +Rd2n(s)]

K−1
sn (s) +Rd1n(s) +Rd2n(s)

=
1

R−1
d1n(s) +R−1

d2n(s)
=

1

Mrns+Brn
, (10)

where Mrn = Mr1n+Mr2n and Brn = Br1n+Br2n. Thus,
R∗∗

dn(s) in (10) is a single-mass system as compared to the
two-mass system in (8). Substituting (10) in (7) leads to a

simplified nominal model given below

P ∗∗
n (s) =

Rcn(s)R
∗∗
dn(s)

1 +Rcn(s)R∗∗
dn(s)

,

=
kpns+ kin

Mrns2 + (kpn +Brn)s+ kin
. (11)

Note that, (9) should be equivalent to (11) and (7).
Utilizing this condition, re-arrange (11) and equate the result
to (9) to get

Mrns
2 +Brns

kpns+ kin
= τns. (12)

Next, considering the low frequency region by letting s = 0,
the nominal time constant τn is calculated as shown below

τn =

∣∣∣∣Mrns+Brn

kpns+ kin

∣∣∣∣
s=0

=
Brn

kin
. (13)

From (13), task space parameter τn can be calculated as the
ratio of damping to integral coefficients.

To summarize, P prop
n (s) in (9) is a first-order transfer

function, which is a reduced-order version of P ∗∗
n (s) in (11)

and P ∗
n(s) in (7). Moreover, P prop

n (s) has a single tuning
parameter, τn, calculated using (13). Thus, the parameter
identification burden has been significantly reduced and the
nominal model can be easily implemented on the existing
software platform for the robot in Fig. 1. Note that, τn in (13)
can be interpreted in terms of bandwidth as kin/(2πBrn) Hz
to provide the initial value for easier tuning during experi-
ments. However, in spite of its elegance and simplicity, the
single tuning parameter of P prop

n (s) limits the freedom of
design as compared to P ∗∗

n (s).
Note that, the nominal model in (11) is much simpler

compared to (7) and can also be used for DOB design.
Compared to (7), (11) has only four parameters to be
identified. This reduces the model complexity, and thus the
model error and parameter identification burden are also
reduced. However, in comparison to P prop

n (s) in (9) and the
conventional DOBs whose nominal models are first-order
transfer functions, P ∗∗

n (s) in (11) is a second order transfer
function with a zero in the numerator. In the next discussions,
performance analysis is conducted to validate the proposed
P prop
n (s) and comparison is made with P ∗∗

n (s) and P ∗
n(s).

D. Theoretical Validation of the Proposed Nominal Model

The numerical values of the designed nominal models are
identified by fitting P ∗

n(s) and P ∗∗
n (s) with the measured

FRF in Fig. 4, and are given below

Rcn(s) = Rc(s), R∗
dn(s) = Rd(s),

and R∗∗
dn(s) =

1

50s+ 750
. (14)

To this end, the initial value of τn is calculated from the
obtained values of kin and Brn in (14) as τn = 0.01875.

The frequency characteristics of all the nominal models
are shown by the bode magnitude plot in Fig. 7. It can be
observed that all the nominal models are equivalent in the
low frequency region but P prop

n (s) and P ∗∗
n (s) show different
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Fig. 7. Bode magnitude plots of the nominal models

behavior from P ∗
n(s) after their cut-off frequencies due to

their structural differences. The advantage with P prop
n (s) and

P ∗∗
n (s) is that the effects of joint flexibility shown by P ∗

n(s)
can be eliminated since the anti-resonance and resonance
modes are inside their bandwidths. Moreover, P ∗∗

n (s) and
P prop
n (s) exhibit higher bandwidth than P ∗∗

n (s). However,
P prop
n (s) exhibits less steeper slope in high frequency region

than P ∗∗
n (s). Note that, as mentioned earlier, τn = 0.0163

in (14) can be interpreted in terms of bandwidth as 1/(2π×
0.0163) = 9.7641 Hz, which is the cutoff frequency for
P prop
n (s) in Fig. 7. Thus, 0.0163 can be considered as the

minimum value of τn, moreover, τn can be increased to
0.0300 maximum, i.e., at 5.3 Hz cutoff frequency as shown in
Fig. 7 (green color). In conclusion, 0.0163 ≤ τn ≤ 0.0300
is the margin or range of values that τn can be designed
to keep the resonance and antiresonance modes within the
bandwidth of P prop

n (s).

IV. THEORETICAL CLOSED-LOOP ANALYSIS AND
EXPERIMENTAL VERIFICATION

A. Time Response Analysis

A step response of (16) is utilized to analyze the behavior
of the proposed nominal model in terms of transient response
and steady state behaviors. Moreover, to examine the effect
of variation in Q-filter cutoff frequency, step responses when
ωQ = 1, 5, 15, 30 Hz are computed and plotted in Fig. 8. The
numerical values in (5) and (14) are utilized.

Most importantly, it can be observed for all the ωQ values
that, DOB with P prop

n (s) and P ∗∗
n (s) improves the steady-

state tracking performance as compared to the DOB with
conventional nominal model design, P ∗

n(s), and No DOB
cases. Also, increasing ωQ reduces the settling time and
peak velocity for DOB with P prop

n (s) and P ∗∗
n (s) but has

no influence for DOB with P ∗∗
n (s) case. Moreover, it can

be confirmed in the bottom row that τn for P prop
n (s) can

be further increased to significantly improve the steady-state
response and tracking accuracy.

To quantitatively validate the proposed nominal model, the
transient response and tracking performance characteristics
are computed for Fig. 8 when ωQ = 15 Hz and τn =
0.0265. These are presented in Table I. Apart from the
% overshoot characteristic where the DOB with P prop

n (s)
exhibits the best performance with the least value (5.9207),
other characteristics are comparable to those of DOB with
P ∗∗
n (s). This result validates the utilization of the reduced-

order nominal model, P prop
n (s), proposed in (9).
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Fig. 8. Step response theoretical results where τn = 0.0187 in the first
and second rows.

TABLE I
QUANTITATIVE STEP RESPONSE CHARACTERISTICS FOR FIG. 8

Characteristic Values for ωQ = 15 Hz and τn = 0.0265

No DOB DOB with

P ∗
n(s) P ∗∗

n (s) P
prop
n (s)

Rise time 0.0665 0.0632 0.0397 0.0438

Settling time 0.2712 0.2676 0.1298 0.1714

% overshoot 9.9353 10.2970 14.3198 5.9207

Peak 1.0994 1.1030 1.1432 1.0592

Peak time 0.1417 0.1369 0.0764 0.0761

B. Behavior of Proposed Nominal Model Against Severe
Robot Model Uncertainty

In this paper, linear models are used on the non-linear
robot system, however, the effective linearized dynamics
change depending on robot pose. Where large model de-
viation is especially caused by the pose of elbow joint.
Performance of the designed DOB utilizing the proposed
nominal model in (9) should not be affected by variation
in model uncertainty.

Thus, robustness of proposed DOB nominal model against
robot model uncertainty is checked for different robot poses,
where pose 2 and pose 4 (see Fig. 3) are considered in this
paper. And the small gain theorem [23], [24] is utilized to
verify robustness against uncertainty. The small gain theorem
condition for the input multiplicative variation in the robot
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Fig. 9. Result for stability against severe model uncertainty when ωQ =
15 Hz and τn = 0.0187, showing that (15) holds.

model is derived for Fig. 6 as

∥G(jω)∥ <
∥∥∆−1(jω)

∥∥ , (15)

where ∆(jω) is the model uncertainty and G(jω) is the
complimentary sensitivity function, which is same as the
transfer function from Vr to V given below

G(jω) =
Td(jω)R(jω)

1−Q(jω) + Td(jω)R(jω)Q(jω)P−1
n (jω)

,

(16)

where R(jω) is the identified model given in (1). Given that
P (jω) is the actual plant (see Fig. 6), given as

P (jω) = [1 + ∆(jω)]R(jω), (17)

the inverse input multiplicative uncertainty is calculated as

∆−1(jω) =
R(jω)

P (jω)−R(jω)
, (18)

Equation (18) is used to calculate inverse of the model
uncertainty from the data measured in Section II-B.1. Robot
poses 2 & 4 (see Fig. 3) are considered, and for each pose
the inverse uncertainty in x/y/z directions are calculated. The
bode magnitudes of (18) and (16) - using the nominal models
in (7), (9), and (11) are plotted in Fig. 9 when ωQ = 15 Hz
and τn = 0.0187. It is validated from the results in Fig. 9
that, the control method with the proposed nominal model
is robust against severe robot model variations despite being
of simple structure and linear on a non-linear robot system.

C. Motion Control Experimental Validation

To verify the effectiveness of the proposed DOB nominal
model, motion control experiments are conducted on the
COMAU RACER-7-1.4 robot in Fig. 1 as follows.
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Fig. 10. Step response experiment results. τn = 3.18 and, top row: slow
motion (Vr = 0.0393 m/s), middle row: fast motion (Vr = 0.1185 m/s),
and bottom row: RMS values of velocity tracking errors

1) Experiment Protocol: The nominal parameters of
P ∗∗
n (s) in (11) are empirically tuned as kpn = 100, kin =

400, Mrn = 2.5, and Brn = 20. These are utilized through
out all the experiments that follow. With the robot in Pose 1
(see Fig. 3), a step signal is supplied as the reference velocity,
Vr, in the x-axis direction at 2 s. Experiments are conducted
for DOB with P ∗∗

n (s), DOB with P prop
n (s), and No DOB

methods, and the results are compared. DOB with P ∗
n(s)

method is not considered since it is difficult to tune the many
parameters of R∗

dn(s) in (8). Motion control performance is
evaluated in terms of transient response and reduced velocity
tracking error in steady-state.

2) Experiment Results: Fig. 10 presents the step experi-
ment results where first row is for slow motion, middle row
is for fast motion, and the bottom row shows the bar graph
of root mean square (RMS) values of the velocity tracking
errors for all the methods and motion speeds.

For the slow motion case, it can be observed that the
proposed method, i.e., DOB with P prop

n (s) exhibits the best
steady-state tracking performance with least RMS values
as compared to DOB with P ∗∗

n (s) method. Whereas both
methods show comparable tracking performance for the
fast motion case. An increase in Q-filter cut-off frequency
improves the tracking performance for both methods.

However, in the transient region, the DOB with P ∗∗
n (s)

model has a larger overshoot in all the speeds as compared
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Fig. 11. Experiment result for only DOB with P
prop
n (s) method when τn

is varying. ωQ = 7.5 Hz and Vr = 0.0393 m/s.

to the proposed method, which has no overshoot. This result
matches the theoretical results in Fig. 8 of Section IV-A.

On the other hand, the No DOB method exhibits a tran-
sient response with less overshoot and good rise time, how-
ever, there is significant deterioration in tracking performance
due to its inability to suppress the effects of disturbances such
as nonlinear friction and gear cogging. This is confirmed by
the very large tracking errors in both speeds as shown by the
bar graph in Fig. 10.

Further, the slow motion experiment is repeated only for
the DOB with P prop

n (s) method at various τn values and
the results are presented in Fig. 11. The transient response
does not show a significant difference for all the values of
τn. For tracking performance in steady-state, it is observed
that reducing the time constant improves the tracking per-
formance. This performance is confirmed by the calculated
RMSE values as indicated in the figure legend for each value
of τn where τn = 2.25 results in the least RMSE value, i.e.,
0.0007 m/s.

V. CONCLUSIONS

In this paper, model reduction techniques have been
employed to design simple DOB models which have few
parameters to identify and easy to implement on the robot
software platform. Analysis and experiments show that DOB
with the proposed nominal model is robust against model
uncertainty, is able to suppress disturbances and preserve
nominal performance, thus significantly improving velocity
control performance in terms of transient response and
steady-state accuracy.
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